Evaluation of the Levels of Selected Cytokines and Their Possible Influence on the Development of Cardiovascular and Pulmonary Complications in Patients after COVID-19
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilson, J.G.; Simpson, L.J.; Ferreira, A.M.; Rustagi, A.; Roque, J.; Asuni, A.; Ranganath, T.; Grant, P.M.; Subramanian, A.; Rosenberg-Hasson, Y.; et al. Cytokine profile in plasma of severe COVID-19 does not differ from ARDS and sepsis. JCI Insight 2020, 5, e140289. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Ladds, E.; Rushforth, A.; Wieringa, S.; Taylor, S.; Rayner, C.; Husain, L.; Greenhalgh, T. Persistent symptoms after COVID-19: Qualitative study of 114 “long Covid” patients and draft quality principles for services. BMC Health Serv. Res. 2020, 20, 1144. [Google Scholar] [CrossRef]
- Regunath, H. Long COVID: Where Are We in 2023? Mo Med. 2023, 120, 102–105. [Google Scholar]
- Harris, E. Prior COVID-19 infection tied to lasting lung abnormalities. JAMA 2023, 329, 874. [Google Scholar] [CrossRef]
- Cîrjaliu, R.E.; Deacu, M.; Gherghișan, I.; Marghescu, A.S.; Enciu, M.; Băltățescu, G.I.; Nicolau, A.A.; Tofolean, D.E.; Arghir, O.C.; Fildan, A.P. Clinicopathological outlines of post-COVID-19 pulmonary fibrosis compared with idiopathic pulmonary fibrosis. Biomedicines 2023, 11, 1739. [Google Scholar] [CrossRef]
- Al-Aly, Z. Long COVID and its cardiovascular implications: A call to action. Eur. Heart J. 2023, 44, 5001–5003. [Google Scholar] [CrossRef]
- Niedziela, J.T.; Głowacki, J.; Ochman, M.; Pudlo, R.; Adamczyk-Sowa, M.; Nowowiejska-Wiewióra, A.; Kułaczkowska, Z.; Sobala-Szczygieł, B.; Myrda, K.; Wiewióra, M.; et al. Post-COVID-19 complications in hospitalized and nonhospitalized patients: The Silesian database of COVID-19 complications (SILCOV-19). Pol. Arch. Intern. Med. 2022, 132, 16233. [Google Scholar]
- Available online: https://www.merckmillipore.com/PL/pl/product/MILLIPLEX-MAP-Human-Cytokine-Chemokine-Magnetic-Bead-Panel-Immunology-Multiplex-Assay,MM_NF-HCYTOMAG-60K (accessed on 20 January 2021).
- Tamayo-Velasco, A.; Peñarrubia-Ponce, M.J.; Álvarez, F.J.; Gonzalo-Benito, H.; de la Fuente, I.; Martín-Fernández, M.; Eiros, J.M.; Martínez-Paz, P.; Miramontes-González, J.P.; Fiz-López, A.; et al. Evaluation of cytokines as robust diagnostic biomarkers for COVID-19 detection. J. Pers. Med. 2021, 11, 681. [Google Scholar] [CrossRef]
- Gómez-Escobar, L.G.; Hoffman, K.L.; Choi, J.J.; Borczuk, A.; Salvatore, S.; Alvarez-Mulett, S.S.; Galvan, M.D.; Zhao, Z.; Racine-Brzostek, S.E.; Yang, H.S.; et al. Cytokine signatures of end organ injury in COVID-19. Sci. Rep. 2021, 11, 12606. [Google Scholar] [CrossRef] [PubMed]
- Damiano, R.F.; de Almeida Rocca, C.C.; de Pa’dua Serafim, A.; Loftis, J.M.; Talib, L.L.; Pan, P.M.; Cunha-Neto, E.; Kalil, J.; Salim de Castro, G.; Seelaender, M.; et al. Cognitive impairment in long-COVID and its association with persistent dysregulation in inflammatory markers. Front. Immunol. 2023, 14, 1174020. [Google Scholar] [CrossRef]
- Santopaolo, M.; Gregorova, M.; Hamilton, F.; Arnold, D.; Long, A.; Lacey, A.; Oliver, E.; Halliday, A.; Baum, H.; Hamilton, K.; et al. Prolonged T-cell activation and long COVID symptoms independently associate with severe COVID-19 at 3 months. eLife 2023, 12, e85009. [Google Scholar] [CrossRef]
- Ruenjaiman, V.; Sodsai, P.; Kueanjinda, P.; Bunrasmee, W.; Klinchanhom, S.; Reantragoon, R.; Tunvirachaisakul, C.; Manothummetha, K.; Mejun, N.; Liengswangwong, K.; et al. Impact of SARS-CoV-2 infection on the profiles and responses of innate immune cells after recovery. J. Microbiol. Immunol. Infect. 2022, 55, 993–1004. [Google Scholar] [CrossRef]
- Post-COVID Conditions: Information for Healthcare Providers. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/post-covid-conditions.html (accessed on 26 January 2022).
