The Relationship between Fragmented QRS and Myocardial Injury in Patients with Acute Carbon Monoxide Poisoning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Analysis Details
2.2. Electrocardiography Measurement Details
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bucak, I.H.; Tanrıverdi, H.; Kılıç, F.E. An evaluation of childhood carbon monoxide intoxications in a rural area using the Beaufort wind scale. Environ. Monit. Assess. 2023, 195, 1204. [Google Scholar] [CrossRef]
- Öz, E.; Küçükkelepçe, O.; Kurt, O.; Vural, A. Carbon monoxide poisoning: Beyond survival—Mortality, morbidities, and risk factors, a Turkey sample. PeerJ 2023, 11, e16093. [Google Scholar] [CrossRef]
- Cobb, N.; Etzel, R.A. Unintentional carbon monoxide-related deaths in the United States, 1979 through 1988. JAMA 1999, 266, 659–663. [Google Scholar] [CrossRef]
- Garg, J.; Krishnamoorthy, P.; Palaniswamy, C.; Khera, S.; Ahmad, H.; Jain, D.; Aronow, W.S.; Frishman, W.H. Cardiovascular Abnormalities in Carbon Monoxide Poisoning. Am. J. Ther. 2018, 25, e339–e348. [Google Scholar] [CrossRef] [PubMed]
- Kao, H.K.; Lien, T.C.; Kou, Y.R.; Wang, J.H. Assessment of myocardial injury in the emergency department independently predicts the short-term poor outcome in patients with severe carbon monoxide poisoning receiving mechanical ventilation and hyperbaric oxygen therapy. Pulm. Pharmacol. Ther. 2009, 22, 473–477. [Google Scholar] [CrossRef]
- Kalay, N.; Ozdogru, I.; Cetinkaya, Y.; Eryol, N.K.; Dogan, A.; Gul, I.; Inanc, T.; Ikızceli, I.; Oguzhan, A.; Abaci, A. Cardiovascular effects of carbon monoxide poisoning. Am. J. Cardiol. 2007, 99, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Baydin, A.; Amanvermez, R.; Çelebi, H.E.; Tuncel, O.K.; Demircan, S. Pentraxin 3, ischemia-modified albumin, and myeloperoxidase in predicting a cardiac damage in acute carbon monoxide poisoning. Am. J. Emerg. Med. 2016, 34, 1927–1930. [Google Scholar] [CrossRef]
- Gandini, C.; Castoldi, A.F.; Candura, S.M.; Locatelli, C.; Butera, R.; Priori, S.; Manzo, L. Carbon monoxide cardiotoxicity. J. Toxicol. Clin. Toxicol. 2001, 39, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Dahms, T.E.; Younis, L.T.; Wiens, R.D.; Zarnegar, S.; Byers, S.L.; Chaitman, B.R. Effects of carbon monoxide exposure in patients with documented cardiac arrhythmias. J. Am. Coll. Cardiol. 1993, 21, 442–450. [Google Scholar] [CrossRef]
- Ozyurt, A.; Karpuz, D.; Yucel, A.; Tosun, M.D.; Kibar, A.D.; Hallioglu, O. Effects of Acute Carbon Monoxide Poisoning on ECG and Echocardiographic Parameters in Children. Cardiovasc. Toxicol. 2017, 17, 326–334. [Google Scholar] [CrossRef]
- Atescelik, M.; Bozdemir, M.N.; Yildiz, M.; Gurbuz, S.; Ayranci, M.; Goktekin, M.C.; Kobat, M.A.; Dagli, M.N.; Eken, C. QT dispersion in carbon monoxide poisoning. Eur. Rev. Med. Pharmacol. Sci. 2012, 16 (Suppl. S1), 25–29. [Google Scholar] [PubMed]
- Temrel, T.A.; Bilge, S. Myocardial Repolarization Parameters and Neutrophil-to-Lymphocyte Ratio are Associated with Cardiotoxicity in Carbon Monoxide Poisoning. Cardiovasc. Toxicol. 2020, 20, 190–196. [Google Scholar] [CrossRef]
- Gürkan, Y.; Canatay, H.; Toprak, A.; Ural, E.; Toker, K. Carbon monoxide poisoning—A cause of increased QT dispersion. Acta Anaesthesiol. Scand. 2002, 46, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.H.; Ko, S.M.; Son, J.W.; Park, E.J.; Cha, Y.S. Myocardial Injury and Fibrosis from Acute Carbon Monoxide Poisoning: A Prospective Observational Study. JACC Cardiovasc. Imaging 2021, 14, 1758–1770. [Google Scholar] [CrossRef]
