Efficacy of Alirocumab, Evolocumab, and Inclisiran in Patients with Hypercholesterolemia at Increased Cardiovascular Risk
Abstract
:1. Introduction
Aim
2. Material and Methods
2.1. Study Population
- Age 18 years or older.
- An LDL-C level greater than 100 mg/dL (2.5 mmol/L) despite adherence to a low-fat diet and:
- -
- Intensive treatment with statin at maximum doses for at least three months, which includes combination therapy with ezetimibe for at least one month. Here, ‘maximum doses’ refers to either atorvastatin 80 mg or rosuvastatin 40 mg when used in monotherapy. ‘Combination therapy’ refers to atorvastatin 40–80 mg or rosuvastatin 20–40 mg with ezetimibe 10 mg;
- -
- Or intensive statin therapy with the maximum tolerated doses for at least three months, including at least one month of combination therapy with ezetimibe 10 mg.
- (a) A definitive diagnosis of heterozygous familial hypercholesterolemia, indicated by a score greater than 8 on the Dutch Lipid Clinic Network (DLCN) scale; (b) or, classification as a very high risk of cardiovascular events patient, defined as a patient with a documented myocardial infarction diagnosed invasively within the 12 months prior to enrollment, with either:
- -
- A history of additional myocardial infarction and multivessel coronary artery disease, defined as at least 50% stenosis in two or more vessels;
- -
- Or the presence of atherosclerotic disease in non-coronary arteries, such as peripheral artery disease or cerebrovascular disease (ischemic stroke or transient ischemic attack).
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hajar, R. PCSK 9 Inhibitors: A Short History and a New Era of Lipid-lowering Therapy. Heart Views 2019, 20, 74. [Google Scholar] [CrossRef] [PubMed]
- Wołowiec, Ł.; Osiak, J.; Wołowiec, A.; Wijata, A.; Grześk, E.; Kozakiewicz, M.; Banach, J.; Nowaczyk, A.; Nowaczyk, J.; Grześk, G. Inclisiran—Safety and Effectiveness of Small Interfering RNA in Inhibition of PCSK-9. Pharmaceutics 2023, 15, 323. [Google Scholar] [CrossRef] [PubMed]
- Bobrowska, B.; Krawczyk-Ożóg, A.; Bartuś, S.; Rajtar-Salwa, R. Effectiveness and safety of proprotein convertase subtilisin/kexin type 9 inhibitors in patients with familial hypercholesterolemia. Our experience in implementing the drug program of the Polish National Health Fund. Adv. Interv. Cardiol. 2022, 18, 162. [Google Scholar] [CrossRef] [PubMed]
- Lagace, T.A. PCSK9 and LDLR degradation: Regulatory mechanisms in circulation and in cells. Curr. Opin. Lipidol. 2014, 25, 387. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Feng, X.; Zhou, Y. PCSK9 Variants in Familial Hypercholesterolemia: A Comprehensive Synopsis. Front. Genet. 2020, 11, 1020. [Google Scholar] [CrossRef] [PubMed]
