Long-Term Impact of Deep Brain Stimulation in Parkinson’s Disease: Does It Affect Rehabilitation Outcomes?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Study Participants
2.3. Rehabilitation Protocol
2.4. Outcomes
- -
- Movement Disorder Society—Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [28]: This is a comprehensive assessment tool used to assess the severity and progression of PD. Originally developed in 1987 and later revised, the MDS-UPDRS consists of four parts (Part I: Mentation, Behavior, and Mood; Part II: Activities of Daily Living (ADL); Part III: Motor Examination; Part IV: Complications of Therapy). Overall, the MDS-UPDRS provides a standardized and systematic way to assess both motor and non-motor aspects of PD [28]. In order to characterize motor symptoms, we considered MDS-UPDRS III, while for a comprehensive analysis of non-motor symptoms, we considered MDS-UPDRS I II and IV.
- -
- Berg Balance Scale (BBS) [29]: This is a clinical assessment tool to assess the static and dynamic balance abilities. It includes 14 functional tasks, each graded on a five-point scale based on the individual’s performance. The tasks assess various aspects of balance, ranging from sitting and standing to more dynamic activities like reaching and turning. The BBS is particularly relevant in assessing balance impairments in neurological conditions such as PD. Changes in BBS scores over time can help track the progression of balance impairments or assess the effectiveness of interventions [29].
- -
- Self-Assessment Parkinson Disease Scale (SPDDS) [30]: This is a clinical outcome measure for a comprehensive assessment of ADL. The patient rates their ability to perform ADL on a five-point scale, ranging from “able to do alone without difficulty” to “unable to do at all”. The questionnaire includes a total of 25 items for a comprehensive assessment of patients with PD [30].
- -
- Timed Up and Go (TUG) test [31]: This is a functional mobility and dynamic balance test used in clinical settings to assess mobility and risk of falls. The TUG test begins with the patient seated in a standard armchair. On the command “Go,” the patient stands up from the chair and walks a distance of 3 m, turns around, and walks back to the chair to sit down. The total time taken to complete the task is recorded and provides valuable information about a person’s mobility, balance, and gait. The TUG test is considered a quick and reliable measure to assess changes in performance over time may guide interventions and treatment plans for individuals with PD [31].
- -
- 6-Min Walk Test (6MWT) [32]: This is a clinical assessment tool to evaluate functional exercise capacity and endurance in patients with different conditions. The test measures the distance a person can walk in six minutes and is commonly employed to assess cardiovascular and respiratory function, as well as overall mobility and endurance. The patient was instructed to walk as far as possible in a straight path for six minutes. The total distance covered in six minutes was recorded. Heart rate and oxygen saturation were monitored before, during, and after the test [32].
- -
- Montreal Cognitive Assessment (MoCA) [33]: a widely used cognitive screening tool designed to assess different cognitive domains, including memory, attention, language, visuospatial skills, and executive function. The outcome measure of the MoCA is a numerical score, with a maximum score of 30 points. A higher score indicates better cognitive functioning, while a lower score may suggest potential cognitive impairment [33].