- Pietrasik, G.; Zaręba, W. QRS fragmentation: Diagnostic and prognostic significance. Cardiol. J. 2012, 19, 114–121. [Google Scholar] [CrossRef]
- Kanjanahattakij, N.; Rattanawong, P.; Riangwiwat, T.; Prasitlumkum, N.; Limpruttidham, N.; Chongsathidkiet, P.; Vutthikraivit, W.; Crossey, E. Fragmented QRS and mortality in patients undergoing percutaneous intervention for ST-elevation myocardial infarction: Systematic review and meta-analysis. Ann. Noninvasive Electrocardiol. 2018, 23, e12567. [Google Scholar] [CrossRef] [PubMed]
- Qaddoura, A.; Digby, G.C.; Kabali, C.; Kukla, P.; Tse, G.; Glover, B.; Baranchuk, A.M. Use of fragmented QRS in prognosticating clinical deterioration and mortality in pulmonary embolism: A meta-analysis. Ann. Noninvasive Electrocardiol. 2018, 23, e12552. [Google Scholar] [CrossRef]
- Altunova, M.; Püşüroğlu, H.; Karakayalı, M.; Sahin, A.A.; Demir, A.R.; Yilmaz, E.; Cizgici, A.Y.; Erturk, M. Relationship Between Fragmented QRS Complex and Long-Term Cardiovascular Outcome in Patients with Essential Hypertension. Anatol. J. Cardiol. 2022, 26, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Saraçoğlu, E.; Vuruşkan, E.; Kılıç, S.; Cekici, Y.; Onur, B.; Arslan, Y.; Kilic, E.; Aykut, O. Predicting Cardiotoxic Effects of Carbon Monoxide Poisoning Using Speckle Tracking Echocardiography. Cardiovasc. Toxicol. 2018, 18, 175–183. [Google Scholar] [CrossRef]
- Das, M.K.; Khan, B.; Jacob, S.; Kumar, A.; Mahenthiran, J. Significance of a fragmented QRS complex versus a Q wave in patients with coronary artery disease. Circulation 2006, 113, 2495–2501. [Google Scholar] [CrossRef]
- Raub, J.A.; Mathieu-Nolf, M.; Hampson, N.B.; Thom, S.R. Carbon monoxide poisoning—A public health perspective. Toxicology 2000, 145, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Marius-Nunez, A.L. Myocardial infarction with normal coronary arteries after acute exposure to carbon monoxide. Chest 1990, 97, 491–494. [Google Scholar] [CrossRef]
- Li, B.; Gao, X.; Wang, W.; Zhu, B.; Qiao, Q. Effect of early intervention on short-term prognosis of patients with myocardial injury induced by acute carbon monoxide poisoning. ESC Heart Fail. 2022, 9, 1090–1097. [Google Scholar] [CrossRef]
- Henry, C.R.; Satran, D.; Lindgren, B.; Adkinson, C.; Nicholson, C.I.; Henry, T.D. Myocardial injury and long-term mortality following moderate to severe carbon monoxide poisoning. JAMA 2006, 295, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Satran, D.; Henry, C.R.; Adkinson, C.; Nicholson, C.I.; Bracha, Y.; Henry, T.D. Cardiovascular manifestations of moderate to severe carbon monoxide poisoning. J. Am. Coll. Cardiol. 2005, 45, 1513–1516. [Google Scholar] [CrossRef] [PubMed]
- Basaran, Y.; Tigen, K.; Karaahmet, T.; Isiklar, I.; Cevik, C.; Gurel, E.; Dundar, C.; Pala, S. Fragmented QRS complexes are associated with cardiac fibrosis and significant intraventricular systolic dyssynchrony in nonischemic dilated cardiomyopathy patients with a narrow QRS interval. Echocardiography 2011, 28, 62–68. [Google Scholar] [CrossRef]
