Can a Total Knee System Providing 1 mm Increment of Polyethylene Insert Thickness Offer a Clinical Benefit?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Czerwonka, N.; Gupta, P.; Desai, S.S.; Hickernell, T.R.; Neuwirth, A.L.; Trofa, D.P. Patient-reported outcomes measurement information system instruments in knee arthroplasty patients: A systematic review of the literature. Knee Surg. Relat. Res. 2023, 35, 27. [Google Scholar] [CrossRef]
- Gupta, P.; Czerwonka, N.; Desai, S.S.; deMeireles, A.J.; Trofa, D.P.; Neuwirth, A.L. The current utilization of the patient-reported outcome measurement information system (PROMIS) in isolated or combined total knee arthroplasty populations. Knee Surg. Relat. Res. 2023, 35, 3. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.M.; Kim, G.W.; Lee, C.Y.; Song, E.K.; Seon, J.K. No Difference in Clinical Outcomes and Survivorship for Robotic, Navigational, and Conventional Primary Total Knee Arthroplasty with a Minimum Follow-up of 10 Years. Clin. Orthop. Surg. 2023, 15, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Song, S.J. Sensor-Assisted Total Knee Arthroplasty: A Narrative Review. Clin. Orthop. Surg. 2021, 13, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Roche, M.; Elson, L.; Anderson, C. Dynamic soft tissue balancing in total knee arthroplasty. Orthop. Clin. N. Am. 2014, 45, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Sarac, D.C.; Unver, B.; Karatosun, V. Validity and reliability of performance tests as balance measures in patients with total knee arthroplasty. Knee Surg. Relat. Res. 2022, 34, 11. [Google Scholar] [CrossRef]
- Choi, B.S.; Kim, J.M.; Han, H.S. Decision-making factors and their thresholds for total knee arthroplasty in lateral tibiofemoral osteoarthritis patients: A retrospective cohort study. Knee Surg. Relat. Res. 2022, 34, 41. [Google Scholar] [CrossRef]
- Moretti, L.; Coviello, M.; Rosso, F.; Calafiore, G.; Monaco, E.; Berruto, M.; Solarino, G. Current Trends in Knee Arthroplasty: Are Italian Surgeons Doing What Is Expected? Medicina 2022, 58, 1164. [Google Scholar] [CrossRef]
- Smith, T.; Elson, L.; Anderson, C.; Leone, W. How are we addressing ligament balance in TKA? A literature review of revision etiology and technological advancement. J. Clin. Orthop. Trauma. 2016, 7, 248–255. [Google Scholar] [CrossRef]
- Manara, J.R.; Goonatillake, M.; Marley, M.; Pretty, W.; Collopy, D.; Clark, G. Virtual assessment of coronal balance prior to bone resection with the MAKO robotic-assisted system accurately predicts final balance in TKA. J. Robot. Surg. 2023, 17, 2849–2854. [Google Scholar] [CrossRef]
- Seo, J.G.; Lee, B.H.; Moon, Y.W.; Chang, M.J. Soft tissue laxity should be considered to achieve a constant polyethylene thickness during total knee arthroplasty. Arch. Orthop. Traumatol. Surg. 2014, 134, 1317–1323. [Google Scholar] [CrossRef]
- Song, S.J.; Lee, H.W.; Kim, K.I.; Park, C.H. Load imbalances existed as determined by a sensor after conventional gap balancing with a tensiometer in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 2953–2961. [Google Scholar] [CrossRef]