- Akioyamen, L.E.; Genest, J.; Shan, S.D.; Reel, R.L.; Albaum, J.M.; Chu, A.; Tu, J.V. Estimating the prevalence of heterozygous familial hypercholesterolaemia: A systematic review and meta-analysis. BMJ Open 2017, 7, e016461. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular riskThe Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Harada-Shiba, M.; Arai, H.; Ohmura, H.; Okazaki, H.; Sugiyama, D.; Tada, H.; Dobashi, K.; Matsuki, K.; Minamino, T.; Yamashita, S.; et al. Guidelines for the Diagnosis and Treatment of Adult Familial Hypercholesterolemia 2022. J. Atheroscler. Thromb. 2023, 30, 558. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; MacH, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Rajtar-Salwa, R.; Bobrowska, B.; Batko, J.; Bartuś, S.; Petkow-Dimitrow, P.; Krawczyk-Ożóg, A. Lipid-Lowering Therapy after Acute Coronary Syndrome in Outpatient Practice—How to Achieve Goal. J. Clin. Med. 2023, 12, 6579. [Google Scholar] [CrossRef]
- Virani, S.S.; Aspry, K.; Dixon, D.L.; Ferdinand, K.C.; Heidenreich, P.A.; Jackson, E.J.; Jacobson, T.A.; McAlister, J.L.; Neff, D.R.; Gulati, M.; et al. The importance of low-density lipoprotein cholesterol measurement and control as performance measures: A joint clinical perspective from the National Lipid Association and the American Society for Preventive Cardiology. Am. J. Prev. Cardiol. 2023, 13, 2666–6677. [Google Scholar] [CrossRef]
- Langlois, M.R.; Chapman, M.J.; Cobbaert, C.; Mora, S.; Remaley, A.T.; Ros, E.; Watts, G.F.; Borén, J.; Baum, H.; Bruckert, E.; et al. Quantifying Atherogenic Lipoproteins: Current and Future Challenges in the Era of Personalized Medicine and Very Low Concentrations of LDL Cholesterol. A Consensus Statement from EAS and EFLM. Clin. Chem. 2018, 64, 1006–1033. [Google Scholar] [CrossRef]
- Borén, J.; John Chapman, M.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020, 41, 2313–2330. [Google Scholar] [CrossRef] [PubMed]
- Lamb, Y.N. Inclisiran: First Approval. Drugs 2021, 81, 389. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.G.; Nedergaard, B.S.; Rogers, W.J.; Fialkow, J.; Neutel, J.M.; Ramstad, D.; Somaratne, R.; Legg, J.C.; Nelson, P.; Scott, R.; et al. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: The LAPLACE-2 randomized clinical trial. JAMA 2014, 311, 1870–1882. [Google Scholar] [CrossRef]
- Raal, F.J.; Stein, E.A.; Dufour, R.; Turner, T.; Civeira, F.; Burgess, L.; Langslet, G.; Scott, R.; Olsson, A.G.; Sullivan, D.; et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): A randomised, double-blind, placebo-controlled trial. Lancet 2015, 385, 331–340. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; Cho, L.; Kastelein, J.J.P.; Koenig, W.; Somaratne, R.; Kassahun, H.; Yang, J.; et al. Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated Patients: The GLAGOV Randomized Clinical Trial. JAMA 2016, 316, 2373–2384. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.T.; Ho, L.T.; Hsu, H.Y.; Tu, Y.K.; Chien, K.L. Efficacy and Safety of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors as Adjuvant Treatments for Patients with Hypercholesterolemia Treated with Statin: A Systematic Review and Network Meta-analysis. Front. Pharmacol. 2022, 13, 832614. [Google Scholar] [CrossRef]
- Imran, T.F.; Khan, A.A.; Has, P.; Jacobson, A.; Bogin, S.; Khalid, M.; Khan, A.; Kim, S.; Erqou, S.; Choudhary, G.; et al. Proprotein convertase subtilisn/kexin type 9 inhibitors and small interfering RNA therapy for cardiovascular risk reduction: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0295359. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef] [PubMed]
