The Efficacy of Paraprobiotic Lozenges (Lactobacillus helveticus MIMLh5) for the Prevention of Acute and Chronic Nose and Throat Infections in Children
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meegalla, N.; Downs, B.W. Anatomy, Head and Neck, Palatine Tonsil (Faucial Tonsils). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Masieri, S.; Trabattoni, D.; Incorvaia, C.; De Luca, M.C.; Dell’Albani, I.; Leo, G.; Frati, F. A role for Waldeyer’s ring in immunological response to allergens. Curr. Med. Res. Opin. 2014, 30, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.; Paterek, E. Tonsillitis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Gottlieb, M.; Long, B.; Koyfman, A. Clinical Mimics: An Emergency Medicine-Focused Review of Streptococcal Pharyngitis Mimics. J. Emerg. Med. 2018, 54, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Kruger, K.; Topfner, N.; Berner, R.; Windfuhr, J.; Oltrogge, J.H.; Guideline Group. Clinical practice guideline: Sore throat. Dtsch. Arztebl. Int. 2021, 118, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Walijee, H.; Patel, C.; Brahmabhatt, P.; Krishnan, M. Tonsillitis. InnovAiT 2017, 10, 577–584. [Google Scholar] [CrossRef]
- Stelter, K. Tonsillitis and sore throat in children. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 2014, 13, Doc07. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pelucchi, C.; Grigoryan, L.; Galeone, C.; Esposito, S.; Huovinen, P.; Little, P.; Verheij, T. Guideline for the management of acute sore throat: ESCMID Sore Throat Guideline Group. Clin. Microbiol. Infect. 2012, 18, 1–28. [Google Scholar] [CrossRef]
- Kocher, J.J.; Selby, T.D. Antibiotics for sore throat. Am. Fam. Physician 2014, 90, 23–24. [Google Scholar] [PubMed]
- Smieszek, T.; Pouwels, K.B.; Dolk, F.C.K.; Smith, D.R.M.; Hopkins, S.; Sharland, M.; Hay, A.D.; Moore, M.V.; Robotham, J.V. Potential for reducing inappropriate antibiotic prescribing in English primary care. J. Antimicrob. Chemother. 2018, 73, ii36–ii43. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruemmele, F.M.; Bier, D.; Marteau, P.; Rechkemmer, G.; Bourdet-Sicard, R.; Walker, W.A.; Goulet, O. Clinical evidence for immunomodulatory effects of probiotic bacteria. J. Pediatr. Gastroenterol. Nutr. 2009, 48, 126–141. [Google Scholar] [CrossRef] [PubMed]
- Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Francavilla, R. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Front. Immunol. 2021, 12, 578386. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taverniti, V.; Guglielmetti, S. Health-promoting properties of Lactobacillus helveticus. Front. Microbiol. 2012, 3, 35895. [Google Scholar] [CrossRef] [PubMed]
- Fontana, A.; Falasconi, I.; Molinari, P.; Treu, L.; Basile, A.; Vezzi, A.; Campanaro, S.; Morelli, L. Genomic comparison of Lactobacillus helveticus strains highlights probiotic potential. Front. Microbiol. 2019, 10, 449552. [Google Scholar] [CrossRef] [PubMed]