- Ishikawa, M.; Ishikawa, M.; Nagashima, H.; Ishizuka, S.; Michishita, K.; Soda, Y.; Hiranaka, T. Effects of Unrestricted Kinematically Aligned Total Knee Arthroplasty with a Modified Soft-Tissue Respecting Technique on the Deformity of Limb Alignment in Japanese Patients. Medicina 2023, 59, 1969. [Google Scholar] [CrossRef]
- Peters, C.L. Soft-tissue balancing in primary total knee arthroplasty. Instr. Course Lect. 2006, 55, 413–417. [Google Scholar]
- Jang, S.W.; Koh, I.J.; Kim, M.S.; Kim, J.Y.; In, Y. Semimembranosus Release for Medial Soft Tissue Balancing Does Not Weaken Knee Flexion Strength in Patients Undergoing Varus Total Knee Arthroplasty. J. Arthroplast. 2016, 31, 2481–2486. [Google Scholar] [CrossRef]
- Koh, H.S.; In, Y. Semimembranosus release as the second step of soft tissue balancing in varus total knee arthroplasty. J. Arthroplast. 2013, 28, 273–278. [Google Scholar] [CrossRef]
- Sajjadi, M.M.; Okhovatpour, M.A.; Safaei, Y.; Faramarzi, B.; Zandi, R. Is Standing Coronal Long-Leg Alignment View Effective in Predicting the Extent of Medial Soft Tissue Release in Varus Deformity during Total Knee Arthroplasty? J. Knee Surg. 2022, 35, 1192–1198. [Google Scholar] [CrossRef]
- Toyooka, S.; Masuda, H.; Nishihara, N.; Miyamoto, W.; Kobayashi, T.; Kawano, H.; Nakagawa, T. Assessing the Role of Minimal Medial Tissue Release during Navigation-Assisted Varus Total Knee Arthroplasty Based on the Degree of Preoperative Varus Deformity. J. Knee Surg. 2022, 35, 1236–1241. [Google Scholar] [CrossRef]
- Edwards, S.A.; Pandit, H.G.; Ramos, J.L.; Grover, M.L. Analysis of polyethylene thickness of tibial components in total knee replacement. J. Bone Joint Surg. Am. 2002, 84, 369–371. [Google Scholar] [CrossRef]
- Garceau, S.P.; Warschawski, Y.S.; Tang, A.; Sanders, E.B.; Schwarzkopf, R.M.; Backstein, D.J. The Effect of Polyethylene Liner Thickness on Patient Outcomes and Failure After Primary Total Knee Arthroplasty. J. Arthroplast. 2020, 35, 2072–2075. [Google Scholar] [CrossRef] [PubMed]
- Heckmann, N.D.; Steck, T.; Sporer, S.M.; Meneghini, R.M. Conforming Polyethylene Inserts in Total Knee Arthroplasty: Beyond the Posterior-Stabilized and Cruciate-Retaining Debate. J. Am. Acad. Orthop. Surg. 2021, 29, e1097–e1104. [Google Scholar] [CrossRef]
- Giustra, F.; Bistolfi, A.; Bosco, F.; Fresia, N.; Sabatini, L.; Berchialla, P.; Sciannameo, V.; Massè, A. Highly cross-linked polyethylene versus conventional polyethylene in primary total knee arthroplasty: Comparable clinical and radiological results at a 10-year follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 1082–1088. [Google Scholar] [CrossRef]
- Masilamani, A.B.S.; Jayakumar, T.; Mulpur, P.; Gandhi, V.; Kikkuri, R.R.; Reddy, A.V.G. Functional alignment is associated with increased incidence of pre-balance, reduced soft-tissue release, and post-operative pain compared to mechanical alignment in patients undergoing simultaneous bilateral robotic-assisted TKA. J. Robot. Surg. 2023, 17, 2919–2927. [Google Scholar] [CrossRef]