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sveinbjornsdottir, S. The clinical symptoms of Parkinson’s disease. J. Neurochem. 2016, 139 (Suppl. S1), 318–324. [Google Scholar] [CrossRef] [PubMed]
- Pringsheim, T.; Jette, N.; Frolkis, A.; Steeves, T.D. The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord. 2014, 29, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Tarakad, A.; Jankovic, J. Diagnosis and Management of Parkinson’s Disease. Semin. Neurol. 2017, 37, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, K.; Sullivan, B.; Lopez, E.; Sun, L.; Cai, H. Diverse midbrain dopaminergic neuron subtypes and implications for complex clinical symptoms of Parkinson’s disease. Ageing Neurodegener. Dis. 2021, 1, 4. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.Q.; Ahmed, U.S.; Chaudry, Z.M.; Vasan, S. Parkinson’s disease: A review of non-motor symptoms. Expert. Rev. Neurother. 2015, 15, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Duncan, G.W.; Khoo, T.K.; Yarnall, A.J.; T O’Brien, J.; Coleman, S.Y.; Brooks, D.J.; Barker, R.A.; Burn, D.J. Health-related quality of life in early Parkinson’s disease: The impact of nonmotor symptoms. Mov. Disord. Off. J. Mov. Disord. Soc. 2014, 29, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Ou, Z.; Pan, J.; Tang, S.; Duan, D.; Yu, D.; Nong, H.; Wang, Z. Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Front. Public Health 2021, 9, 776847. [Google Scholar] [CrossRef] [PubMed]
- Levy, G. The relationship of Parkinson disease with aging. Arch. Neurol. 2007, 64, 1242–1246. [Google Scholar] [CrossRef]
- Chuang, C.S.; Chen, Y.W.; Zeng, B.Y.; Hung, C.M.; Tu, Y.K.; Tai, Y.C.; Wu, Y.C.; Hsu, C.W.; Lei, W.T.; Wu, S.L.; et al. Effects of modern technology (exergame and virtual reality) assisted rehabilitation vs conventional rehabilitation in patients with Parkinson’s disease: A network meta-analysis of randomised controlled trials. Physiotherapy 2022, 117, 35–42. [Google Scholar] [CrossRef]
- Marotta, N.; Calafiore, D.; Curci, C.; Lippi, L.; Ammendolia, V.; Ferraro, F.; Invernizzi, M.; de Sire, A. Integrating virtual reality and exergaming in cognitive rehabilitation of patients with Parkinson disease: A systematic review of randomized controlled trials. Eur. J. Phys. Rehabil. Med. 2022, 58, 818–826. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, X.; Zhang, H.; Ouyang, G.; Lin, S.C. The effect of home-based exercise on motor symptoms, quality of life and functional performance in Parkinson’s disease: A systematic review and meta-analysis. BMC Geriatr. 2023, 23, 873. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Lee, T.L.; Lee, H.; Ko, D.K.; Lee, J.H.; Shin, H.; Lim, D.; Jun, J.S.; Byun, K.; Park, K.; et al. Effects of physical exercise interventions on cognitive function in Parkinson’s disease: An updated systematic review and meta-analysis of randomized controlled trials. Park. Relat. Disord. 2023, 117, 105908. [Google Scholar] [CrossRef] [PubMed]
- Abbruzzese, G.; Marchese, R.; Avanzino, L.; Pelosin, E. Rehabilitation for Parkinson’s disease: Current outlook and future challenges. Park. Relat. Disord. 2016, 22 (Suppl. S1), S60–S64. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA 2020, 323, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Bucur, M.; Papagno, C. Deep Brain Stimulation in Parkinson Disease: A Meta-analysis of the Long-term Neuropsychological Outcomes. Neuropsychol. Rev. 2023, 33, 307–346. [Google Scholar] [CrossRef] [PubMed]
- Limousin, P.; Foltynie, T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat. Rev. Neurol. 2019, 15, 234–242. [Google Scholar] [CrossRef]