- Guo, R.; Zhang, J.; Li, Y.; Xu, Y.; Tang, K.; Li, W. Prognostic significance of fragmented QRS in patients with non-ST elevation myocardial infarction: Results of a 1-year, single-center follow-up. Herz 2012, 37, 789–795. [Google Scholar] [CrossRef]
- Sha, J.; Zhang, S.; Tang, M.; Chen, K.; Zao, X.; Wang, F. Fragmented QRS is associated with all-cause mortality and ventricular arrhythmias in patient with idiopathic dilated cardiomyopathy. Ann. Noninvasive Electrocardiol. 2011, 16, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Das, M.K.; Michael, M.A.; Suradi, H.; Peng, J.; Sinha, A.; Shen, C.; Mahenthiran, J.; Kovacs, R.J. Usefulness of fragmented QRS on a 12-lead electrocardiogram in acute coronary syndrome for predicting mortality. Am. J. Cardiol. 2009, 104, 1631–1637. [Google Scholar] [CrossRef]
- Tanriverdi, Z.; Dursun, H.; Simsek, M.A.; Unal, B.; Kozan, O.; Kaya, D. The Predictive Value of Fragmented QRS and QRS Distortion for High-Risk Patients with STEMI and for the Reperfusion Success. Ann. Noninvasive Electrocardiol. 2015, 20, 578–585. [Google Scholar] [CrossRef]
- Erdem, F.H.; Tavil, Y.; Yazici, H.; Aygul, N.; Abaci, A.; Boyaci, B. Association of fragmented QRS complex with myocardial reperfusion in acute ST-elevated myocardial infarction. Ann. Noninvasive Electrocardiol. 2013, 18, 69–74. [Google Scholar] [CrossRef]
- Kocaman, S.A.; Cetin, M.; Kiris, T.; Erdogan, T.; Canga, A.; Durakoglugil, E.; Satiroglu, O.; Sahinarslan, A.; Cicek, Y.; Sahin, I.; et al. The importance of fragmented QRS complexes in prediction of myocardial infarction and reperfusion parameters in patients undergoing primary percutaneous coronary intervention. Turk. Kardiyol. Dern. Ars. 2012, 40, 213–222. [Google Scholar] [CrossRef]
- Tanriverdi, Z.; Dursun, H.; Kaya, D. The Importance of the Number of Leads with fQRS for Predicting In-Hospital Mortality in Acute STEMI Patients Treated with Primary PCI. Ann. Noninvasive Electrocardiol. 2016, 21, 413–419. [Google Scholar] [CrossRef]
- Yıldırım, E.; Karaçimen, D.; Ozcan, K.S.; Osmonov, D.; Turkkan, C.; Altay, S.; Ceylan, U.S.; Ugur, M.; Bozbay, M.; Erdinler, I. The relationship between fragmentation on electrocardiography and in-hospital prognosis of patients with acute myocardial infarction. Med. Sci. Monit. 2014, 20, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Torigoe, K.; Tamura, A.; Kawano, Y.; Shinozaki, K.; Kotoku, M.; Kadota, J. The number of leads with fragmented QRS is independently associated with cardiac death or hospitalization for heart failure in patients with prior myocardial infarction. J. Cardiol. 2012, 59, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Changawala, N. Fragmented QRS complex: A novel marker of cardiovascular disease. Clin. Cardiol. 2010, 33, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Maehara, K.; Kokubun, T.; Awano, N.; Taira, K.; Ono, M.; Furukawa, T.; Shimizu, Y.; Maruyama, Y. Detection of abnormal high-frequency components in the QRS complex by the wavelet transform in patients with idiopathic dilated cardiomyopathy. Jpn. Circ. J. 1999, 63, 25–32. [Google Scholar] [CrossRef]
- Weidemann, A.; Klanke, B.; Wagner, M.; Volk, T.; Willam, C.; Wiesener, M.S.; Eckardt, K.U.; Warnecke, C. Hypoxia, via stabilization of the hypoxia-inducible factor HIF-1alpha, is a direct and sufficient stimulus for brain-type natriuretic peptide induction. Biochem. J. 2008, 409, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Alter, P.; Rupp, H.; Rominger, M.B.; Vollrath, A.; Czerny, F.; Figiel, J.H.; Adams, P.; Stoll, F.; Kolse, K.J.; Maisch, B. B-type natriuretic peptide and wall stress in dilated human heart. Mol. Cell. Biochem. 2008, 314, 179–191. [Google Scholar] [CrossRef]