- Lanting, B.A.; Snider, M.G.; Chess, D.G. Effect of polyethylene component thickness on range of motion and stability in primary total knee arthroplasty. Orthopedics 2012, 35, e170–e174. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Cai, J.; Chen, A.F.; Austin, M.S.; Sharkey, P.F. Modular Polyethylene Inserts for Total Knee Arthroplasty: Can Surgeons Detect 1-mm Thickness Increments? J. Arthroplast. 2016, 31, 968–970. [Google Scholar] [CrossRef]
- Song, S.J.; Lee, H.W.; Park, C.H. A Current Prosthesis With a 1-mm Thickness Increment for Polyethylene Insert Could Result in Fewer Adjustments of Posterior Tibial Slope in Cruciate-Retaining Total Knee Arthroplasty. J. Arthroplast. 2020, 35, 3172–3179. [Google Scholar] [CrossRef]
- Rajamäki, A.; Niemeläinen, M.; Junnila, M.; Lehtovirta, L.; Karsikas, M.; Ponkilainen, V.; Eskelinen, A. Thicker polyethylene inserts (>/=13 mm) increase the risk for early failure after primary cruciate-retaining total knee arthroplasty (TKA): A single-centre study of 7643 TKAs. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 1018–1025. [Google Scholar] [CrossRef]
- Berend, M.E.; Davis, P.J.; Ritter, M.A.; Keating, E.M.; Faris, P.M.; Meding, J.B.; Malinzak, R.A. “Thicker” polyethylene bearings are associated with higher failure rates in primary total knee arthroplasty. J. Arthroplast. 2010, 25, 17–20. [Google Scholar] [CrossRef]
- Greco, N.J.; Crawford, D.A.; Berend, K.R.; Adams, J.B.; Lombardi, A., Jr. V. “Thicker” Polyethylene Bearings Are Not Associated With Higher Failure Rates in Primary Total Knee Arthroplasty. J. Arthroplast. 2018, 33, 2810–2814. [Google Scholar] [CrossRef]
- Namba, R.S.; Inacio, M.C.; Cafri, G. Increased risk of revision for high flexion total knee replacement with thicker tibial liners. Bone Joint J. 2014, 96-B, 217–223. [Google Scholar] [CrossRef]
- Kim, M.S.; Koh, I.J.; Sung, Y.G.; Park, D.C.; Na, J.W.; In, Y. Preemptive Duloxetine Relieves Postoperative Pain and Lowers Wound Temperature in Centrally Sensitized Patients Undergoing Total Knee Arthroplasty: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Clin. Med. 2021, 10, 2809. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Koh, I.J.; Sung, Y.G.; Park, D.C.; Yoon, E.J.; In, Y. Influence of increased pain sensitivity on patient-reported outcomes following total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Batra, S.; Malhotra, R.; Kumar, V.; Srivastava, D.N.; Backstein, D.; Pandit, H. Superior patient satisfaction in medial pivot as compared to posterior stabilized total knee arthroplasty: A prospective randomized study. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 3633–3640. [Google Scholar] [CrossRef] [PubMed]
- Kishimura, Y.; Matsui, Y.; Matsuura, M.; Hidaka, N. Changes in postoperative extension angle after total knee arthroplasty: Effect of polyethylene insert thickness. J. Orthop. Sci. 2019, 24, 674–679. [Google Scholar] [CrossRef]
- Okamoto, S.; Okazaki, K.; Mitsuyasu, H.; Matsuda, S.; Mizu-Uchi, H.; Hamai, S.; Tashiro, Y.; Iwamoto, Y. Extension gap needs more than 1-mm laxity after implantation to avoid post-operative flexion contracture in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 3174–3180. [Google Scholar] [CrossRef]
1-mm Group (N = 47) | 2-mm Group (N = 47) | p Value | |
---|---|---|---|
Preoperative KSS, total | 99.5 ± 36.4 | 100.9 ± 38.0 | 0.856 |
Postoperative KSS, total | 139.1 ± 24.8 | 136.3 ± 28.5 | 0.613 |
