The Association of Free Testosterone with Sarcopenic Obesity in Community-Dwelling Older Men: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definitions
2.2.1. Sarcopenia
- (1)
- Skeletal muscle mass: we used DXA to measure appendicular skeletal muscle mass (ASM), and the ASM index (ASM/height2, ASMI) was calculated to compare muscle mass according to height (cutoff value, men: <7.0 kg/m2) [15].
- (2)
- Muscle strength: Handgrip strength (HGS) was measured using a hand dynamometer (T.K.K.5401, Takei Scientific Instruments Co., Ltd., Tokyo, Japan). HGS measurements were performed twice on both sides with the elbow extended in a standing position. The participants were instructed to hold the grip for 3 s with full force, and the maximum value was obtained in kilograms (cutoff value: <28 kg) [15].
- (3)
- Physical performance: A short physical performance battery (SPPB) was used to evaluate the physical performance. The SPPB is a widely used test that comprehensively assesses physical performance in the elderly population. The test consisted of three standing balance measures, a 4 m gait speed measure, and five sit-to-stand tests. Each item was scored from 0 to 4 points based on the established population for epidemiological studies of the elderly, with a maximum score of 12 points [16]. A score of ≤9 points was defined as low physical performance according to the AWGS diagnostic criteria [15].
2.2.2. Obesity
2.3. Measurement of Free Testosterone
2.4. Other Measurements
2.5. Confounding Variables
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barazzoni, R.; Bischoff, S.; Boirie, Y.; Busetto, L.; Cederholm, T.; Dicker, D.; Toplak, H.; Van Gossum, A.; Yumuk, V.; Vettor, R. Sarcopenic obesity: Time to meet the challenge. Obes. Facts 2018, 11, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Volpi, E.; Nazemi, R.; Fujita, S. Muscle tissue changes with aging. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 405. [Google Scholar] [CrossRef] [PubMed]
- Batsis, J.A.; Villareal, D.T. Sarcopenic obesity in older adults: Aetiology, epidemiology and treatment strategies. Nat. Rev. Endocrinol. 2018, 14, 513–537. [Google Scholar] [CrossRef] [PubMed]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Obes. Facts 2022, 15, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.J.; Jeon, Y.K.; Kim, I.J. Testosterone and sarcopenia. World J. Men’s Health 2018, 36, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Shigehara, K.; Kato, Y.; Izumi, K.; Mizokami, A. Relationship between testosterone and sarcopenia in older-adult men: A narrative review. J. Clin. Med. 2022, 11, 6202. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.E.; Walston, J.D.; Kim, M.; Won, C.W. Sex-specific differences in the effect of free testosterone on sarcopenia components in older adults. Front. Endocrinol. 2021, 12, 695614. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, M. The determination of bio-available testosterone. Ann. Clin. Biochem. 1995, 32, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N.; Waters, D.L.; Gallagher, D.; Morley, J.E.; Garry, P.J. Predictors of skeletal muscle mass in elderly men and women. Mech. Ageing Dev. 1999, 107, 123–136. [Google Scholar] [CrossRef]
- Kong, S.H.; Kim, J.H.; Lee, J.H.; Hong, A.R.; Shin, C.S.; Cho, N.H. Dehydroepiandrosterone sulfate and free testosterone but not estradiol are related to muscle strength and bone microarchitecture in older adults. Calcif. Tissue Int. 2019, 105, 285–293. [Google Scholar] [CrossRef]