- Toropov, V.; Demyanova, E.; Shalaeva, O.; Sitkin, S.; Vakhitov, T. Whole-genome sequencing of Lactobacillus helveticus D75 and D76 confirms safety and probiotic potential. Microorganisms 2020, 8, 329. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, R.A.; Reale, A.; Mazzeo, M.F.; Morandi, S.; Silvetti, T.; Brasca, M. Paraprobiotics: A New Perspective for Functional Foods and Nutraceuticals. Nutrients 2021, 13, 1225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chambers, L.; Avery, A.; Dalrymple, J.; Farrell, L.; Gibson, G.; Harrington, J.; Rijkers, G.; Rowland, I.; Spiro, A.; Varela-Moreiras, G.; et al. Translating probiotic science into practice. Nutr. Bull. 2019, 44, 165–173. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Taverniti, V.; Guglielmetti, S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: Proposal of paraprobiotic concept). Genes Nutr. 2011, 6, 261–274. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akter, S.; Park, J.H.; Jung, H.K. Potential Health-Promoting Benefits of Paraprobiotics, Inactivated Probiotic Cells. J. Microbiol. Biotechnol. 2020, 30, 477–481. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teame, T.; Wang, A.; Xie, M.; Zhang, Z.; Yang, Y.; Ding, Q.; Gao, C.; Olsen, R.E.; Ran, C.; Zhou, Z. Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Front. Nutr. 2020, 7, 570344. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Warda, A.K.; Rea, K.; Fitzgerald, P.; Hueston, C.; Gonzalez-Tortuero, E.; Dinan, T.G.; Hill, C. Heat-killed lactobacilli alter both microbiota composition and behaviour. Behav. Brain Res. 2019, 362, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Pham-Thi, N.; Kerihuel, J.C.; Durand, H.; Bohbot, S. Efficacy of a synbiotic supplementation in the prevention of common winter diseases in children: A randomized, double-blind, placebo-controlled pilot study. Ther. Adv. Respir. Dis. 2010, 4, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, C.; Cantone, E.; Luperto, P.; Orlando, M.P.; Gnesutta, M.; Begvarfaj, E.; De Vincentiis, M.; Fakron, E.; Masieri, S. Effects of paraprobiotic Mi-HA in the treatment of chronic rhinopharyngitis. Otorinolaringologia 2020, 70, 38–42. [Google Scholar] [CrossRef]
- Aertgeerts, B.; Agoritsas, T.; Siemieniuk, R.A.; Burgers, J.; Bekkering, G.E.; Merglen, A.; van Driel, M.; Vermandere, M.; Bullens, D.; Okwen, P.M.; et al. Corticosteroids for sore throat: A clinical practice guideline. BMJ 2017, 358, j4090. [Google Scholar] [CrossRef]
- Ozen, M.; Kocabas Sandal, G.; Dinleyici, E.C. Probiotics for the prevention of pediatric upper respiratory tract infections: A systematic review. Expert Opin. Biol. Ther. 2014, 15, 9–20. [Google Scholar] [CrossRef] [PubMed]
All Subjects | ||||||
---|---|---|---|---|---|---|
Positive Clinical Findings | Baseline (Past Year) | During the Study | p-Value * | Follow-Ups during the Treatment | ||
1st Month | 2nd Month | 3rd Month | ||||
Nose and Pharynx | 94 (95.9%) | 79 (83.2%) | <0.001 | 58 (59.2%) | 52 (53.1%) | 41 (41.8%) |
Throat and Tonsils | 94 (95.9%) | 54 (54.5%) | <0.001 | 38 (38.8%) | 22 (22.4%) | 25 (25.5%) |
Submandibular Glands | 63 (64.3%) | 47 (47.5%) | 0.005 | 31 (31.6%) | 19 (19.4%) | 21 (21.4%) |
Throat Culture | 55 (56.1%) | 23 (23.2%) | 0.003 | 13 (13.3%) | 6 (6.1%) | 8 (8.2%) |
Antibiotics Prescribed | 98 (100.0%) | 55 (55.6%) | <0.001 | 42 (42.9%) | 26 (26.5%) | 28 (28.6%) |
Corticosteroids Prescribed | 23 (23.5%) | 14 (14.1%) | 0.122 | 11 (11.2%) | 9 (9.2%) | 3 (3.1%) |
Ages 5–10 only | ||||||
Nose and Pharynx | 67 (97.1%) | 61 (88.4%) | 0.07 | 48 (69.6%) | 40 (58.0%) | 35 (50.7%) |
Throat and Tonsils | 65 (94.2%) | 38 (55.1%) | <0.001 | 26 (37.7%) | 19 (27.5%) | 17 (24.6%) |
Submandibular Glands | 49 (71.0%) | 37 (53.6%) | 0.012 | 24 (34.8%) | 17 (24.6%) | 18 (26.1%) |
Throat Culture | 33 (47.8%) | 16 (23.2%) | 0.002 | 10 (14.5%) | 4 (5.8%) | 5 (7.2%) |
Antibiotics Prescribed | 69 (100.0%) | 40 (58.0%) | N/A | 31 (44.9%) | 22 (31.9%) | 18 (26.1%) |
