The Serotonin-Mediated Anti-Allodynic Effect of Yokukansan on Paclitaxel-Induced Neuropathic Pain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Drugs
2.3. Animal Model and Behavioral Test
2.4. Immunological Assessment of Glial Cell Changes via the Immunostaining of the Spinal Cord
2.5. 5-HT Synthesis Inhibitors and 5-HT Receptor Antagonists
2.6. Statistical Analysis
3. Results
3.1. Experimental Animals
3.2. Paclitaxel Effectively Decreases the Withdrawal Threshold
3.3. Yokukansan Improves Allodynia
3.4. Yokukansan Prevents Microglia Growth
3.5. Yokukansan Appears to Be Mediated by Serotonin in the Spinal Cord
3.6. Yokukansan Appears to Be Mediated via 5-HT1A and 5-HT2A/2C Receptors and Less Likely via 5-HT3
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Staff, N.P.; Grisold, A.; Grisold, W.; Windebank, A.J. Chemotherapy-induced peripheral neuropathy: A current review. Ann. Neurol. 2017, 81, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 2014, 25, 2677–2681. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Patra, J.K.; Singh, Y.D.; Panda, M.K.; Das, G.; Adetunji, C.O.; Michael, O.S.; Sytar, O.; Polito, L.; et al. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. Oxid. Med. Cell Longev. 2021, 2021, 3687700. [Google Scholar] [CrossRef] [PubMed]
- Staff, N.P.; Fehrenbacher, J.C.; Caillaud, M.; Damaj, M.I.; Segal, R.A.; Rieger, S. Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems. Exp. Neurol. 2020, 324, 113121. [Google Scholar] [CrossRef] [PubMed]
- Bocci, G.; Di Paolo, A.; Danesi, R. The pharmacological bases of the antiangiogenic activity of paclitaxel. Angiogenesis. 2013, 16, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Sunagawa, M.; Takayama, Y.; Kato, M.; Tanaka, M.; Fukuoka, S.; Okumo, T.; Tsukada, M.; Yamaguchi, K. Kampo Formulae for the Treatment of Neuropathic Pain approximately Especially the Mechanism of Action of Yokukansan approximately. Front. Mol. Neurosci. 2021, 14, 705023. [Google Scholar] [CrossRef] [PubMed]
- Mizoguchi, K.; Ikarashi, Y. Multiple Psychopharmacological Effects of the Traditional Japanese Kampo Medicine Yokukansan, and the Brain Regions it Affects. Front. Pharmacol. 2017, 8, 149. [Google Scholar] [CrossRef] [PubMed]
- Kawada, K.; Ishida, T.; Jobu, K.; Morisawa, S.; Kawazoe, T.; Nishida, M.; Nishimura, S.; Tamura, N.; Yoshioka, S.; Miyamura, M. Yokukansan suppresses neuroinflammation in the hippocampus of mice and decreases the duration of lipopolysaccharide- and diazepam-mediated loss of righting reflex induced by pentobarbital. J. Nat. Med. 2022, 76, 634–644. [Google Scholar] [CrossRef]
- Terawaki, K.; Ikarashi, Y.; Sekiguchi, K.; Nakai, Y.; Kase, Y. Partial agonistic effect of yokukansan on human recombinant serotonin 1A receptors expressed in the membranes of Chinese hamster ovary cells. J. Ethnopharmacol. 2010, 127, 306–312. [Google Scholar] [CrossRef]
- Kato, T.; Kajiyama, S.; Hamada, H.; Kawamoto, M. Long-term administration of fluvoxamine attenuates neuropathic pain and involvement of spinal serotonin receptors in diabetic model rats. Hiroshima J. Med. Sci. 2013, 62, 83–89. [Google Scholar]
- Obata, H.; Saito, S.; Sasaki, M.; Ishizaki, K.; Goto, F. Antiallodynic effect of intrathecally administered 5-HT(2) agonists in rats with nerve ligation. Pain 2001, 90, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Thangamani, D.; Edafiogho, I.O.; Masocha, W. The anticonvulsant enaminone E139 attenuates paclitaxel-induced neuropathic pain in rodents. Sci. World J. 2013, 2013, 240508. [Google Scholar] [CrossRef]