- Travison, T.G.; Araujo, A.B.; Kupelian, V.; O’Donnell, A.B.; McKinlay, J.B. The relative contributions of aging, health, and lifestyle factors to serum testosterone decline in men. J. Clin. Endocrinol. Metab. 2007, 92, 549–555. [Google Scholar]
- Camacho, E.; Huhtaniemi, I.; O’neill, T.; Finn, J.; Pye, S.; Lee, D.; Tajar, A.; Bartfai, G.; Boonen, S.; Casanueva, F. Age-associated changes in hypothalamic–pituitary–testicular function in middle-aged and older men are modified by weight change and lifestyle factors: Longitudinal results from the European Male Ageing Study. Eur. J. Endocrinol. 2013, 168, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Diago-Galmés, A.; Guillamón-Escudero, C.; Tenías-Burillo, J.M.; Soriano, J.M.; Fernández-Garrido, J. Salivary testosterone and cortisol as biomarkers for the diagnosis of sarcopenia and Sarcopenic obesity in community-dwelling older adults. Biology 2021, 10, 93. [Google Scholar] [CrossRef] [PubMed]
- Fiers, T.; Delanghe, J.; T’Sjoen, G.; Van Caenegem, E.; Wierckx, K.; Kaufman, J.-M. A critical evaluation of salivary testosterone as a method for the assessment of serum testosterone. Steroids 2014, 86, 5–9. [Google Scholar] [CrossRef]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Ferrucci, L.; Pieper, C.F.; Leveille, S.G.; Markides, K.S.; Ostir, G.V.; Studenski, S.; Berkman, L.F.; Wallace, R.B. Lower extremity function and subsequent disability: Consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2000, 55, M221–M231. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N.; Wayne, S.J.; Waters, D.L.; Janssen, I.; Gallagher, D.; Morley, J.E. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes. Res. 2004, 12, 1995–2004. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, S.; Cunningham, G.R.; Hayes, F.J.; Matsumoto, A.M.; Snyder, P.J.; Swerdloff, R.S.; Montori, V.M. Testosterone therapy in men with androgen deficiency syndromes: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2010, 95, 2536–2559. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Vellas, B.; Guigoz, Y.; Garry, P.J.; Nourhashemi, F.; Bennahum, D.; Lauque, S.; Albarede, J.-L. The Mini Nutritional Assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrition 1999, 15, 116–122. [Google Scholar]
- Lauretani, F.; Russo, C.R.; Bandinelli, S.; Bartali, B.; Cavazzini, C.; Di Iorio, A.; Corsi, A.M.; Rantanen, T.; Guralnik, J.M.; Ferrucci, L. Age-associated changes in skeletal muscles and their effect on mobility: An operational diagnosis of sarcopenia. J. Appl. Physiol. 2003, 95, 1851–1860. [Google Scholar] [CrossRef] [PubMed]
- Rom, O.; Kaisari, S.; Aizenbud, D.; Reznick, A.Z. Lifestyle and sarcopenia—Etiology, prevention, and treatment. Rambam Maimonides Med. J. 2012, 3, e0024. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-c.; Shook, R.P.; Drenowatz, C.; Blair, S.N. Physical activity and sarcopenic obesity: Definition, assessment, prevalence and mechanism. Future Sci. OA 2016, 2, FSO127. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, J.; Geerlings, M.A.; Reijnierse, E.M.; Phassouliotis, C.; Lim, W.K.; Maier, A.B. Prevalence of sarcopenia as a comorbid disease: A systematic review and meta-analysis. Exp. Gerontol. 2020, 131, 110801. [Google Scholar] [CrossRef] [PubMed]
- Kenny, A.M.; Prestwood, K.M.; Gruman, C.A.; Marcello, K.M.; Raisz, L.G. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M266–M272. [Google Scholar] [CrossRef]