Corticosteroids Prescribed | 19 (27.5%) | 12 (17.4%) | 0.189 | 10 (14.5%) | 7 (10.1%) | 2 (2.9%) |
All Subjects | |||||
---|---|---|---|---|---|
Positive Throat Cultures | Past Year (Before Treatment) | Follow-Ups While on Treatment | p-Value * | ||
1st Month | 2nd Month | 3rd Month | |||
Beta-hemolytic streptococci | 32 (74.4%) | 8 (61.5%) | 3 (50.0%) | 3 (37.5%) | |
Staphylococcus aureus | 7 (16.3%) | 4 (30.8%) | 3 (50.0%) | 5 (62.5%) | |
Haemophilus influenzae | 4 (9.3%) | 1 (7.7%) | 0 (0.0%) | 0 (0.0%) | |
Total | 43 (100%) | 13 (30.2%) | 6 (14.0%) | 8 (18.6%) | <0.001 |
Ages 5–10 | |||||
Beta-hemolytic streptococci | 25 (75.8%) | 7 (70.0%) | 3 (75.0%) | 2 (40.0%) | |
Staphylococcus aureus | 5 (15.2%) | 2 (20.0%) | 1 (25.0%) | 3 (60.0%) | |
Haemophilus influenzae | 3 (9.1%) | 1 (10.0%) | 0 (0.0%) | 0 (0.0%) | |
Total | 33 (47.8%) | 10 (30.3%) | 4 (12.1%) | 5 (15.2%) | <0.001 |
Ages 11–15 | |||||
Beta-hemolytic streptococci | 7 (77.8%) | 1 (33.3%) | 0 (0.0%) | 1 (33.3%) | |
Staphylococcus aureus | 1 (11.1%) | 2 (66.7%) | 2 (100.0%) | 2 (66.7%) | |
Haemophilus influenzae | 1 (11.1%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | |
Total | 9 (47.8%) | 3 (14.5%) | 2 (5.8%) | 3 (7.2%) | <0.001 |
Ages 5–10 (n = 69) | Ages 11–15 (n = 29) | All (n = 98) | p-Value | |
---|---|---|---|---|
Age | ||||
Gender (male) | 34 (49.3%) | 14 (48.3%) | 48 (49.0%) | 0.928 b |
Days missed of school | ||||
M1 | 46 (66.7%) | 16 (55.2%) | 62 (62.6%) | 0.281b |
M2 | 35 (50.7%) | 8 (27.6%) | 43 (43.4%) | 0.035 b |
M3 | 29 (42.0%) | 11 (37.9%) | 40 (40.4%) | 0.706 b |
Fever (yes) | ||||
M1 | 45 (65.2%) | 15 (51.7%) | 60 (60.6%) | 0.211 b |
M2 | 34 (49.3%) | 7 (24.1%) | 41 (41.4%) | 0.021 b |
M3 | 30 (43.5%) | 11 (37.9) | 41 (41.4%) | 0.611 b |
Duration of Fever (days) | ||||
M1 | 3.4 ± 1.5 | 4.4 ± 2.5 | 3.67 ± 1.81 | 0.070 a |
M2 | 3.1 ± 1.2 | 2.4 ± 1.2 | 2.95 ± 1.18 | 0.203 a |
M3 | 3.0 ± 1.6 | 3.2 ± 1.0 | 3.05 ± 1.48 | 0.733 a |
Positive Throat Culture | ||||
In past year | 33 (47.8%) | 9 (31.0%) | 43 (43.4%) | 0.125 b |
During the study | 16 (23.2%) | 7 (24.1%) | 12 (27.9%) | 0.919 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baljošević, I.; Šubarević, V.; Stanković, K.; Bajec Opančina, A.; Novković, M.; Petrovic, M. The Efficacy of Paraprobiotic Lozenges (Lactobacillus helveticus MIMLh5) for the Prevention of Acute and Chronic Nose and Throat Infections in Children. Medicina 2024, 60, 1235. https://doi.org/10.3390/medicina60081235
Baljošević I, Šubarević V, Stanković K, Bajec Opančina A, Novković M, Petrovic M. The Efficacy of Paraprobiotic Lozenges (Lactobacillus helveticus MIMLh5) for the Prevention of Acute and Chronic Nose and Throat Infections in Children. Medicina. 2024; 60(8):1235. https://doi.org/10.3390/medicina60081235
Chicago/Turabian StyleBaljošević, Ivan, Vladan Šubarević, Katarina Stanković, Aleksandra Bajec Opančina, Mladen Novković, and Masa Petrovic. 2024. "The Efficacy of Paraprobiotic Lozenges (Lactobacillus helveticus MIMLh5) for the Prevention of Acute and Chronic Nose and Throat Infections in Children" Medicina 60, no. 8: 1235. https://doi.org/10.3390/medicina60081235
APA StyleBaljošević, I., Šubarević, V., Stanković, K., Bajec Opančina, A., Novković, M., & Petrovic, M. (2024). The Efficacy of Paraprobiotic Lozenges (Lactobacillus helveticus MIMLh5) for the Prevention of Acute and Chronic Nose and Throat Infections in Children. Medicina, 60(8), 1235. https://doi.org/10.3390/medicina60081235