- Chen, N.; Ge, M.M.; Li, D.Y.; Wang, X.M.; Liu, D.Q.; Ye, D.W.; Tian, Y.K.; Zhou, Y.Q.; Chen, J.P. beta2-adrenoreceptor agonist ameliorates mechanical allodynia in paclitaxel-induced neuropathic pain via induction of mitochondrial biogenesis. Biomed. Pharmacother. 2021, 144, 112331. [Google Scholar] [CrossRef] [PubMed]
- Al-Romaiyan, A.; Masocha, W. Pristimerin, a triterpene that inhibits monoacylglycerol lipase activity, prevents the development of paclitaxel-induced allodynia in mice. Front. Pharmacol. 2022, 13, 944502. [Google Scholar] [CrossRef] [PubMed]
- Furuya, M.; Miyaoka, T.; Tsumori, T.; Liaury, K.; Hashioka, S.; Wake, R.; Tsuchie, K.; Fukushima, M.; Ezoe, S.; Horiguchi, J. Yokukansan promotes hippocampal neurogenesis associated with the suppression of activated microglia in Gunn rat. J. Neuroinflamm. 2013, 10, 145. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wu, L.; Deng, H.; Chen, Y.; Zhou, H.; Liu, M.; Wang, S.; Zheng, L.; Zhu, L.; Lv, X. Anti-inflammatory protein TSG-6 secreted by bone marrow mesenchymal stem cells attenuates neuropathic pain by inhibiting the TLR2/MyD88/NF-kappaB signaling pathway in spinal microglia. J. Neuroinflamm. 2020, 17, 154. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Liu, N.; Yang, Y.Y.; Xing, H.Y.; Liu, X.X.; Li, F.; La, G.Y.; Huang, M.J.; Zhou, M.W. Lentivirus-mediated downregulation of alpha-synuclein reduces neuroinflammation and promotes functional recovery in rats with spinal cord injury. J. Neuroinflamm. 2019, 16, 283. [Google Scholar] [CrossRef]
- Romero-Sandoval, A.; Eisenach, J.C. Spinal cannabinoid receptor type 2 activation reduces hypersensitivity and spinal cord glial activation after paw incision. Anesthesiology 2007, 106, 787–794. [Google Scholar] [CrossRef]
- Pottorf, T.S.; Rotterman, T.M.; McCallum, W.M.; Haley-Johnson, Z.A.; Alvarez, F.J. The Role of Microglia in Neuroinflammation of the Spinal Cord after Peripheral Nerve Injury. Cells 2022, 11, 2083. [Google Scholar] [CrossRef]
- Schechter, M.D. Effect of serotonin depletion by p-chlorophenylalanine upon discriminative behaviours. Gen. Pharmacol. 1991, 22, 889–893. [Google Scholar] [CrossRef]
- Sinha, R.K. P-CPA pretreatment reverses the changes in sleep and behavior following acute immobilization stress rats. J. Physiol. Sci. 2006, 56, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Carranza, J.N.; Redondo-Horcajo, M.; Barasoain, I.; Escobar-Aguilar, E.A.; Millan-Pacheco, C.; Alvarez, L.; Salas Vidal, E.; Diaz, J.F.; Gonzalez-Maya, L. Tannic Acid and Ethyl Gallate Potentialize Paclitaxel Effect on Microtubule Dynamics in Hep3B Cells. Pharmaceuticals 2023, 16, 1579. [Google Scholar] [CrossRef] [PubMed]
- Yardim, A.; Kandemir, F.M.; Comakli, S.; Ozdemir, S.; Caglayan, C.; Kucukler, S.; Celik, H. Protective Effects of Curcumin Against Paclitaxel-Induced Spinal Cord and Sciatic Nerve Injuries in Rats. Neurochem. Res. 2021, 46, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Ebisawa, S.; Andoh, T.; Shimada, Y.; Kuraishi, Y. Yokukansan Improves Mechanical Allodynia through the Regulation of Interleukin-6 Expression in the Spinal Cord in Mice with Neuropathic Pain. Evid. Based Complement. Alternat. Med. 2015, 2015, 870687. [Google Scholar] [CrossRef]