- Davutoglu, V.; Gunay, N.; Kocoglu, H.; Gunay, N.E.; Yildirim, C.; Cavdar, M.; Tarakcioglu, M. Serum levels of NT-ProBNP as an early cardiac marker of carbon monoxide poisoning. Inhal. Toxicol. 2006, 18, 155–158. [Google Scholar] [CrossRef]
- Rich, M.W. Epidemiology, clinical features, and prognosis of acute myocardial infarction in the elderly. Am. J. Geriatr. Cardiol. 2006, 15, 7–11. [Google Scholar] [CrossRef]
- Robert, L. Aging of the vascular-wall and atherosclerosis. Exp. Gerontol. 1999, 34, 491–501. [Google Scholar] [CrossRef]
- Lakatta, E.G.; Levy, D. Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part I: Aging arteries: A “set up” for vascular disease. Circulation 2003, 107, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Lakatta, E.G.; Levy, D. Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part II: The aging heart in health: Links to heart disease. Circulation 2003, 107, 346–354. [Google Scholar] [CrossRef]
- Abbate, R.; Prisco, D.; Rostagno, C.; Boddi, M.; Gensini, M.F. Age-related changes in the hemostatic system. Int. J. Clin. Lab. Res. 1993, 23, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Matts, J.P.; Karnegis, J.N.; Campos, C.T.; Fitch, L.L.; Johnson, J.W.; Buchwald, H.; POSCH Group. Serum creatinine as an independent predictor of coronary heart disease mortality in normotensive survivors of myocardial infarction. POSCH Group. J. Fam. Pract. 1993, 36, 497–503. [Google Scholar] [PubMed]
- Friedman, P.J. Serum creatinine: An independent predictor of survival after stroke. J. Intern. Med. 1991, 229, 175–179. [Google Scholar] [CrossRef]
- Schillaci, G.; Reboldi, G.; Verdecchia, P. High-normal serum creatinine concentration is a predictor of cardiovascular risk in essential hypertension. Arch. Intern. Med. 2001, 161, 886–891. [Google Scholar] [CrossRef]
- Gibson, C.M.; Pinto, D.S.; Murphy, S.A.; Morrow, D.A.; Hobbach, H.P.; Wiviott, S.D.; Giugliano, R.P.; Cannon, C.P.; Antman, E.M.; Braunwold, E.; et al. Association of creatinine and creatinine clearance on presentation in acute myocardial infarction with subsequent mortality. J. Am. Coll. Cardiol. 2003, 42, 1535–1543. [Google Scholar] [CrossRef]
- Yılmaz, E.; Aydın, E.; Çamcı, S.; Aydin, E. Frequency of fragmented QRS on ECG and relationship with left ventricular dysfunction in patients with subclinical hypothyroidism. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 3677–3685. [Google Scholar] [CrossRef]
Variables | Mean Values ± SD | % |
---|---|---|
Age (years) | 42.05 ± 18.16 | |
Male gender (%) | 69 | 36.3 |
BMI (kg/m2) | 26.64 ± 3.21 | |
Duration of CO exposure (h) | 4 (1–9) * | |
Intox season | ||
Spring | 38 | 20 |
Summer | 11 | 6 |
Autumn | 15 | 8 |
Winter | 126 | 66 |
Intox area | ||
City | 58 | 31 |
Village | 97 | 51 |
Both | 35 | 18 |
Variables | Mean Values ± SD | Normal Range |
---|---|---|
pH | 7.42 ± 0.159 | 7.35–7.45 |
pCO2 (mmHg) | 41.53 ± 8.47 | 35–48 |
PaO2 (mmHg) | 85.24 ± 16.71 | 83–108 |
HCO3 (mEq/L) | 23.82 ± 3.96 | 22–26 |
BE (mEq/L) | 1.4 (−1.9–2.3) * | (−2)–(+2) |
SpO2 (%) | 98.28 ± 18.54 | 95–100 |
COHb (%) | 17.82 ± 3.42 | <10% |
