Evaluation of Dihydroartemisinin–Piperaquine Efficacy and Molecular Markers in Uncomplicated Falciparum Patients: A Study across Binh Phuoc and Dak Nong, Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Patients
2.2. Treatment and Follow-Up
2.3. Ethics
2.4. Genomic DNA Extraction
2.5. Genotyping of Malaria Parasites to Differentiate between Recrudescence and Reinfection
2.6. Detection of pfK13 Gene Mutations
2.7. Quantitative PCR to Assess pfpm2 Gene Copy Number
2.8. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Therapeutic Efficacy of DHA-PPQ for Treatment of Uncomplicated P. falciparum
3.3. Molecular Marker Surveillance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fikadu, M.; Ashenafi, E. Malaria: An Overview. Infect. Drug Resist. 2023, 16, 3339–3347. [Google Scholar] [CrossRef] [PubMed]
- World Heath Organization. The World Malaria Report 2023; World Heath Organization: Geneva, Switzerland, 2023.
- WHO. Strategy for Malaria Elimination in the Greater Melong Subregion (2015–2030); World Heath Organization: Geneva, Switzerland, 2018.
- Amambua-Ngwa, A.; Button-Simons, K.A.; Li, X.; Kumar, S.; Brenneman, K.V.; Ferrari, M.; Checkley, L.A.; Haile, M.T.; Shoue, D.A.; McDew-White, M.; et al. Chloroquine resistance evolution in Plasmodium falciparum is mediated by the putative amino acid transporter AAT1. Nat. Microbiol. 2023, 8, 1213–1226. [Google Scholar] [CrossRef] [PubMed]
- Tse, E.G.; Korsik, M.; Todd, M.H. The past, present and future of anti-malarial medicines. Malar. J. 2019, 18, 93. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.N.; Wu, Z.X.; Dong, S.; Yang, D.H.; Zhang, L.; Ke, Z.; Zou, C.; Chen, Z.S. Chloroquine and hydroxychloroquine in the treatment of malaria and repurposing in treating COVID-19. Pharmacol. Ther. 2020, 216, 107672. [Google Scholar] [CrossRef] [PubMed]
- Shafik, S.H.; Cobbold, S.A.; Barkat, K.; Richards, S.N.; Lancaster, N.S.; Llinás, M.; Hogg, S.J.; Summers, R.L.; McConville, M.J.; Martin, R.E. The natural function of the malaria parasite’s chloroquine resistance transporter. Nat. Commun. 2020, 11, 3922. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Guidelines for Malaria Treatment; World Heath Organization: Geneva, Switzerland, 2023.
- WHO. Report on Antimalarial Drug Efficacy, Resistance and Response: 10 Years of Surveillance (2010–2019); World Heath Organization: Geneva, Switzerland, 2019.
- Ministry of Health Vietnam. National Guideline of Malaria Diagnosis and Treatment; Ministry of Health: Hanoi, Vietnam, 2007.
- Ministry of Health Vietnam. Guidelines for Malaria Diagnosis and Treatment in Vietnam; Ministry of Health Vietnam, National Malaria Control Program: Hanoi, Vietnam, 2007. [Google Scholar]
- Bridgford, J.L.; Xie, S.C.; Cobbold, S.A.; Pasaje, C.F.A.; Herrmann, S.; Yang, T.; Gillett, D.L.; Dick, L.R.; Ralph, S.A.; Dogovski, C.; et al. Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nat. Commun. 2018, 9, 3801. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Zhang, Z.; Liao, F.; Jiang, T.; Tu, Y. The birth of artemisinin. Pharmacol. Ther. 2020, 216, 107658. [Google Scholar] [CrossRef] [PubMed]
- WHO. Artemisinin Resistance and Artemisinin-Based Combination Therapy Efficacy 2018; World Heath Organization: Geneva, Switzerland, 2018.