- Lannon, M.; Duda, T.; Mastrolonardo, A.; Huang, E.; Martyniuk, A.; Farrokhyar, F.; Xie, F.; Bhandari, M.; Kalia, S.K.; Sharma, S. Economic Evaluations Comparing Deep Brain Stimulation to Best Medical Therapy for Movement Disorders: A Meta-Analysis. Pharmacoeconomics 2024, 42, 41–68. [Google Scholar] [CrossRef] [PubMed]
- Hitti, F.L.; Ramayya, A.G.; McShane, B.J.; Yang, A.I.; Vaughan, K.A.; Baltuch, G.H. Long-term outcomes following deep brain stimulation for Parkinson’s disease. J. Neurosurg. 2019, 132, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Twardowski, S.E.; Wactawski-Wende, J.; Hovey, K.M.; Andrews, C.A.; Banack, H.R.; LaMonte, M.J.; Millen, A.E. Plasma 25-Hydroxyvitamin D Concentrations and Serum and Salivary C-Reactive Protein in the Osteoporosis and Periodontal Disease Study. Nutrients 2021, 13, 1148. [Google Scholar] [CrossRef]
- Mahlknecht, P.; Peball, M.; Mair, K.; Werkmann, M.; Nocker, M.; Wolf, E.; Eisner, W.; Bajaj, S.; Quirbach, S.; Peralta, C.; et al. Has Deep Brain Stimulation Changed the Very Long-Term Outcome of Parkinson’s Disease? A Controlled Longitudinal Study. Mov. Disord. Clin. Pract. 2020, 7, 782–787. [Google Scholar] [CrossRef]
- Sato, K.; Hokari, Y.; Kitahara, E.; Izawa, N.; Hatori, K.; Honaga, K.; Oyama, G.; Hatano, T.; Iwamuro, H.; Umemura, A.; et al. Short-Term Motor Outcomes in Parkinson’s Disease after Subthalamic Nucleus Deep Brain Stimulation Combined with Post-Operative Rehabilitation: A Pre-Post Comparison Study. Park. Dis. 2022, 2022, 8448638. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Aita, N.; Hokari, Y.; Kitahara, E.; Tani, M.; Izawa, N.; Hatori, K.; Nakamura, R.; Sasaki, F.; Sekimoto, S.; et al. Balance and Gait Improvements of Postoperative Rehabilitation in Patients with Parkinson’s Disease Treated with Subthalamic Nucleus Deep Brain Stimulation (STN-DBS). Park. Dis. 2019, 2019, 7104071. [Google Scholar] [CrossRef] [PubMed]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13, S31. [Google Scholar] [CrossRef] [PubMed]
- PP, R. Human experimentation. Code Ethics World Med. Assoc. Declar. Helsinki. Br. Med. J. 1964, 2, 177. [Google Scholar]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Keus, S.H.; Munneke, M.; Nijkrake, M.J.; Kwakkel, G.; Bloem, B.R. Physical therapy in Parkinson’s disease: Evolution and future challenges. Mov. Disord. 2009, 24, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Robins, L.N.; Helzer, J.E. The Mini-Mental State Examination. Arch. Gen. Psychiatry 1983, 40, 812. [Google Scholar] [CrossRef] [PubMed]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. Off. J. Mov. Disord. Soc. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring balance in the elderly: Validation of an instrument. Can. J. Public Health 1992, 83 (Suppl. S2), S7–S11. [Google Scholar]
- Biemans, M.A.; Dekker, J.; van der Woude, L.H. The internal consistency and validity of the Self-Assessment Parkinson’s Disease Disability Scale. Clin. Rehabil. 2001, 15, 221–228. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [PubMed]
- Enright, P.L.; Sherrill, D.L. Reference equations for the six-minute walk in healthy adults. Am. J. Respir. Crit. Care Med. 1998, 158, 1384–1387. [Google Scholar] [CrossRef] [PubMed]
- Gill, D.J.; Freshman, A.; Blender, J.A.; Ravina, B. The Montreal cognitive assessment as a screening tool for cognitive impairment in Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2008, 23, 1043–1046. [Google Scholar] [CrossRef] [PubMed]