Lactate (mmol/L) | 2.46 ± 0.48 | 0.5–1.6 |
Sodium (mmol/L) | 139.25 ± 24.62 | 136–145 |
Potassium (mmol/L) | 4.22 ± 0.84 | 3.5–5.1 |
Chloride (mmol/L) | 108.62 ± 19.27 | 98–107 |
Calcium (mg/dL) | 9.28 ± 1.87 | 8.8–10.2 |
Hemoglobin (g/dL) | 12.63 ± 2.52 | 12.1–17.2 ** |
Platelet (109/L) | 256.61 ± 48.41 | 140–450 |
Alanine aminotransferase (U/L) | 24.46 ± 4.91 | 0–41 |
Aspartate aminotransferase (U/L) | 26.12 ± 5.26 | 0–40 |
Creatinine (mg/dL) | 1.09 ± 0.21 | 0.7–1.2 |
Creatine kinase (U/L) | 112.68 ± 21.66 | 0–190 |
Troponin T (µg/L) | 0.028 ± 0.005 | 0–0.014 |
ProBNP (pg/mL) | 257.64 ± 50.52 | 0–125 |
Myocardial Injury (+) (n = 44) | Myocardial Injury (−) (n =146) | p-Value | Fragmented QRS (+) (n = 38) | Fragmented QRS (−) (n = 152) | p-Value | |
---|---|---|---|---|---|---|
Age (years) | 48.26 ± 11.5 | 40.69 ± 10.35 | 0.011 | 49.61 ± 13.86 | 39.16 ± 10.03 | <0.001 |
Male gender (%) | 17 (38.6%) | 52 (35.6%) | 0.50 | 16 (42.1%) | 53 (34.8%) | 0.005 |
COHb (%) | 21.87 ± 4.36 | 15.24 ± 3.03 | <0.001 | 19.46 ± 4.14 | 18.84 ± 3.62 | 0.10 |
Lactate (mmol/L) | 5.08 ± 0.98 | 2.28 ± 0.43 | 0.003 | 2.68 ± 0.71 | 2.29 ± 0.42 | 0.34 |
Creatinine (mg/dL) | 1.42 ± 0.26 | 1.02 ± 0.21 | <0.001 | 1.39 ± 0.24 | 1.13 ± 0.25 | 0.01 |
CK (U/L) | 134.77 ± 25.94 | 108.79 ± 21.74 | 0.009 | 114.08 ± 24.49 | 110.85 ± 22.96 | 0.24 |
Troponin T (µg/L) | 0.102 ± 0.021 | 0.011 ± 0.002 | <0.001 | 0.086 ± 0.013 | 0.026 ± 0.006 | 0.009 |
ProBNP (pg/mL) | 806.21 ± 142.5 | 105.46 ± 20.98 | <0.001 | 614.47 ± 102.9 | 111.63 ± 19.25 | 0.001 |
HR (/min) | 92.85 ± 18.57 | 78.69 ± 15.43 | 0.002 | 81.47 ± 13.62 | 82.78 ± 14.52 | 0.5 |
PR(ms) | 173.08 ± 32.61 | 171.82 ± 31.46 | 0.531 | 175.12 ± 35.82 | 170.24 ± 33.46 | 0.004 |
QT (ms) | 360.81 ± 62.16 | 359.09 ± 61.81 | 0.16 | 361.24 ± 65.06 | 359.47 ± 63.62 | 0.26 |
QTc (ms) | 435.26 ± 82.05 | 433.08 ± 84.61 | 0.41 | 436.72 ± 86.51 | 431.29 ± 84.15 | 0.008 |
Fragmented QRS | 17 (38.6%) | 21 (14.38%) | <0.001 | 38 (100%) | - | - |
Number of leads with fragmented QRS | 3 (2–6) * | 2 (2–3) * | <0.001 | 2 (2–6) * | - | - |
OR | 95% CI | p-Value | |
---|---|---|---|
Age | 1.089 | 1.011–1.162 | 0.02 |
COHb | 1.054 | 0.981–1.615 | 0.20 |
Lactate | 1.039 | 0.962–1.208 | 0.14 |
Creatinine | 1.097 | 1.009–1.305 | 0.009 |
proBNP | 1.836 | 1.256–2.588 | 0.001 |
fQRS | 2.187 | 1.809–3.401 | <0.001 |
≥3 leads with fQRS | 2.398 | 1.744–4.108 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Küçükkelepçe, O.; Yılmaz, E.; Çamcı, S. The Relationship between Fragmented QRS and Myocardial Injury in Patients with Acute Carbon Monoxide Poisoning. Medicina 2024, 60, 891. https://doi.org/10.3390/medicina60060891
Küçükkelepçe O, Yılmaz E, Çamcı S. The Relationship between Fragmented QRS and Myocardial Injury in Patients with Acute Carbon Monoxide Poisoning. Medicina. 2024; 60(6):891. https://doi.org/10.3390/medicina60060891
Chicago/Turabian StyleKüçükkelepçe, Osman, Emre Yılmaz, and Sencer Çamcı. 2024. "The Relationship between Fragmented QRS and Myocardial Injury in Patients with Acute Carbon Monoxide Poisoning" Medicina 60, no. 6: 891. https://doi.org/10.3390/medicina60060891
APA StyleKüçükkelepçe, O., Yılmaz, E., & Çamcı, S. (2024). The Relationship between Fragmented QRS and Myocardial Injury in Patients with Acute Carbon Monoxide Poisoning. Medicina, 60(6), 891. https://doi.org/10.3390/medicina60060891