- Azmi, W.A.; Rizki, A.F.M.; Djuardi, Y.; Artika, I.M.; Siregar, J.E. Molecular insights into artemisinin resistance in Plasmodium falciparum: An updated review. Infect. Genet. Evol. 2023, 112, 105460. [Google Scholar] [CrossRef] [PubMed]
- Chhibber-Goel, J.; Sharma, A. Profiles of Kelch mutations in Plasmodium falciparum across South Asia and their implications for tracking drug resistance. Int. J. Parasitol. Drugs Drug Resist. 2019, 11, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.; Zhang, Y.; Zhang, D. Evaluations of candidate markers of dihydroartemisinin-piperaquine resistance in Plasmodium falciparum isolates from the China–Myanmar, Thailand–Myanmar, and Thailand–Cambodia borders. Parasites Vectors 2022, 15, 130. [Google Scholar] [CrossRef] [PubMed]
- Coppée, R.; Jeffares, D.C.; Miteva, M.A.; Sabbagh, A.; Clain, J. Comparative structural and evolutionary analyses predict functional sites in the artemisinin resistance malaria protein K13. Sci. Rep. 2019, 9, 10675. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.C.; Ralph, S.A.; Tilley, L. K13, the Cytostome, and Artemisinin Resistance. Trends Parasitol. 2020, 36, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Si, W.; Zhao, Y.; Qin, X.; Huang, Y.; Yu, J.; Liu, X.; Li, Y.; Yan, X.; Zhang, Q.; Sun, J. What exactly does the PfK13 C580Y mutation in Plasmodium falciparum influence? Parasites Vectors 2023, 16, 421. [Google Scholar] [CrossRef] [PubMed]
- Stokes, B.H.; Dhingra, S.K.; Rubiano, K.; Mok, S.; Straimer, J.; Gnädig, N.F.; Deni, I.; Schindler, K.A.; Bath, J.R.; Ward, K.E.; et al. Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness. Elife 2021, 10, e66277. [Google Scholar] [CrossRef] [PubMed]
- Boonyalai, N.; Thamnurak, C.; Sai-Ngam, P.; Ta-Aksorn, W.; Arsanok, M.; Uthaimongkol, N.; Sundrakes, S.; Chattrakarn, S.; Chaisatit, C.; Praditpol, C.; et al. Plasmodium falciparum phenotypic and genotypic resistance profile during the emergence of Piperaquine resistance in Northeastern Thailand. Sci. Rep. 2021, 11, 13419. [Google Scholar] [CrossRef] [PubMed]
- Ansbro, M.R.; Jacob, C.G.; Amato, R.; Kekre, M.; Amaratunga, C.; Sreng, S.; Suon, S.; Miotto, O.; Fairhurst, R.M.; Wellems, T.E.; et al. Development of copy number assays for detection and surveillance of piperaquine resistance associated plasmepsin 2/3 copy number variation in Plasmodium falciparum. Malar. J. 2020, 19, 181. [Google Scholar] [CrossRef] [PubMed]
- Bopp, S.; Magistrado, P.; Wong, W.; Schaffner, S.F.; Mukherjee, A.; Lim, P.; Dhorda, M.; Amaratunga, C.; Woodrow, C.J.; Ashley, E.A.; et al. Plasmepsin II-III copy number accounts for bimodal piperaquine resistance among Cambodian Plasmodium falciparum. Nat. Commun. 2018, 9, 1769. [Google Scholar] [CrossRef] [PubMed]
- Le Bonniec, S.; Deregnaucourt, C.; Redeker, V.; Banerjee, R.; Grellier, P.; Goldberg, D.E.; Schrével, J. Plasmepsin II, an acidic hemoglobinase from the Plasmodium falciparum food vacuole, is active at neutral pH on the host erythrocyte membrane skeleton. J. Biol. Chem. 1999, 274, 14218–14223. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, B.; Duru, V.; Khim, N.; Ross, L.S.; Saintpierre, B.; Beghain, J.; Chy, S.; Kim, S.; Ke, S.; Kloeung, N.; et al. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: A phenotype-genotype association study. Lancet Infect. Dis. 2017, 17, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Florimond, C.; de Laval, F.; Early, A.M.; Sauthier, S.; Lazrek, Y.; Pelleau, S.; Monteiro, W.M.; Agranier, M.; Taudon, N.; Morin, F.; et al. Impact of piperaquine resistance in Plasmodium falciparum on malaria treatment effectiveness in The Guianas: A descriptive epidemiological study. Lancet Infect. Dis. 2024, 24, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Leroy, D.; Macintyre, F.; Adoke, Y.; Ouoba, S.; Barry, A.; Mombo-Ngoma, G.; Ndong Ngomo, J.M.; Varo, R.; Dossou, Y.; Tshefu, A.K.; et al. African isolates show a high proportion of multiple copies of the Plasmodium falciparum plasmepsin-2 gene, a piperaquine resistance marker. Malar. J. 2019, 18, 126. [Google Scholar] [CrossRef] [PubMed]
- Qidwai, T. Exploration of copy number variation in genes related to anti-malarial drug resistance in Plasmodium falciparum. Gene 2020, 736, 144414. [Google Scholar] [CrossRef] [PubMed]
- NIMPE. Report of National Institute of Malariology Parasitology and Entomology; NIMPE: Hanoi, Vietnam, 2023. [Google Scholar]
- WHO. National Malaria Programme Review–Viet Nam 2018; Word Heath Organization: Geneva, Switzerland, 2018.