- Madi, M.; Pavlic, V.; Alammar, S.M.; Alsulaimi, L.M.; Alotaibi, R.S.; AlOtaibi, G.M.; Zakaria, O. The association between vitamin D level and periodontal disease in Saudi population, a preliminary study. Saudi Dent. J. 2020, 33, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Thrane, G.; Joakimsen, R.M.; Thornquist, E. The association between timed up and go test and history of falls: The Tromsø study. BMC Geriatr. 2007, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, M.; Carda, S.; Viscontini, G.S.; Cisari, C. Osteoporosis in Parkinson’s disease. Park. Relat. Disord. 2009, 15, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Peball, M.; Mahlknecht, P.; Werkmann, M.; Marini, K.; Murr, F.; Herzmann, H.; Stockner, H.; de Marzi, R.; Heim, B.; Djamshidian, A. Prevalence and associated factors of sarcopenia and frailty in Parkinson’s disease: A cross-sectional study. Gerontology 2019, 65, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Ponsoni, A.; Sardeli, A.V.; Costa, F.P.; Mourão, L.F. Prevalence of sarcopenia in Parkinson’s disease: A systematic review and meta-analysis. Geriatr. Nurs. 2023, 49, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Lippi, L.; Uberti, F.; Folli, A.; Turco, A.; Curci, C.; d’Abrosca, F.; de Sire, A.; Invernizzi, M. Impact of nutraceuticals and dietary supplements on mitochondria modifications in healthy aging: A systematic review of randomized controlled trials. Aging Clin. Exp. Res. 2022, 34, 2659–2674. [Google Scholar] [CrossRef]
- de Sire, A.; Invernizzi, M.; Baricich, A.; Lippi, L.; Ammendolia, A.; Grassi, F.A.; Leigheb, M. Optimization of transdisciplinary management of elderly with femur proximal extremity fracture: A patient-tailored plan from orthopaedics to rehabilitation. World J. Orthop. 2021, 12, 456. [Google Scholar] [CrossRef]
- Lippi, L.; Turco, A.; Folli, A.; Vicelli, F.; Curci, C.; Ammendolia, A.; de Sire, A.; Invernizzi, M. Effects of blood flow restriction on spine postural control using a robotic platform: A pilot randomized cross-over study. J. Back. Musculoskelet. Rehabil. 2023, 36, 6. [Google Scholar] [CrossRef]
- Swanson, R.; Robinson, K.M. Geriatric rehabilitation: Gait in the elderly, fall prevention and Parkinson disease. Med. Clin. 2020, 104, 327–343. [Google Scholar]
- Mangone, M.; Agostini, F.; de Sire, A.; Cacchio, A.; Chiaramonte, A.; Butterini, G.; Martano, A.; Paoloni, M.; Bernetti, A.; Paolucci, T. Effect of virtual reality rehabilitation on functional outcomes for return-to-work patients with Parkinson’s disease: An umbrella review of systematic reviews. NeuroRehabilitation 2022, 51, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Lippi, L.; Turco, A.; Folli, A.; D’Abrosca, F.; Curci, C.; Mezian, K.; De Sire, A.; Invernizzi, M. Technological advances and digital solutions to improve quality of life in older adults with chronic obstructive pulmonary disease: A systematic review. Aging Clin. Exp. Res. 2023, 35, 953–968. [Google Scholar] [CrossRef] [PubMed]
- Lippi, L.; Desimoni, F.; Canonico, M.; Massocco, G.; Turco, A.; Polverelli, M.; de Sire, A.; Invernizzi, M. System for Tracking and Evaluating Performance (Step-App®): Validation and clinical application of a mobile telemonitoring system in patients with knee and hip total arthroplasty. A Prospect. Cohort Study. Eur. J. Phys. Rehabil. Med. 2024, 60, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Federico, S.; Cacciante, L.; Cieślik, B.; Turolla, A.; Agostini, M.; Kiper, P.; Picelli, A. Telerehabilitation for Neurological Motor Impairment: A Systematic Review and Meta-Analysis on Quality of Life, Satisfaction, and Acceptance in Stroke, Multiple Sclerosis, and Parkinson’s Disease. J. Clin. Med. 2024, 13, 299. [Google Scholar] [CrossRef] [PubMed]