- A Clinical Case Definition of Post COVID-19 Condition by a Delphi Consensus. 6 October 2021. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1 (accessed on 26 January 2022).
- Malinowski, B.; Wiciński, M.; Grześk, E.; Klonowska, J.; Grześk, G. Monocyte chemotactic protein MCP-1/CCL2 and its role in the inflammatory proces in an ischemic heart model. In Diseases of the 21st Century-Challenges in the Work of a Physiotherapist; Podgórska, M., Ed.; Publishing House of the Higher School of Management: Gdansk, Poland, 2017; pp. 244–256. (In Polish) [Google Scholar]
- Jay, S.M.; Shepherd, B.R.; Andrejecsk, J.W.; Kyriakides, T.R.; Pober, J.S.; Saltzman, W.M. Dual delivery of VEGF and MCP-1 to support endothelial cell transplantation for therapeutic vascularization. Biomaterials 2010, 31, 3054–3062. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Kolattukudy, P.E. Role of MCP-1 in cardiovascular disease: Molecular mechanisms and clinical implications. Clin. Sci. 2009, 117, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-H.; Chen, X.; He, X. Platelet-derived growth factors and their receptors: Structural and functional perspectives. Biochim. Biophys. Acta 2013, 1834, 2176–2186. [Google Scholar] [CrossRef]
- Demoulin, J.-B.; Essaghir, A. PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev. 2014, 25, 273–283. [Google Scholar] [CrossRef]
- Kardas, G.; Daszyńska-Kardas, A.; Marynowski, M.; Brząkalska, O.; Kuna, P.; Panek, M. Role of Platelet-Derived Growth Factor (PDGF) in asthma as an immunoregulatory factor mediating airway remodeling and possible pharmacological target. Front. Pharmacol. 2020, 11, 47. [Google Scholar] [CrossRef]
- Hosoki, K.; Ying, S.; Corrigan, C.; Qi, H.; Kurosky, A.; Jennings, K.; Sun, O.; Boldogh, I.; Sanjiv, S. Analysis of a panel of 48 cytokines in BAL fluids specifically identifies IL-8 levels as the only cytokine that distinguishes controlled asthma from uncontrolled asthma, and correlates inversely with FEV1. PLoS ONE 2015, 10, e0126035. [Google Scholar] [CrossRef]
- Holgate, S.T. Epithelium dysfunction in asthma. J. Allergy Clin. Immunol. 2007, 120, 1233–1244. [Google Scholar] [CrossRef]
- Pascual, R.M.; Peters, S.P. Airway remodeling contributes to the progressive loss of lung function in asthma: An overview. J. Allergy Clin. Immunol. 2005, 116, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Voelkel, N.F.; Vandivier, R.W.; Tuder, R.M. Vascular endothelial growth factor in the lung. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 290, L209–L221. [Google Scholar] [CrossRef] [PubMed]