- National Institute of Malariology Parasitology and Entomology. Report of National Institute of Malariology Parasitology and Entomology, 2020; National Institute of Malariology Parasitology and Entomology: Hanoi, Vietnam, 2020. [Google Scholar]
- Quang, H.H.; Chavchich, M. Multidrug-Resistant Plasmodium falciparum Parasites in the Central Highlands of Vietnam Jeopardize Malaria Control and Elimination Strategies. Antimicrob. Agents Chemother. 2021, 65, e01639-20. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Treatment of Malaria; World Health Organization: Geneva, Switzerland, 2015.
- WHO. Methods for Surveillance of Antimalarial Drug Efficacy; Word Heath Organization: Geneva, Switzerland, 2009.
- World Health Organization. Methods and Techniques for Clinical Trials on Antimalarial Drug Efficacy: Genotyping to Identify Parasite Populations. In Proceedings of the Informal Consultation Organized by the Medicines for Malaria Venture and Cosponsored by the World Health Organization, Amsterdam, The Netherlands, 29–31 May 2007; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Snounou, G. Genotyping of Plasmodium spp. Nested PCR. Methods Mol. Med. 2002, 72, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Ariey, F.; Witkowski, B.; Amaratunga, C.; Beghain, J.; Langlois, A.C.; Khim, N.; Kim, S.; Duru, V.; Bouchier, C.; Ma, L.; et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 2014, 505, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Inoue, J.; Silva, M.; Fofana, B.; Sanogo, K.; Mårtensson, A.; Sagara, I.; Björkman, A.; Veiga, M.I.; Ferreira, P.E.; Djimde, A.; et al. Plasmodium falciparum Plasmepsin 2 Duplications, West Africa. Emerg. Infect. Dis. 2018, 24, 1591–1593. [Google Scholar] [CrossRef]
- Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinform. Biomath. 2013, 3, 71–85. [Google Scholar]
- NIMPE. Report of National Institute of Malariology Parasitology and Entomology, 2013; National Institute of Malariology Parasitology and Entomology: Hanoi, Vietnam, 2013. [Google Scholar]
- National Institute of Malariology Parasitology and Entomology. Report of National Institute of Malariology Parasitology and Entomology, 2015; National Institute of Malariology Parasitology and Entomology: Hanoi, Vietnam, 2015. [Google Scholar]
- Phuc, B.Q.; Rasmussen, C.; Duong, T.T.; Dong, L.T.; Loi, M.A.; Ménard, D.; Tarning, J.; Bustos, D.; Ringwald, P.; Galappaththy, G.L.; et al. Treatment Failure of Dihydroartemisinin/Piperaquine for Plasmodium falciparum Malaria, Vietnam. Emerg. Infect. Dis. 2017, 23, 715–717. [Google Scholar] [CrossRef]
- Thanh, N.V.; Thuy-Nhien, N.; Tuyen, N.T.; Tong, N.T.; Nha-Ca, N.T.; Dong, L.T.; Quang, H.H.; Farrar, J.; Thwaites, G.; White, N.J.; et al. Rapid decline in the susceptibility of Plasmodium falciparum to dihydroartemisinin-piperaquine in the south of Vietnam. Malar. J. 2017, 16, 27. [Google Scholar] [CrossRef] [PubMed]
- Lek, D.; Rachmat, A.; Harrison, D.; Chin, G.; Chaoratanakawee, S.; Saunders, D.; Menard, D.; Rogers, W.O. Efficacy of three anti-malarial regimens for uncomplicated Plasmodium falciparum malaria in Cambodia, 2009–2011: A randomized controlled trial and brief review. Malar. J. 2022, 21, 259. [Google Scholar] [CrossRef] [PubMed]