- Elis, A.; Melzer Cohen, C.; Chodick, G. Real-World Use of Alirocumab: Experience from a Large Healthcare Provider. J. Clin. Med. 2023, 12, 1084. [Google Scholar] [CrossRef] [PubMed]
- Kiyosue, A.; Yasuda, S.; Tomura, A.; Usami, M.; Arai, H. Safety and Effectiveness of Alirocumab, a Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitor, in Patients With Familial or Non-Familial Hypercholesterolemia—A Post-Marketing Survey (J-POSSIBLE). Circ. J. 2023, 87, 834–846. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; López-Sendon, J.L.; Averna, M.; Cariou, B.; Loy, M.; Manvelian, G.; Batsu, I.; Poulouin, Y.; Gaudet, D. Treatment adherence and effect of concurrent statin intensity on the efficacy and safety of alirocumab in a real-life setting: Results from ODYSSEY APPRISE. Arch. Med. Sci. 2022, 18, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Albosta, M.S.; Grant, J.K.; Taub, P.; Blumenthal, R.S.; Martin, S.S.; Michos, E.D. Inclisiran: A New Strategy for LDL-C Lowering and Prevention of Atherosclerotic Cardiovascular Disease. Vasc. Health Risk Manag. 2023, 19, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Landmesser, U.; Leiter, L.A.; Kallend, D.; Dufour, R.; Karakas, M.; Hall, T.; Troquay, R.P.T.; Turner, T.; Visseren, F.L.J.; et al. Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol. N. Engl. J. Med. 2017, 376, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Stoekenbroek, R.M.; Kallend, D.; Nishikido, T.; Leiter, L.A.; Landmesser, U.; Wright, R.S.; Wijngaard, P.L.J.; Kastelein, J.J.P. Effect of 1 or 2 Doses of Inclisiran on Low-Density Lipoprotein Cholesterol Levels: One-Year Follow-up of the ORION-1 Randomized Clinical Trial. JAMA Cardiol. 2019, 4, 1067. [Google Scholar] [CrossRef] [PubMed]
- Katsiki, N.; Vrablik, M.; Banach, M.; Gouni-Berthold, I. Inclisiran, Low-Density Lipoprotein Cholesterol and Lipoprotein (a). Pharmaceuticals 2023, 16, 577. [Google Scholar] [CrossRef] [PubMed]
- Toth, P.P.; Bray, S.; Villa, G.; Palagashvili, T.; Sattar, N.; Stroes, E.S.G.; Worth, G.M. Network Meta-Analysis of Randomized Trials Evaluating the Comparative Efficacy of Lipid-Lowering Therapies Added to Maximally Tolerated Statins for the Reduction of Low-Density Lipoprotein Cholesterol. J. Am. Heart Assoc. 2022, 11, e025551. [Google Scholar] [CrossRef]
- Dijk, W.; Le May, C.; Cariou, B. Beyond LDL: What Role for PCSK9 in Triglyceride-Rich Lipoprotein Metabolism? Trends Endocrinol. Metab. 2018, 29, 420–434. [Google Scholar] [CrossRef]
Alirocumab Users (n = 25) | Evolocumab Users (n = 18) | Inclisiran Users (n = 8) | p-Value | ||
---|---|---|---|---|---|
Age, year, median (Q1–Q3) | 54.0 (44.0–59.0) | 48.0 (38.0–57.0) | 41.0 (33.0–51.0) | 0.12 | |
Male, N (%) | 11 (44.0%) | 10 (55.6%) | 5 (62.5%) | 0.59 | |
BMI, kg/m2, median (Q1–Q3) | 25.8 (23.4–27.7) | 25.5 (22.7–29.7) | 26.8 (24.7–29.6) | 0.70 | |
Previous myocardial infarction, N (%) | 13 (52.0%) | 5 (27.8%) | 3 (37.5%) | 0.27 | |
Previous percutaneous coronary intervention, N (%) | 14 (56.0%) | 8 (44.4%) | 3 (37.5%) | 0.59 | |