- Asikainen, T.M.; Ahmad, A.; Schneider, B.K.; Ho, W.-B.; Arend, M.; Brenner, M.; Günzler, V.; White, C.K. Stimulation of HIF-1α, HIF-2α, and VEGF by prolyl 4-hydroxylase inhibition in human lung endothelial and epithelial cells. Free Radic. Biol. Med. 2005, 38, 1002–1013. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Tan, Q.; Tao, D.; Song, Y.; Song, W.; Wang, J.; Ma, L.; Wu, D.; Feng, Y.; Yao, J.; et al. Cytokines screening identifies MIG (CXCL9) for postoperative recurrence prediction in operated non-small cell lung cancer patients. Cytokine 2022, 149, 155759. [Google Scholar] [CrossRef] [PubMed]
- Shiels, M.S.; Katki, H.A.; Hildesheim, A.; Pfeiffer, R.M.; Engels, E.A.; Williams, M.; Kemp, T.J.; Caporaso, N.E.; Pinto, L.E.; Chaturvedi, A.K. Circulating inflammation markers, risk of lung cancer, and utility for risk stratification. J. Natl. Cancer Inst. 2015, 107, djv199. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Guo, S.; Hibbert, J.M.; Jain, V.; Singh, N.; Wilson, N.; Stiles, J.K. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev. 2011, 22, 121–130. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, B.; Hu, M.; Lou, Y.; Lu, J.; Zhang, X.; Wang, H.; Qian, J.; Chu, T.; Han, B. CXCL9 as a prognostic inflammatory marker in early-stage lung adenocarcinoma patients. Front. Oncol. 2020, 10, 1049. [Google Scholar] [CrossRef]
Medical History, Diseases before COVID-19 | |
---|---|
Hypertension, n (%) | 28 (36.8) |
Hyperlipidemia, n (%) | 22 (28.9) |
Diabetes mellitus, n (%) | 13 (17.1) |
Smoking, n (%) | 10 (13.2) |
Coronary artery disease, n (%) | 7 (9.2) |
Percutaneous coronary intervention, n (%) | 5 (6.6) |
Myocardial infarction, n (%) | 4 (5.3) |
Asthma/COPD, n (%) | 1 (1.3) |
Chronic kidney disease, n (%) | 1 (1.3) |
Stroke, n (%) | 1 (1.3) |
Parameters | N | Median | Q1 | Q3 |
---|---|---|---|---|
White blood cells [103/mm3] N:4.3–10 | 76 | 6.1500 | 5.1400 | 7.5100 |
Neutrophils [103/mm3] N:2.9–4.1 | 76 | 3.7650 | 2.9150 | 4.5250 |
Lymphocytes [103/mm3] N:1.7–2.8 | 76 | 1.6900 | 1.4050 | 2.2700 |
Monocytes [103/mm3] N:0.2–0.8 | 76 | 0.4900 | 0.4000 | 0.5500 |
Eozynofiles [103/mm3] N:0.2–0.4 | 76 | 0.1000 | 0.0500 | 0.1600 |
Basophils [103/mm3] N:0–0.1 | 76 | 0.0400 | 0.0250 | 0.0600 |
Red blood cells [106/mm3] N:4.5–5.9 | 76 | 4.6050 | 4.3900 | 4.9250 |
Hemoglobin [mmol/L] N:8.7–11.2 | 76 | 8.6000 | 8.2000 | 9.1000 |
Hematocrit [L/L] N:41–53 | 76 | 41.0000 | 39.0000 | 43.0500 |
Platelets [103/mm3] N:150–350 | 76 | 250.0000 | 211.0000 | 275.5000 |
Fibrinogen [mg/dL] N:200–400 | 76 | 327.5000 | 285.0000 | 375.5000 |
D-Dimer [ug/mL] N:0–0.5 | 76 | 0.3000 | 0.2700 | 0.3900 |
Parameters | N | Median | Q1 | Q3 |
---|---|---|---|---|
GGTP [U/l] N:5–61 | 76 | 23.0000 | 17.0000 | 36.5000 |
AST [U/l] N:10–34 | 76 | 21.0000 | 19.0000 | 25.0000 |
ALT[U/l] N:6–44 | 76 | 22.0000 | 16.5000 | 31.5000 |
ALP [U/l] (N:40–129) | 76 | 65.0000 | 57.5000 | 76.0000 |
Bilirubin [µmoL/L] | 76 | 10.4500 | 7.8000 | 12.8500 |
Creatinine [mg/dL] | 76 | 0.8371 | 0.7014 | 0.9615 |
GFR [mL/min × 1.73 m2] | 76 | 113.2665 | 87.7913 | 136.3501 |