Preoperative KSS-Pain | 14.6 ± 8.2 | 15.7 ± 8.9 | 0.535 |
Postoperative KSS-Pain | 42.6 ± 12.9 | 41.6 ± 13.3 | 0.712 |
Preoperative KSS-Function | 84.5 ± 24.1 | 85.5 ± 21.8 | 0.833 |
Postoperative KSS-Function | 96.7 ± 25.0 | 94.0 ± 22.4 | 0.583 |
Preoperative WOMAC score | 48.2 ± 10.0 | 46.0 ± 12.6 | 0.351 |
Postoperative WOMAC score, total | 21.5 ± 6.1 | 23.0 ± 5.7 | 0.221 |
Preoperative WOMAC pain subscale | 13.2 ± 2.8 | 12.5 ± 3.8 | 0.312 |
Postoperative WOMAC pain subscale | 4.6 ± 0.8 | 4.8 ± 1.3 | 0.372 |
Preoperative WOMAC stiffness subscale | 4.7 ± 1.8 | 4.3 ± 1.8 | 0.284 |
Postoperative WOMAC stiffness subscale | 2.5 ± 0.9 | 2.6 ± 1.0 | 0.612 |
Preoperative WOMAC function subscale | 31.3 ± 7.2 | 29.1 ± 8.9 | 0.191 |
Postoperative WOMAC function subscale | 14.3 ± 4.4 | 15.8 ± 4.3 | 0.098 |
Preoperative FJS | 16.2 ± 5.7 | 14.5 ± 5.3 | 0.138 |
Postoperative FJS | 58.5 ± 13.4 | 55.9 ± 14.1 | 0.362 |
Preoperative ROM, degrees | 114.9 ± 15.8 | 115.5 ± 14.5 | 0.848 |
Flexion contracture, n (%) Recurvatum, n (%) Postoperative ROM, degrees | 53.2% 0 125.7 ± 10.1 | 51.1% 0 123.6 ± 11.4 | 0.836 0 0.347 |
Flexion contracture, n (%) | 1 (2.1%) | 2 (4.3%) | 1.00 |
Recurvatum, n (%) | 2 (4.3%) | 1 (2.1%) | 1.00 |
1-mm Group (N = 47) | 2-mm Group (N = 47) | p Value | |
---|---|---|---|
Preoperative hip-knee-ankle angle, degrees | Varus 9.7 ± 6.4 | Varus 10.2 ± 6.1 | 0.505 |
Postoperative hip-knee-ankle axis angle, degrees | Varus 1.0 ± 2.8 | Varus 1.0 ± 2.3 | 0.999 |
Preoperative PCO, mm | 31.6 ± 3.2 | 30.9 ± 3.5 | 0.319 |
Postoperative PCO, mm | 35.6 ± 4.2 | 35.1 ± 4.2 | 0.565 |
Preoperative PCO ratio | 0.5 ± 0.0 | 0.5 ± 0.0 | 0.999 |
Postoperative PCO ratio | 0.5 ± 0.0 | 0.5 ± 0.0 | 0.999 |
1-mm Group (N = 47) | 2-mm Group (N = 47) | p Value | |
---|---|---|---|
PE thickness, mm | 11.5 ± 1.8 | 12.8 ± 1.6 | 0.001 |
PE thickness, mm (except three patients using 9 mm) Thick (≥13 mm) PE, n (%) Thick (≥14 mm) PE, n (%) Thick (≥15 mm) PE, n (%) | 11.6 ± 1.7 11 (23.4%) 6 (12.7%) 3 (6.4%) | 12.7 ± 1.8 18 (38.3%) 18 (38.3%) 5 (10.6%) | 0.008 0.118 0.005 0.714 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.-W.; Jang, H.-J.; Kim, M.-S.; Choi, K.-Y.; Hong, S.-A.; In, Y. Can a Total Knee System Providing 1 mm Increment of Polyethylene Insert Thickness Offer a Clinical Benefit? Medicina 2024, 60, 322. https://doi.org/10.3390/medicina60020322
Lee D-W, Jang H-J, Kim M-S, Choi K-Y, Hong S-A, In Y. Can a Total Knee System Providing 1 mm Increment of Polyethylene Insert Thickness Offer a Clinical Benefit? Medicina. 2024; 60(2):322. https://doi.org/10.3390/medicina60020322
Chicago/Turabian StyleLee, Dhong-Won, Hyuk-Jin Jang, Man-Soo Kim, Keun-Young Choi, Sung-An Hong, and Yong In. 2024. "Can a Total Knee System Providing 1 mm Increment of Polyethylene Insert Thickness Offer a Clinical Benefit?" Medicina 60, no. 2: 322. https://doi.org/10.3390/medicina60020322
APA StyleLee, D.-W., Jang, H.-J., Kim, M.-S., Choi, K.-Y., Hong, S.-A., & In, Y. (2024). Can a Total Knee System Providing 1 mm Increment of Polyethylene Insert Thickness Offer a Clinical Benefit? Medicina, 60(2), 322. https://doi.org/10.3390/medicina60020322