Previous coronary artery bypass grafting, N (%) | 6 (24.0%) | 0 (0.0%) | 1 (12.5%) | - | |
Arterial hypertension, N (%) | 12 (48.0%) | 9 (50.0%) | 2 (25.0%) | 0.46 | |
Diabetes mellitus type II, N (%) | 4 (16.0%) | 4 (22.2%) | 1 (12.5%) | 0.80 | |
Atrial fibrillation, N (%) | 1 (4.0%) | 0 (0.0%) | 0 (0.0%) | - | |
Thyroid disorders, N (%) | 4 (16.0%) | 3 (16.7%) | 1 (12.5%) | 0.96 | |
TSH, µIU/mL, median (Q1–Q3) | 1.5 (1.1–2.0) | 1.5 (1.1–2.5) | 1.2 (1.1–1.4) | 0.56 | |
Chronic kidney disease, N (%) | 2 (8.0%) | 0 (0.0%) | 0 (0.0%) | - | |
Pulmonic disease, N (%) | 1 (4.0%) | 0 (0.0%) | 0 (0.0%) | - | |
Previous transient ischemic attack and/or stroke, N (%) | 2 (8.0%) | 3 (16.7%) | 0 (0.0%) | - | |
Ever smoker, N (%) | 10 (40.0%) | 5 (27.8%) | 5 (62.5%) | 0.25 | |
At least mild aortic stenosis in echocardiography N (%) | 1 (4.0%) | 1 (5.6%) | 0 (0.0%) | - | |
Atorvastatin | 3 (12.0%) | 4 (22.2%) | 0 (0.0%) | 0.27 | |
Statins, N (%) | Rosuvastatin | 14 (56.0%) | 11 (61.1%) | 8 (100.0%) | |
Pitavastatin | 1 (4.0%) | 0 (0.0%) | 0 (0.0%) | ||
Intolerance | 7 (28.0%) | 3 (16.7%) | 0 (0.0%) | ||
Lipoprotein (a), g/L, median (Q1–Q3) | 0.5 (0.2–1.4) | 0.8 (0.3–1.0) | 0.2 (0.0–0.4) | 0.09 |
Baseline (N = 51) | 3 Months (N = 51) | p-Value (Baseline vs. 3 Months) | 15 Months (N = 26) | p-Value (Baseline vs. 15 Months) | p-Value (3 Months vs. 15 Months) | |
---|---|---|---|---|---|---|
Total cholesterol, mmol/L | 6.2 (5.4–7.1) | 2.9 (2.6–3.2) | <0.001 | 3.3 (2.5–4.1) | <0.001 | 0.07 |
LDL-C, mmol/L | 4.1 (2.9–5.0) | 1.1 (0.9–1.6) | <0.001 | 1.0 (0.7–1.8) | <0.001 | 0.31 |
HDL-C, mmol/L | 1.3 (1.1–1.5) | 1.3 (1.2–1.5) | 0.51 | 1.5 (1.1–1.7) | 0.59 | 0.90 |
Triglyceride, mmol/L | 1.4 (1.1–2.0) | 1.0 (0.8–1.4) | <0.001 | 1.0 (0.7–1.6) | 0.08 | 0.18 |
Alanine transaminase, U/L | 37.0 (22.0–52.0) | 33.0 (22.0–52.0) | 0.11 | 34.0 (22.0–45.0) | 0.34 | 0.77 |
Creatine kinase, U/L | 97.0 (82.0–197.0) | 104.0 (81.0–152.0) | 0.42 | 141.0 (105.0–195.0) | 0.14 | 0.10 |
Creatinine, µmol/L | 77.2 (63.6–82.3) | 77.1 (65.6–84.5) | 0.95 | 80.9 (67.7–89.7) | 0.63 | 0.68 |
Baseline | 3 Months | p-Value (Baseline vs. 3 Months) | p-Value (Alirocumab vs. Evolocumab vs. Inclisiran) after 3 Months of Therapy | ||
---|---|---|---|---|---|
Reduction in LDL-C level (%) | Alirocumab | - | 73.5 (63.4–81.7) | - | 0.80 |
Evolocumab | - | 69.8 (62.1–78.0) | - | ||
Inclisiran | - | 71.5 (67.4–76.7) | - | ||
Reduction in total cholesterol level (%) | Alirocumab | - | 50.0 (38.8–61.3) | - | 0.84 |
Evolocumab | - | 48.9 (40.9–56.1) | - | ||
Inclisiran | - | 48 (44.3–51.5) | - | ||
Total cholesterol, mmol/L | Alirocumab | 6.5 (5.9–7.7) | 3.1 (2.5–5.0) | <0.001 | 0.83 |
Evolocumab | 6.0 (5.4–7.1) | 2.9 (2.6–3.2) | <0.001 | ||
Inclisiran | 5.7 (5.1–6.7) | 3 (2.6–3.7) | <0.001 | ||
LDL-C, mmol/L | Alirocumab | 4.3 (3.4–5.2) | 1.1 (0.8–1.3) | <0.001 | 0.97 |
Evolocumab | 4.0 (2.9–5.0) | 1.1 (0.9–1.6) | <0.001 | ||
Inclisiran | 3.7 (3.2–4.2) | 1.1 (0.7–1.5) | <0.001 | ||
HDL-C, mmol/L | Alirocumab | 1.3 (1.1–1.5) | 1.3 (1.2–1.6) | 0.65 | 0.66 |
Evolocumab | 1.3 (1.1–1.5) | 1.4 (1.2–1.5) | 0.32 | ||