Uric acid [mmol/L] | 76 | 332.0000 | 281.0000 | 395.5000 |
Total protein in serum [g/L] | 76 | 72.0000 | 69.5000 | 76.0000 |
Albumin [g/L] | 76 | 47.0000 | 46.0000 | 49.0000 |
HbA1c [%] | 76 | 5.5000 | 5.2500 | 5.9000 |
Total cholesterol [mmol/L] | 76 | 5.3350 | 4.3900 | 6.1050 |
Triglycerides [mmol/L] | 76 | 1.3900 | 0.8750 | 1.9100 |
HDL-chlesterol [mmol/L] | 76 | 1.5600 | 1.2050 | 1.7950 |
LDL-cholesterol [mmol/L] | 76 | 3.4950 | 2.6200 | 4.3900 |
hs CRP [mg/dL] | 76 | 2.3600 | 0.4800 | 5.1900 |
NT-proBNP [pg/mL] | 76 | 66.8300 | 37.2650 | 110.6000 |
CK [U/l]] (N:24–193) | 76 | 105.5000 | 85.5000 | 163.0000 |
CK-MB [ng/mL] (N:0.3–4.87) | 76 | 2.0600 | 1.6950 | 2.7300 |
Troponin T hs [ng/mL] (pg/mL) (N < 0.014) | 76 | 6.0000 | 4.0000 | 8.0000 |
LDH [U/l] (N:135–225) | 76 | 185.5000 | 165.0000 | 211.5000 |
Pancreatic amylase [U/l] (N:15–53) | 76 | 25.0000 | 19.0000 | 32.0000 |
Ferritin [ng/mL] N:30–400 | 76 | 97.0000 | 55.5000 | 156.0000 |
Lactates | 70 | 1.4850 | 1.2500 | 2.0000 |
Median [pg/mL] | Q1 | Q3 | |
---|---|---|---|
FGF-2 | 44.215 | 25.600 | 94.637 |
IL-1RA | 3.611 | 1.854 | 4.772 |
IL-5 | 0.602 | 0.335 | 0.858 |
IL-6 | 0.640 | 0.507 | 1.363 |
IL-8 | 6.099 | 4.359 | 8.733 |
IL-9 | 2.315 | 1.268 | 3.915 |
IL-10 | 2.793 | 1.481 | 3.821 |
IL-12 (p40) | 18.637 | 9.198 | 24.900 |
IL-15 | 5.758 | 4.077 | 6.826 |
IL-18 | 9.343 | 5.934 | 13.375 |
IP-10 | 61.698 | 49.170 | 88.491 |
MCP-1 | 297.147 | 224.013 | 387.643 |
MIG | 372.420 | 294.823 | 618.893 |
MIP-1b | 23.820 | 17.378 | 35.380 |
PDGF-AA | 2968.137 | 2313.470 | 3546.726 |
TNF a | 8.005 | 5.401 | 12.343 |
VEGF-A | 177.832 | 116.289 | 281.695 |
hsCRP ≤ 5 n = 23 | hsCRP > 5 n = 53 | ||||||
---|---|---|---|---|---|---|---|
Median [pg/mL] | Q1 | Q3 | Median [pg/mL] | Q1 | Q3 | p | |
FGF-2 | 44.215 | 25.600 | 100.272 | 62.047 | 25.600 | 89.001 | 0.817 |
IL-1RA | 3.611 | 1.854 | 5.437 | 3.364 | 1.600 | 4.102 | 0.216 |
IL-5 | 0.514 | 0.242 | 0.773 | 0.640 | 0.426 | 1.270 | 0.113 |
IL-6 | 0.770 | 0.552 | 1.446 | 0.640 | 0.418 | 1.027 | 0.100 |
IL-8 | 5.898 | 4.257 | 7.604 | 6.298 | 4.749 | 9.829 | 0.309 |
IL-9 | 2.221 | 1.387 | 3.915 | 2.944 | 1.148 | 4.366 | 0.557 |
IL-10 | 2.909 | 1.481 | 3.821 | 2.443 | 1.481 | 3.595 | 0.360 |
IL-12 (p40) | 18.637 | 9.198 | 26.922 | 14.127 | 9.198 | 18.637 | 0.214 |
IL-15 | 5.758 | 4.077 | 7.348 | 5.210 | 4.077 | 6.297 | 0.112 |
IL-18 | 9.168 | 5.860 | 11.140 | 11.256 | 6.508 | 16.601 | 0.218 |
IP-10 | 66.072 | 55.094 | 96.447 | 53.658 | 39.555 | 70.131 | 0.009 |
MCP-1 | 289.025 | 230.827 | 358.730 | 312.395 | 217.318 | 427.562 | 0.627 |
MIG | 405.711 | 294.231 | 639.089 | 347.579 | 295.414 | 550.366 | 0.203 |
MIP-1b | 23.820 | 19.300 | 33.724 | 22.810 | 14.284 | 40.249 | 0.549 |
PDGF-AA | 3066.426 | 2277.874 | 3607.844 | 2856.383 | 2407.816 | 3487.384 | 0.483 |
TNF-a | 8.005 | 5.401 | 11.736 | 8.639 | 5.401 | 12.343 | 0.923 |