- Wittert, G.A.; Chapman, I.M.; Haren, M.T.; Mackintosh, S.; Coates, P.; Morley, J.E. Oral testosterone supplementation increases muscle and decreases fat mass in healthy elderly males with low–normal gonadal status. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, M618–M625. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.-H.; Jung, S.-W.; Joe, S.-H.; Lee, C.-H.; Jung, H.-G.; Jung, I.-K.; Kim, S.-H.; Lee, M.-S. Association between serum testosterone levels and the severity of negative symptoms in male patients with chronic schizophrenia. Psychoneuroendocrinology 2007, 32, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Haring, R.; Ittermann, T.; Völzke, H.; Krebs, A.; Zygmunt, M.; Felix, S.B.; Grabe, H.J.; Nauck, M.; Wallaschofski, H. Prevalence, incidence and risk factors of testosterone deficiency in a population-based cohort of men: Results from the study of health in Pomerania. Aging Male 2010, 13, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Yeap, B.B.; Chubb, S.P.; Hyde, Z.; Jamrozik, K.; Hankey, G.J.; Flicker, L.; Norman, P.E. Lower serum testosterone is independently associated with insulin resistance in non-diabetic older men: The Health in Men Study. Eur. J. Endocrinol. 2009, 161, 591–598. [Google Scholar] [CrossRef]
- Tsai, E.; Boyko, E.; Leonetti, D.; Fujimoto, W. Low serum testosterone level as a predictor of increased visceral fat in Japanese-American men. Int. J. Obes. 2000, 24, 485–491. [Google Scholar] [CrossRef]
- Frederiksen, L.; Højlund, K.; Hougaard, D.; Mosbech, T.H.; Larsen, R.; Flyvbjerg, A.; Frystyk, J.; Brixen, K.; Andersen, M. Testosterone therapy decreases subcutaneous fat and adiponectin in aging men. Eur. J. Endocrinol. 2012, 166, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.H.; Arver, S.; Behre, H.M.; Buvat, J.; Meuleman, E.; Moncada, I.; Morales, A.M.; Volterrani, M.; Yellowlees, A.; Howell, J.D. Testosterone replacement in hypogonadal men with type 2 diabetes and/or metabolic syndrome (the TIMES2 study). Diabetes Care 2011, 34, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Srinivas-Shankar, U.; Roberts, S.A.; Connolly, M.J.; O’Connell, M.D.; Adams, J.E.; Oldham, J.A.; Wu, F.C. Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: A randomized, double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 2010, 95, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Fui, M.N.T.; Dupuis, P.; Grossmann, M. Lowered testosterone in male obesity: Mechanisms, morbidity and management. Asian J. Androl. 2014, 16, 223. [Google Scholar] [PubMed]
- Genchi, V.A.; Rossi, E.; Lauriola, C.; D’Oria, R.; Palma, G.; Borrelli, A.; Caccioppoli, C.; Giorgino, F.; Cignarelli, A. Adipose tissue dysfunction and obesity-related male hypogonadism. Int. J. Mol. Sci. 2022, 23, 8194. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E.; Baumgartner, R.N.; Roubenoff, R.; Mayer, J.; Nair, K.S. Sarcopenia. J. Lab. Clin. Med. 2001, 137, 231–243. [Google Scholar] [CrossRef]
- Brambilla, D.J.; Matsumoto, A.M.; Araujo, A.B.; McKinlay, J.B. The effect of diurnal variation on clinical measurement of serum testosterone and other sex hormone levels in men. J. Clin. Endocrinol. Metab. 2009, 94, 907–913. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Peterson, C.M.; Thomas, D.M.; Heo, M.; Schuna Jr, J. Why are there race/ethnic differences in adult body mass index–adiposity relationships? A quantitative critical review. Obes. Rev. 2016, 17, 262–275. [Google Scholar] [CrossRef]
Non-Low Free Testosterone (n = 910, 92.7%) | Low Free Testosterone † (n = 72, 7.3%) | p-Value | |
---|---|---|---|