Inclisiran | 1.2 (1.1–1.7) | 1.2 (1.1–1.5) | 0.73 | ||
Triglyceride, mmol/L | Alirocumab | 1.3 (0.8–2.3) | 0.9 (0.7–1.4) | 0.003 | 0.59 |
Evolocumab | 1.4 (1.1–2.0) | 1.0 (0.7–1.4) | <0.001 | ||
Inclisiran | 1.5 (1.1–2.2) | 1.1 (0.9–1.6) | 0.012 | ||
Alanine transaminase, U/L | Alirocumab | 28.0 (21.0–43.0) | 25.0 (21.0–35.0) | 0.88 | 0.06 |
Evolocumab | 37.0 (22.0–52.0) | 43.0 (30.0–57.0) | 0.07 | ||
Inclisiran | 30.0 (21.0–55.0) | 33.0 (27.0–56.0) | 0.11 | ||
Creatine kinase, U/L | Alirocumab | 108.0 (91.0–157.0) | 107.0 (75.0–164.0) | 0.82 | 0.80 |
Evolocumab | 97.0 (82.0–197.0) | 103.0 (84.0–125.0) | 0.42 | ||
Inclisiran | 106.0 (83.0–190.0) | 91.0 (67.0–152.0) | 0.74 | ||
Creatinine, µmol/L | Alirocumab | 73.0 (65.0–87.4) | 81.3 (65.6–90.7) | 0.39 | 0.57 |
Evolocumab | 77.2 (63.6–82.3) | 72.1 (64.7–82.6) | 0.53 | ||
Inclisiran | 77.7 (59.3–79.7) | 78.5 (71.7–82.4) | 0.89 |
Baseline | 15 Months | p-Value (Baseline vs. 15 Months) | p-Value (Alirocumab vs. Evolocumab) after 15 Months of Therapy | ||
---|---|---|---|---|---|
Reduction in LDL-C level (%) | Alirocumab | - | 85.4 (55.6–86.0) | - | 0.80 |
Evolocumab | - | 56.3 (48.2–71.6) | - | ||
Reduction in total cholesterol level (%) | Alirocumab | - | 54.8 (44.5–64) | - | 0.41 |
Evolocumab | - | 42.7 (23.4–62) | - | ||
Total cholesterol, mmol/L | Alirocumab | 6.5 (5.9–7.7) | 3.2 (2.5–4.7) | <0.001 | 0.68 |
Evolocumab | 6.0 (5.4–7.1) | 3.3 (2.7–4.1) | <0.001 | ||
LDL-C, mmol/L | Alirocumab | 4.3 (3.4–5.2) | 0.9 (0.6–1.8) | <0.001 | 0.54 |
Evolocumab | 4.0 (2.9–5.0) | 1.2 (0.7–2.2) | <0.001 | ||
HDL-C, mmol/L | Alirocumab | 1.3 (1.1–1.5) | 1.4 (1.2–1.6) | 0.842 | 0.80 |
Evolocumab | 1.3 (1.1–1.5) | 1.5 (1.1–1.8) | 0.594 | ||
Triglyceride, mmol/L | Alirocumab | 1.3 (0.8–2.3) | 1.1 (0.7–1.6) | 0.140 | 0.76 |
Evolocumab | 1.4 (1.1–2.0) | 1.0 (0.7–2.1) | 0.248 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajtar-Salwa, R.; Bobrowska, B.; Socha, S.; Dziewierz, A.; Siudak, Z.; Batko, J.; Bartuś, S.; Krawczyk-Ożóg, A. Efficacy of Alirocumab, Evolocumab, and Inclisiran in Patients with Hypercholesterolemia at Increased Cardiovascular Risk. Medicina 2024, 60, 1124. https://doi.org/10.3390/medicina60071124
Rajtar-Salwa R, Bobrowska B, Socha S, Dziewierz A, Siudak Z, Batko J, Bartuś S, Krawczyk-Ożóg A. Efficacy of Alirocumab, Evolocumab, and Inclisiran in Patients with Hypercholesterolemia at Increased Cardiovascular Risk. Medicina. 2024; 60(7):1124. https://doi.org/10.3390/medicina60071124
Chicago/Turabian StyleRajtar-Salwa, Renata, Beata Bobrowska, Sylwia Socha, Artur Dziewierz, Zbigniew Siudak, Jakub Batko, Stanisław Bartuś, and Agata Krawczyk-Ożóg. 2024. "Efficacy of Alirocumab, Evolocumab, and Inclisiran in Patients with Hypercholesterolemia at Increased Cardiovascular Risk" Medicina 60, no. 7: 1124. https://doi.org/10.3390/medicina60071124
APA StyleRajtar-Salwa, R., Bobrowska, B., Socha, S., Dziewierz, A., Siudak, Z., Batko, J., Bartuś, S., & Krawczyk-Ożóg, A. (2024). Efficacy of Alirocumab, Evolocumab, and Inclisiran in Patients with Hypercholesterolemia at Increased Cardiovascular Risk. Medicina, 60(7), 1124. https://doi.org/10.3390/medicina60071124