- Salaorni, F.; Bonardi, G.; Schena, F.; Tinazzi, M.; Gandolfi, M. Wearable devices for gait and posture monitoring via telemedicine in people with movement disorders and multiple sclerosis: A systematic review. Expert. Rev. Med. Devices 2024, 21, 121–140. [Google Scholar] [CrossRef] [PubMed]
- Petraroli, A.; de Sire, A.; Pino, I.; Moggio, L.; Marinaro, C.; Demeco, A.; Ammendolia, A. Effects of rehabilitation on reducing dyskinesias in a Parkinson’s disease patient abusing therapy with levodopa-carbidopa intestinal gel: A paradigmatic case report and literature review. J. Biol. Regul. Homeost. Agents 2021, 35, 4. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, E.; Himuro, N.; Takahashi, M. Clinical utility of the 6-min walk test for patients with moderate Parkinson’s disease. Int. J. Rehabil. Res. Int. Z. Rehabilitationsforschung. Rev. Int. Rech. Readapt. 2017, 40, 66–70. [Google Scholar] [CrossRef]
- Maresova, P.; Hruska, J.; Klimova, B.; Barakovic, S.; Krejcar, O. Activities of daily living and associated costs in the most widespread neurodegenerative diseases: A systematic review. Clin. Interv. Aging 2020, 1841–1862. [Google Scholar] [CrossRef]
- Zotey, V.; Andhale, A.; Shegekar, T.; Juganavar, A. Adaptive Neuroplasticity in Brain Injury Recovery: Strategies and Insights. Cureus 2023, 15, e45873. [Google Scholar] [CrossRef]
- Morone, G.; De Sire, A.; Martino Cinnera, A.; Paci, M.; Perrero, L.; Invernizzi, M.; Lippi, L.; Agostini, M.; Aprile, I.; Casanova, E. Upper limb robotic rehabilitation for patients with cervical spinal cord injury: A comprehensive review. Brain Sci. 2021, 11, 1630. [Google Scholar] [CrossRef]
- De Sire, A.; Moggio, L.; Marotta, N.; Curci, C.; Lippi, L.; Invernizzi, M.; Mezian, K.; Ammendolia, A. Impact of rehabilitation on volumetric muscle loss in subjects with traumatic spinal cord injury: A systematic review. NeuroRehabilitation 2023, 52, 365–386. [Google Scholar] [CrossRef]
- Kumar, J.; Patel, T.; Sugandh, F.; Dev, J.; Kumar, U.; Adeeb, M.; Kachhadia, M.P.; Puri, P.; Prachi, F.; Zaman, M.U. Innovative approaches and therapies to enhance neuroplasticity and promote recovery in patients with neurological disorders: A narrative review. Cureus 2023, 15, e41914. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, B.; Xie, F.; Zhou, H.; Guo, J.-F.; Jiang, H.; Sim, A.; Tang, B.; Wang, Q. Efficacy of repetitive transcranial magnetic stimulation in Parkinson’s disease: A systematic review and meta-analysis of randomised controlled trials. EClinicalMedicine 2022, 52, 101589. [Google Scholar] [CrossRef]
- Pol, F.; Salehinejad, M.A.; Baharlouei, H.; Nitsche, M.A. The effects of transcranial direct current stimulation on gait in patients with Parkinson’s disease: A systematic review. Transl. Neurodegener. 2021, 10, 22. [Google Scholar] [CrossRef]
- Kricheldorff, J.; Göke, K.; Kiebs, M.; Kasten, F.H.; Herrmann, C.S.; Witt, K.; Hurlemann, R. Evidence of Neuroplastic Changes after Transcranial Magnetic, Electric, and Deep Brain Stimulation. Brain Sci. 2022, 12, 929. [Google Scholar] [CrossRef]
- Yuan, T.-F.; Li, W.-G.; Zhang, C.; Wei, H.; Sun, S.; Xu, N.-J.; Liu, J.; Xu, T.-L. Targeting neuroplasticity in patients with neurodegenerative diseases using brain stimulation techniques. Transl. Neurodegener. 2020, 9, 44. [Google Scholar] [CrossRef]
Whole Sample (n = 47) | Groups | ||||||
---|---|---|---|---|---|---|---|