VEGF-A | 179.501 | 126.740 | 280.661 | 170.798 | 94.738 | 283.023 | 0.557 |
NTproBNP ≤ 125 pg/mL N = 62 | NTproBNP > 125 pg/mL N = 14 | ||||||
---|---|---|---|---|---|---|---|
Median [pg/mL] | Q1 | Q3 | Median [pg/mL] | Q1 | Q3 | p | |
FGF-2 | 44.215 | 25.600 | 89.001 | 69.260 | 25.600 | 129.368 | 0.312 |
IL-1RA | 3.611 | 1.854 | 4.590 | 2.866 | 1.600 | 5.798 | 0.936 |
IL-5 | 0.602 | 0.426 | 1.107 | 0.514 | 0.242 | 0.688 | 0.359 |
IL-6 | 0.683 | 0.507 | 1.446 | 0.640 | 0.596 | 0.942 | 0.995 |
IL-8 | 6.369 | 4.692 | 9.015 | 4.372 | 3.470 | 5.870 | 0.006 |
IL-9 | 2.592 | 1.387 | 4.366 | 1.823 | 0.640 | 2.592 | 0.094 |
IL-10 | 2.909 | 1.481 | 3.821 | 2.502 | 1.481 | 3.821 | 0.825 |
IL-12 (p40) | 16.422 | 9.198 | 26.922 | 18.637 | 9.198 | 20.785 | 0.979 |
IL-15 | 5.758 | 4.077 | 7.088 | 5.348 | 4.077 | 6.826 | 0.391 |
IL-18 | 9.154 | 6.008 | 12.929 | 9.604 | 5.477 | 16.486 | 0.989 |
IP-10 | 61.698 | 52.453 | 85.662 | 58.772 | 38.340 | 92.832 | 0.384 |
MCP-1 | 309.132 | 238.170 | 414.637 | 223.139 | 179.357 | 301.860 | 0.003 |
MIG | 399.644 | 295.414 | 629.511 | 356.657 | 200.168 | 550.366 | 0.414 |
MIP-1b | 24.191 | 19.157 | 36.614 | 19.317 | 14.284 | 27.608 | 0.053 |
PDGF-AA | 3047.761 | 2425.039 | 3571.481 | 2479.284 | 2064.795 | 3487.384 | 0.152 |
TNF-a | 8.005 | 5.401 | 12.343 | 7.685 | 5.401 | 16.504 | 0.920 |
VEGF-A | 179.356 | 115.127 | 283.023 | 171.379 | 130.220 | 275.055 | 0.693 |
NTproBNP ≤ 125 pg/mL N = 62 | NTproBNP > 125 pg/mL N = 14 | ||||||
---|---|---|---|---|---|---|---|
Median [pg/mL] | Q1 | Q3 | Median [pg/mL] | Q1 | Q3 | p | |
FGF-2 | 44.215 | 25.600 | 89.001 | 69.260 | 25.600 | 129.368 | 0.312 |
IL-1RA | 3.611 | 1.854 | 4.590 | 2.866 | 1.600 | 5.798 | 0.936 |
IL-5 | 0.602 | 0.426 | 1.107 | 0.514 | 0.242 | 0.688 | 0.359 |
IL-6 | 0.683 | 0.507 | 1.446 | 0.640 | 0.596 | 0.942 | 0.995 |
IL-8 | 6.369 | 4.692 | 9.015 | 4.372 | 3.470 | 5.870 | 0.006 |
IL-9 | 2.592 | 1.387 | 4.366 | 1.823 | 0.640 | 2.592 | 0.094 |
IL-10 | 2.909 | 1.481 | 3.821 | 2.502 | 1.481 | 3.821 | 0.825 |
IL-12 (p40) | 16.422 | 9.198 | 26.922 | 18.637 | 9.198 | 20.785 | 0.979 |
IL-15 | 5.758 | 4.077 | 7.088 | 5.348 | 4.077 | 6.826 | 0.391 |
IL-18 | 9.154 | 6.008 | 12.929 | 9.604 | 5.477 | 16.486 | 0.989 |
IP-10 | 61.698 | 52.453 | 85.662 | 58.772 | 38.340 | 92.832 | 0.384 |
MCP-1 | 309.132 | 238.170 | 414.637 | 223.139 | 179.357 | 301.860 | 0.003 |
MIG | 399.644 | 295.414 | 629.511 | 356.657 | 200.168 | 550.366 | 0.414 |
MIP-1b | 24.191 | 19.157 | 36.614 | 19.317 | 14.284 | 27.608 | 0.053 |
PDGF-AA | 3047.761 | 2425.039 | 3571.481 | 2479.284 | 2064.795 | 3487.384 | 0.152 |
TNF-a | 8.005 | 5.401 | 12.343 | 7.685 | 5.401 | 16.504 | 0.920 |
VEGF-A | 179.356 | 115.127 | 283.023 | 171.379 | 130.220 | 275.055 | 0.693 |
No Change in HRCT N = 53 | Changes in HRCT N = 22 | ||||||