- van der Pluijm, R.W.; Imwong, M.; Chau, N.H.; Hoa, N.T.; Thuy-Nhien, N.T.; Thanh, N.V.; Jittamala, P.; Hanboonkunupakarn, B.; Chutasmit, K.; Saelow, C.; et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: A prospective clinical, pharmacological, and genetic study. Lancet Infect. Dis. 2019, 19, 952–961. [Google Scholar] [CrossRef]
- Imwong, M.; Dhorda, M.; Myo Tun, K.; Thu, A.M.; Phyo, A.P.; Proux, S.; Suwannasin, K.; Kunasol, C.; Srisutham, S.; Duanguppama, J.; et al. Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: An observational study. Lancet Infect. Dis. 2020, 20, 1470–1480. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Li, X.; Arya, G.A.; McDew-White, M.; Ferrari, M.; Nosten, F.; Anderson, T.J.C. Fitness Costs and the Rapid Spread of kelch13-C580Y Substitutions Conferring Artemisinin Resistance. Antimicrob. Agents Chemother. 2018, 62, e00605-18. [Google Scholar] [CrossRef]
- Kobasa, T.; Talundzic, E.; Sug-Aram, R.; Boondat, P.; Goldman, I.F.; Lucchi, N.W.; Dharmarak, P.; Sintasath, D.; Fukuda, M.; Whistler, T.; et al. Emergence and Spread of kelch13 Mutations Associated with Artemisinin Resistance in Plasmodium falciparum Parasites in 12 Thai Provinces from 2007 to 2016. Antimicrob. Agents Chemother. 2018, 62, e02141-17. [Google Scholar] [CrossRef]
- Hamilton, W.L.; Amato, R.; van der Pluijm, R.W.; Jacob, C.G.; Quang, H.H.; Thuy-Nhien, N.T.; Hien, T.T.; Hongvanthong, B.; Chindavongsa, K.; Mayxay, M.; et al. Evolution and expansion of multidrug-resistant malaria in southeast Asia: A genomic epidemiology study. Lancet Infect. Dis. 2019, 19, 943–951. [Google Scholar] [CrossRef]
- Imwong, M.; Hien, T.T.; Thuy-Nhien, N.T.; Dondorp, A.M.; White, N.J. Spread of a single multidrug resistant malaria parasite lineage (PfPailin) to Vietnam. Lancet Infect. Dis. 2017, 17, 1022–1023. [Google Scholar] [CrossRef] [PubMed]
- Parobek, C.M.; Parr, J.B.; Brazeau, N.F.; Lon, C.; Chaorattanakawee, S.; Gosi, P.; Barnett, E.J.; Norris, L.D.; Meshnick, S.R.; Spring, M.D.; et al. Partner-Drug Resistance and Population Substructuring of Artemisinin-Resistant Plasmodium falciparum in Cambodia. Genome Biol. Evol. 2017, 9, 1673–1686. [Google Scholar] [CrossRef] [PubMed]
Age Group | Number of DHA-PPQ (Arterakin®) Tablets Per Day | |||||
---|---|---|---|---|---|---|
0 h | 8 h | 24 h | 32 h | 48 h | 56 h | |
2–3 years | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
3–7 years | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
8–14 years | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 |
>15 years | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Characteristic | Binh Phuoc | Dak Nong | p-Value |
---|---|---|---|
(n = 44) | (n = 19) | ||
Age (years) | 0.804 * | ||
± SD | 30.5 ± 9.1 | 31.5 ± 9.8 | |
Gender | 1.0 ** | ||
Male | 42 (95.5%) | 18 (94.7%) | |
Female | 2 (4.5%) | 1 (5.3%) | |
Height (cm) | 0.318 * | ||
± SD | 167 ± 5.6 | 165.8 ± 5.5 | |
Weight (kg) | 60.7 ± 7.3 | 56.5 ± 6.1 | 0.066 * |
± SD | |||
Temperature at day 0 (°C) | 38.7 ± 0.6 | 38.3 ± 0.5 | 0.011 * |
± SD | |||
Parasitaemia at day 0 (range) | 16,659 | 21,871 | 0.498 * |
(560–95,428) | (1000–154,666) |
Parameters | Binh Phuoc (n = 44) | Dak Nong (n = 16) * | p-Value ** | |
---|---|---|---|---|