- Suzuki, Y.; Mitsuhata, H.; Yuzurihara, M.; Kase, Y. Antiallodynic effect of herbal medicine yokukansan on peripheral neuropathy in rats with chronic constriction injury. Evid. Based Complement. Alternat. Med. 2012, 2012, 953459. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Yamazaki, S.; Kumakura, S.; Someya, A.; Iseki, M.; Inada, E.; Nagaoka, I. Yokukansan, a Japanese Herbal Medicine, Suppresses Substance PInduced Production of Interleukin-6 and Interleukin-8 by Human U373 MG Glioblastoma Astrocytoma Cells. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Nishi, A.; Yamaguchi, T.; Sekiguchi, K.; Imamura, S.; Tabuchi, M.; Kanno, H.; Nakai, Y.; Hashimoto, K.; Ikarashi, Y.; Kase, Y. Geissoschizine methyl ether, an alkaloid in Uncaria hook, is a potent serotonin (1)A receptor agonist and candidate for amelioration of aggressiveness and sociality by yokukansan. Neuroscience 2012, 207, 124–136. [Google Scholar] [CrossRef]
- Imamura, S.; Tabuchi, M.; Oizumi, H.; Ueki, T.; Omiya, Y.; Ikarashi, Y.; Mizoguchi, K. Yokukansankachimpihange, a traditional Japanese (Kampo) medicine, enhances the adaptation to circadian rhythm disruption by increasing endogenous melatonin levels. J. Pharmacol. Sci. 2020, 144, 129–138. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, Z.; Chen, X. Mechanisms underlying paclitaxel-induced neuropathic pain: Channels, inflammation and immune regulations. Eur. J. Pharmacol. 2022, 933, 175288. [Google Scholar] [CrossRef]
- Mizoguchi, K.; Ikarashi, Y. Cellular Pharmacological Effects of the Traditional Japanese Kampo Medicine Yokukansan on Brain Cells. Front. Pharmacol. 2017, 8, 655. [Google Scholar] [CrossRef]
- Kawakami, Z.; Ikarashi, Y.; Kase, Y. Glycyrrhizin and its metabolite 18 beta-glycyrrhetinic acid in glycyrrhiza, a constituent herb of yokukansan, ameliorate thiamine deficiency-induced dysfunction of glutamate transport in cultured rat cortical astrocytes. Eur. J. Pharmacol. 2010, 626, 154–158. [Google Scholar] [CrossRef]
- Tsuda, M.; Inoue, K.; Salter, M.W. Neuropathic pain and spinal microglia: A big problem from molecules in “small” glia. Trends Neurosci. 2005, 28, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.L.; Xu, J.L.; Yi, H.Y.; Baba, S.S.; Guo, Y.X.; Hou, X.M.; Yuan, X.C.; Li, X.H.; Wang, Y.Y.; Liang, L.L.; et al. Activation of 5-HT(5A) receptor in the ventrolateral orbital cortex produces antinociceptive effects in rat models of neuropathic and inflammatory pain. Neuropharmacology 2024, 245, 109830. [Google Scholar] [CrossRef] [PubMed]
- Ikarashi, Y.; Sekiguchi, K.; Mizoguchi, K. Serotonin Receptor Binding Characteristics of Geissoschizine Methyl Ether, an Indole Alkaloid in Uncaria Hook. Curr. Med. Chem. 2018, 25, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Nakao, K.; Fujiwara, A.; Komasawa, N.; Jin, D.; Kitano, M.; Matsunami, S.; Takai, S.; Ito, S.; Minami, T. Yokukansan Alleviates Cancer Pain by Suppressing Matrix Metalloproteinase-9 in a Mouse Bone Metastasis Model. Evid. Based Complement. Alternat. Med. 2019, 2019, 2956920. [Google Scholar] [PubMed]