Age | 76.16 ± 3.95 | 78.15 ± 3.41 | <0.01 * |
Height (cm) | 164.99 ± 5.52 | 164.04 ± 6.16 | 0.16 |
Weight (kg) | 65.27 ± 8.87 | 65.23 ± 9.02 | 0.97 |
BMI (kg/m2) | 23.95 ± 2.84 | 24.22 ± 2.85 | 0.45 |
Waist circumference (cm) | 88.52 ± 8.29 | 90.95 ± 9.01 | 0.02 * |
Hypertension (n, %) | 483 (53.1) | 38 (52.8) | 0.96 |
Diabetes mellitus (n, %) | 218 (24) | 23 (31.9) | 0.13 |
Dyslipidemia (n, %) | 219 (24.1) | 23 (31.9) | 0.14 |
Heart disease (n, %) | 87 (9.6) | 8 (11.1) | 0.67 |
Osteoarthritis (n, %) | 96 (10.5) | 10 (13.9) | 0.38 |
Osteoporosis (n, %) | 25 (2.7) | 3 (4.2) | 0.49 |
CVA (n, %) | 51 (5.6) | 5 (6.9) | 0.64 |
COPD (n, %) | 18 (2.0) | 0 (0.0) | 0.23 |
Alcohol (n, %) | 310 (34.1) | 24 (33.3) | 0.90 |
Current smoker (n, %) | 99 (10.9) | 7 (9.7) | 0.76 |
Urban residence (n, %) | 723 (79.5) | 57 (79.2) | 0.95 |
MMSE-KC | 26.55 ± 2.44 | 26.43 ± 2.23 | 0.70 |
MNA-SF | 12.93 ± 1.45 | 12.87 ± 1.55 | 0.76 |
Moderate-to-high physical activity (n, %) | 834 (91.6) | 63 (87.5) | 0.23 |
Biochemical variables | |||
Free testosterone levels (pmol/L) | 34.38 ± 10.04 | 10.82 ± 5.48 | <0.01 * |
Fasting glucose (mg/dL) | 104.46 ± 23.50 | 114.36 ± 27.04 | <0.01 * |
HbA1c (%) | 5.97 ± 0.81 | 6.17 ± 0.89 | 0.04 * |
HOMA-IR | 2.07 ± 4.86 | 2.75 ± 3.07 | 0.24 |
Total cholesterol (mg/dL) | 168.42 ± 34.81 | 169.43 ± 38.78 | 0.81 |
HDL-C (mg/dL) | 50.57 ± 14.23 | 52.38 ± 15.02 | 0.30 |
LDL-C (mg/dL) | 104.55 ± 31.66 | 103.93 ± 35.16 | 0.16 |
TG (mg/dL) | 116.57 ± 66.22 | 117.50 ± 47.17 | 0.91 |
Skeletal muscle function | |||
HGS, kg | 32.64 ± 5.68 | 30.79 ± 5.41 | <0.01 * |
SPPB | 11.19 ± 1.26 | 10.96 ± 1.28 | 0.13 |
Body composition | |||
ASMI | 7.07 ± 0.84 | 6.80 ± 0.88 | <0.01 * |
Fat mass, % | 26.31 ± 5.89 | 29.11 ± 6.08 | <0.01 * |
Unadjusted Model | Fully Adjusted Model | |
---|---|---|
OR (95% CI) | OR (95% CI) | |
Healthy control † | 1.00 (reference) | 1.00 (reference) |
Obesity † | 2.71 (1.12–3.94) * | 2.09 (1.11–3.92) * |
Sarcopenia † | 3.32 (1.52–7.25) ** | 2.57 (1.08–6.10) * |
Sarcopenic obesity † | 5.35 (2.51–11.36) ** | 3.66 (1.58–8.47) ** |
Unadjusted Model | Fully Adjusted Model | |
---|---|---|
OR (95% CI) | OR (95% CI) | |
Low HGS † | 2.11 (1.27–3.52) ** | 1.50 (0.85–2.63) |
Low SPPB † | 1.92 (0.97–3.81) | 1.65 (0.76–3.57) |
Low ASMI † | 2.05 (1.24–3.37) ** | 1.78 (1.04–3.02) * |
High fat mass † | 2.09 (1.29–3.39) ** | 1.92 (1.12–3.31) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Chon, J.; Yoo, M.C.; Shim, G.Y.; Kim, M.; Soh, Y.; Won, C.W. The Association of Free Testosterone with Sarcopenic Obesity in Community-Dwelling Older Men: A Cross-Sectional Study. Medicina 2024, 60, 754. https://doi.org/10.3390/medicina60050754
Choi S, Chon J, Yoo MC, Shim GY, Kim M, Soh Y, Won CW. The Association of Free Testosterone with Sarcopenic Obesity in Community-Dwelling Older Men: A Cross-Sectional Study. Medicina. 2024; 60(5):754. https://doi.org/10.3390/medicina60050754
Chicago/Turabian StyleChoi, Seongmin, Jinmann Chon, Myung Chul Yoo, Ga Yang Shim, Miji Kim, Yunsoo Soh, and Chang Won Won. 2024. "The Association of Free Testosterone with Sarcopenic Obesity in Community-Dwelling Older Men: A Cross-Sectional Study" Medicina 60, no. 5: 754. https://doi.org/10.3390/medicina60050754
APA StyleChoi, S., Chon, J., Yoo, M. C., Shim, G. Y., Kim, M., Soh, Y., & Won, C. W. (2024). The Association of Free Testosterone with Sarcopenic Obesity in Community-Dwelling Older Men: A Cross-Sectional Study. Medicina, 60(5), 754. https://doi.org/10.3390/medicina60050754