Day | Parameters | |||
1 | Fever | 19 (43.2%) | 10 (52.6%) | 0.678 |
Parasitemia | 43 (97.7%) | 13 (81.2%) | 0.054 | |
2 | Fever | 2 (4.6%) | 1 (5.3%) | 1.00 |
Parasitemia | 25 (58.1%) | 8 (50.0%) | 0.791 | |
3 | Fever | 0 (0%) | 0 (0%) | 1.00 |
Parasitemia | 10 (22.7) | 3 (18.8%) | 1.0 |
No. | Patient ID | Study Sites | Day of Recurrence | Recrudescence/Reinfection |
---|---|---|---|---|
1 | D1.40 | Dak Nong | 21 | Recrudescence |
2 | D1.42 | Dak Nong | 21 | Recrudescence |
3 | D1.44 | Dak Nong | 14 | Recrudescence |
4 | D1.45 | Binh Phuoc | 42 | Recrudescence |
5 | D1.46 | Binh Phuoc | 35 | Recrudescence |
6 | D1.47 | Binh Phuoc | 35 | Recrudescence |
7 | D1.49 | Binh Phuoc | 28 | Recrudescence |
8 | D1.53 | Binh Phuoc | 35 | Recrudescence |
9 | D1.54 | Binh Phuoc | 28 | Reinfection |
10 | D1.56 | Binh Phuoc | 28 | Recrudescence |
11 | D1.59 | Binh Phuoc | 42 | Recrudescence |
12 | D1.60 | Binh Phuoc | 21 | Reinfection |
13 | D1.61 | Binh Phuoc | 28 | Recrudescence |
14 | D1.63 | Binh Phuoc | 28 | Reinfection |
15 | D1.64 | Binh Phuoc | 28 | Recrudescence |
Classification of Treatment | Binh Phuoc | Dak Nong | Overall | p-Value * | |
---|---|---|---|---|---|
n, % | n, % | n, % | |||
Total patient treatment failure and complete 42-day follow-up | ETF | 0 (0) | 0 (0) | 0 (0) | 0.042 |
LCF | 14 (31.8) | 1 (5.3) | 15 (23.8) | ||
LPF | 3 (6.8) | 3 (15.8) | 6 (9.5) | ||
ACPR | 21 (47.7) | 11 (57.9) | 32 (50.8) | ||
Patient LFU/WTH | LFU | 3 (6.8) | 4 (21.1) | 7 (11.1) | |
WTH | 3 (6.8) | 0 (0) | 3 (4.8) |
Mutation/CNV | Provinces n (%) | Total | p-Value | |
---|---|---|---|---|
Binh Phuoc | Dak Nong | |||
C580Y | 37/43 (86.0) | 12/18 (66.7) | 49/61 (80.3) | 0.2 |
Multiples of pfpm2 copy numbers | 17/38 (44.7) | 7/13 (53.8) | 24/51 (47.1) | 0.6 |
C580Y/pfpm2 | 13/37 (35.1) | 5/13 (38.5) | 18/50 (36.0) | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.H.T.; Hien, B.T.T.; Dung, N.T.L.; Huong, N.T.; Binh, T.T.; Van Long, N.; Ton, N.D. Evaluation of Dihydroartemisinin–Piperaquine Efficacy and Molecular Markers in Uncomplicated Falciparum Patients: A Study across Binh Phuoc and Dak Nong, Vietnam. Medicina 2024, 60, 1013. https://doi.org/10.3390/medicina60061013
Tran THT, Hien BTT, Dung NTL, Huong NT, Binh TT, Van Long N, Ton ND. Evaluation of Dihydroartemisinin–Piperaquine Efficacy and Molecular Markers in Uncomplicated Falciparum Patients: A Study across Binh Phuoc and Dak Nong, Vietnam. Medicina. 2024; 60(6):1013. https://doi.org/10.3390/medicina60061013
Chicago/Turabian StyleTran, Thu Huyen Thi, Bui Thi Thu Hien, Nguyen Thi Lan Dung, Nguyen Thi Huong, Tran Thanh Binh, Nguyen Van Long, and Nguyen Dang Ton. 2024. "Evaluation of Dihydroartemisinin–Piperaquine Efficacy and Molecular Markers in Uncomplicated Falciparum Patients: A Study across Binh Phuoc and Dak Nong, Vietnam" Medicina 60, no. 6: 1013. https://doi.org/10.3390/medicina60061013
APA StyleTran, T. H. T., Hien, B. T. T., Dung, N. T. L., Huong, N. T., Binh, T. T., Van Long, N., & Ton, N. D. (2024). Evaluation of Dihydroartemisinin–Piperaquine Efficacy and Molecular Markers in Uncomplicated Falciparum Patients: A Study across Binh Phuoc and Dak Nong, Vietnam. Medicina, 60(6), 1013. https://doi.org/10.3390/medicina60061013