---|---|---|---|---|---|---|---|
Median [pg/mL] | Q1 | Q3 | Median [pg/mL] | Q1 | Q3 | p | |
FGF-2 | 44.215 | 25.600 | 89.001 | 65.100 | 25.600 | 100.272 | 0.740 |
IL-1RA | 3.364 | 1.854 | 4.590 | 3.611 | 1.854 | 4.954 | 0.889 |
IL-5 | 0.602 | 0.335 | 1.107 | 0.621 | 0.426 | 0.773 | 0.958 |
IL-6 | 0.640 | 0.507 | 1.363 | 0.662 | 0.507 | 1.446 | 0.917 |
IL-8 | 6.127 | 4.634 | 8.902 | 6.084 | 3.937 | 7.378 | 0.701 |
IL-9 | 2.221 | 1.148 | 3.603 | 3.194 | 1.387 | 5.354 | 0.314 |
IL-10 | 2.560 | 1.481 | 3.821 | 2.909 | 2.560 | 5.590 | 0.164 |
IL-12 (p40) | 16.422 | 9.198 | 22.877 | 18.637 | 6.400 | 22.877 | 0.816 |
IL-15 | 5.758 | 4.077 | 6.826 | 5.758 | 3.784 | 6.826 | 0.749 |
IL-18 | 9.517 | 6.067 | 14.539 | 9.343 | 6.008 | 10.735 | 0.456 |
IP-10 | 62.496 | 52.483 | 85.662 | 60.284 | 48.106 | 92.524 | 0.820 |
MCP-1 | 305.242 | 238.170 | 412.309 | 271.486 | 191.706 | 355.065 | 0.093 |
MIG | 429.751 | 303.664 | 614.843 | 356.374 | 252.034 | 835.108 | 0.545 |
MIP-1b | 25.522 | 19.300 | 37.912 | 22.211 | 14.284 | 25.044 | 0.038 |
PDGF-AA | 2913.182 | 2253.703 | 3419.289 | 3392.182 | 2652.544 | 3747.071 | 0.161 |
TNS-a | 8.639 | 6.064 | 12.343 | 6.718 | 4.044 | 9.268 | 0.029 |
VEGF-A | 179.210 | 124.564 | 278.890 | 152.030 | 106.111 | 401.978 | 0.848 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanjek-Cichoracka, A.; Niedziela, J.T.; Łaszewska, A.; Mędrala, Z.; Nowowiejska-Wiewióra, A.; Kaczmarski, J.; Grzanka, A.; Gąsior, M. Evaluation of the Levels of Selected Cytokines and Their Possible Influence on the Development of Cardiovascular and Pulmonary Complications in Patients after COVID-19. Medicina 2024, 60, 353. https://doi.org/10.3390/medicina60030353
Stanjek-Cichoracka A, Niedziela JT, Łaszewska A, Mędrala Z, Nowowiejska-Wiewióra A, Kaczmarski J, Grzanka A, Gąsior M. Evaluation of the Levels of Selected Cytokines and Their Possible Influence on the Development of Cardiovascular and Pulmonary Complications in Patients after COVID-19. Medicina. 2024; 60(3):353. https://doi.org/10.3390/medicina60030353
Chicago/Turabian StyleStanjek-Cichoracka, Anita, Jacek T. Niedziela, Anna Łaszewska, Zofia Mędrala, Alicja Nowowiejska-Wiewióra, Jacek Kaczmarski, Alicja Grzanka, and Mariusz Gąsior. 2024. "Evaluation of the Levels of Selected Cytokines and Their Possible Influence on the Development of Cardiovascular and Pulmonary Complications in Patients after COVID-19" Medicina 60, no. 3: 353. https://doi.org/10.3390/medicina60030353
APA StyleStanjek-Cichoracka, A., Niedziela, J. T., Łaszewska, A., Mędrala, Z., Nowowiejska-Wiewióra, A., Kaczmarski, J., Grzanka, A., & Gąsior, M. (2024). Evaluation of the Levels of Selected Cytokines and Their Possible Influence on the Development of Cardiovascular and Pulmonary Complications in Patients after COVID-19. Medicina, 60(3), 353. https://doi.org/10.3390/medicina60030353