- Egashira, N.; Iwasaki, K.; Ishibashi, A.; Hayakawa, K.; Okuno, R.; Abe, M.; Uchida, N.; Mishima, K.; Takasaki, K.; Nishimura, R.; et al. Repeated administration of Yokukansan inhibits DOI-induced head-twitch response and decreases expression of 5-hydroxytryptamine (5-HT)2A receptors in the prefrontal cortex. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 1516–1520. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Tsujimatsu, A.; Kumamoto, H.; Izumi, T.; Ohmura, Y.; Yoshida, T.; Yoshioka, M. Anxiolytic effects of yokukansan, a traditional Japanese medicine, via serotonin 5-HT1A receptors on anxiety-related behaviors in rats experienced aversive stress. J. Ethnopharmacol. 2012, 143, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Ohno, R.; Miyagishi, H.; Tsuji, M.; Saito, A.; Miyagawa, K.; Kurokawa, K.; Takeda, H. Yokukansan, a traditional Japanese herbal medicine, enhances the anxiolytic effect of fluvoxamine and reduces cortical 5-HT(2A) receptor expression in mice. J. Ethnopharmacol. 2018, 216, 89–96. [Google Scholar] [CrossRef]
- Tsuji, M.; Takeuchi, T.; Miyagawa, K.; Ishii, D.; Imai, T.; Takeda, K.; Kitajima, M.; Takeda, H. Yokukansan, a traditional Japanese herbal medicine, alleviates the emotional abnormality induced by maladaptation to stress in mice. Phytomedicine 2014, 21, 363–371. [Google Scholar] [CrossRef]
- Ueki, T.; Mizoguchi, K.; Yamaguchi, T.; Nishi, A.; Ikarashi, Y.; Hattori, T.; Kase, Y. Yokukansan Increases 5-HT1A Receptors in the Prefrontal Cortex and Enhances 5-HT1A Receptor Agonist-Induced Behavioral Responses in Socially Isolated Mice. Evid. Based Complement. Alternat. Med. 2015, 2015, 726471. [Google Scholar] [CrossRef]
- Pittman, S.K.; Gracias, N.G.; Vasko, M.R.; Fehrenbacher, J.C. Paclitaxel alters the evoked release of calcitonin gene-related peptide from rat sensory neurons in culture. Exp. Neurol. 2014, 253, 146–153. [Google Scholar] [CrossRef]
- Materazzi, S.; Fusi, C.; Benemei, S.; Pedretti, P.; Patacchini, R.; Nilius, B.; Prenen, J.; Creminon, C.; Geppetti, P.; Nassini, R. TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Arch. 2012, 463, 561–569. [Google Scholar] [CrossRef]
Atractylodes lancea rhizome | 4.0 g |
Poria sclerotium | 4.0 g |
Cnidium rhizome | 3.0 g |
Uncaria hook | 3.0 g |
Angelica root | 3.0 g |
Bupleurum root | 2.0 g |
Glycyrrhiza | 1.5 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yokomi, H.; Kato, T.; Narasaki, S.; Kamiya, S.; Taguchi, S.; Horikawa, Y.T.; Tsutsumi, Y.M. The Serotonin-Mediated Anti-Allodynic Effect of Yokukansan on Paclitaxel-Induced Neuropathic Pain. Medicina 2024, 60, 359. https://doi.org/10.3390/medicina60030359
Yokomi H, Kato T, Narasaki S, Kamiya S, Taguchi S, Horikawa YT, Tsutsumi YM. The Serotonin-Mediated Anti-Allodynic Effect of Yokukansan on Paclitaxel-Induced Neuropathic Pain. Medicina. 2024; 60(3):359. https://doi.org/10.3390/medicina60030359
Chicago/Turabian StyleYokomi, Hiroshi, Takahiro Kato, Soshi Narasaki, Satoshi Kamiya, Shima Taguchi, Yosuke T. Horikawa, and Yasuo M. Tsutsumi. 2024. "The Serotonin-Mediated Anti-Allodynic Effect of Yokukansan on Paclitaxel-Induced Neuropathic Pain" Medicina 60, no. 3: 359. https://doi.org/10.3390/medicina60030359
APA StyleYokomi, H., Kato, T., Narasaki, S., Kamiya, S., Taguchi, S., Horikawa, Y. T., & Tsutsumi, Y. M. (2024). The Serotonin-Mediated Anti-Allodynic Effect of Yokukansan on Paclitaxel-Induced Neuropathic Pain. Medicina, 60(3), 359. https://doi.org/10.3390/medicina60030359