DBS Group (n = 22) | No-DBS Group (n = 25) | Between-Group Analysis (p-Value) | |||||
Age | 65.0 | 61.0 to 74.0 | 63.5 | 57.0 to 70.5 | 69.0 | 63.0 to 74.0 | 0.124 |
Sex (female/male) | 0.321 | ||||||
Female | 14 | (29.8%) | 9 | (22.7%) | 9 | (36%) | |
Male | 33 | (70.2%) | 16 | (77.3%) | 16 | (64%) | |
Caucasian ethnicity | 65 | (100%) | 22 | (100%) | 22 | (100%) | 0.999 |
Levodopa (mg/day) | 500 | 300 to 800 | 500 | 200 to 787.5 | 500 | 375.0 to 825.0 | 0.578 |
Disease Duration (years) | 16.0 | 13.0 to 19.0 | 17.0 | 13.75 to 22.75 | 15.0 | 12.0 to 18.0 | 0.084 |
Hoehn and Yahr | |||||||
Stage 2 | 19 | (40.4%) | 7 | (31.8%) | 12 | (48%) | 0.373 |
Stage 3 | 28 | (59.6%) | 15 | (68.2%) | 13 | (52%) | |
Age at the DBS implant | - | - | 56.0 | 50.8 to 61.5 | - | - | |
Years between diagnosis and DBS | - | - | 10.0 | 8.8 to 14.0 | - | - | |
Years from the intervention | - | - | 6.0 | 5.0 to 10.8 | - | - | |
MDS-UPDRS | 89.0 | 68.0 to 107.0 | 105.5 | 68.75 to 114.3 | 86.0 | 66.0 to 96.0 | 0.072 |
BBS | 45.0 | 31.0 to 51.0 | 41.0 | 29.75 to 51.25 | 45.0 | 35.5 to 50.5 | 0.337 |
TUG (s) | 10.9 | 8.69 to 18.2 | 12.7 | 8.9 to 21.1 | 9.7 | 8.3 to 13.1 | 0.431 |
SPDDS | 57.0 | 45.0 to 72.0 | 63.0 | 47.3 to 75.0 | 51.0 | 40.5 to 67.5 | 0.400 |
6MWT (m) | 310.0 | 240.0 to 420.0 | 251.5 | 175.0 to 427.5 | 340.0 | 300.0 to 422.5 | 0.193 |
MoCA | 22.52 | 19.98 to 25.19 | 21.05 | 18.43 to 32.08 | 23.52 | 21.11 to 25.52 | 0.078 |
Outcome | DBS Group (n = 22) | No-DBS Group (n = 25) | |||
---|---|---|---|---|---|
T1–T0 | Within-Group Differences | T1-T0 | Within-Group Differences | Between-Group Differences | |
Median (IQR) | p Value | Median (IQR) | p Value | p Value | |
MDS-UPDRS overall score | −16.0 (−32.75 to −7.0) | 0.001 | −17.0 (−23.0 to −11.5) | <0.0001 | 0.898 |
MDS-UPDRS III | −7.0 (−11.5 to −1.0) | 0.001 | −7.0 (−12.0 to −2.0) | <0.0001 | 0.856 |
MDS-UPDRS I II IV | −12.0 (−19.0 to −4.5) | 0.001 | −10.0 (−14.5 to −5.0) | <0.0001 | 0.501 |
BBS | 7.0 (3.8 to 10.3) | <0.0001 | 6.0 (3.5 to 9.5) | <0.0001 | 0.578 |
TUG (s) | −2.8 (−5.7 to −1.1) | <0.0001 | −2.1 (−3.4 to −1.2) | <0.0001 | 0.693 |
SPDDS | −8 (−13.0 to −4.0) | <0.0001 | −6.0 (−8.0 to −3.0) | <0.0001 | 0.174 |
6MWT (m) | 81 (37.3 to 132.3) | <0.0001 | 83.0 (39.0 to 121.0) | <0.0001 | 0.983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canesi, M.; Lippi, L.; Rivaroli, S.; Vavassori, D.; Trenti, M.; Sartorio, F.; Meucci, N.; de Sire, A.; Siri, C.; Invernizzi, M. Long-Term Impact of Deep Brain Stimulation in Parkinson’s Disease: Does It Affect Rehabilitation Outcomes? Medicina 2024, 60, 927. https://doi.org/10.3390/medicina60060927
Canesi M, Lippi L, Rivaroli S, Vavassori D, Trenti M, Sartorio F, Meucci N, de Sire A, Siri C, Invernizzi M. Long-Term Impact of Deep Brain Stimulation in Parkinson’s Disease: Does It Affect Rehabilitation Outcomes? Medicina. 2024; 60(6):927. https://doi.org/10.3390/medicina60060927
Chicago/Turabian StyleCanesi, Margherita, Lorenzo Lippi, Simone Rivaroli, Daniele Vavassori, Marta Trenti, Francesco Sartorio, Nicoletta Meucci, Alessandro de Sire, Chiara Siri, and Marco Invernizzi. 2024. "Long-Term Impact of Deep Brain Stimulation in Parkinson’s Disease: Does It Affect Rehabilitation Outcomes?" Medicina 60, no. 6: 927. https://doi.org/10.3390/medicina60060927
APA StyleCanesi, M., Lippi, L., Rivaroli, S., Vavassori, D., Trenti, M., Sartorio, F., Meucci, N., de Sire, A., Siri, C., & Invernizzi, M. (2024). Long-Term Impact of Deep Brain Stimulation in Parkinson’s Disease: Does It Affect Rehabilitation Outcomes? Medicina, 60(6), 927. https://doi.org/10.3390/medicina60060927