Addressing Challenges in Chlamydia trachomatis Detection: A Comparative Review of Diagnostic Methods
Abstract
:1. Introduction
2. Detection Methods
2.1. Cell Culture Methodology
2.2. Direct Fluorescent Antibody
2.3. Enzyme Immunoassay
2.4. Serology
2.5. Nucleic Acid Hybridization
2.6. Nucleic Acid Amplification Test
NAAT | Target Sequence | Infections Detected | Sample Type | Sensitivity | Limitations | Control | Method |
---|---|---|---|---|---|---|---|
Becton Dickinson MAX CT/NG/TV (Franklin Lakes, NJ, USA) [54,55] | 2 CT and 2 NG gene targets; 1 TV gene target | CT NG TV | Vaginal, endocervical, and gynecological swab; female urine specimens | >98.7% | Less sensitivity using urine samples; co-infection might impact test performance | Sample processing control | Real-Time PCR |
Alinity m STI Assay (Abbott Molecular, Inc.; Des Plaines, IL, USA) [56] | CT rRNA; NG gDNA; rRNA TV; rRNA MG | CT NG TV MG | Vaginal, endocervical swabs; male urine | 100% | False-negative test could occur for MG, when the sample is an endocervical swab | Exogenous internal and cellular controls; positive and negative control | Real-Time PCR |
Abbott RealTime CT/NG (Abbott Molecular Inc.; Des Plaines, IL, USA) [57] | CT plasmid DNA; NG gDNA | CT NG | Vaginal swab; urine specimens | 95.2–97.5% | Endocervical and female urine specimens are associated with lower sensitivity | Internal control; negative control; cutoff control | Real-Time PCR |
COBAS CT/NG (Roche Molecular Systems, Inc.; Rotkreuz, Switzerland) [58,59,60] | CT DNA (cryptic plasmid plus ompA); 2 sequences in DR9 region of NG DNA | CT/NG | Urine, pharyngeal, rectal, endocervical, and vaginal samples | 95.6–100% | Relatively low oropharyngeal loads of NG could not be detected | Internal control; AmpErase enzyme—contamination control | Real-Time PCR |
APTIMA Combo 2 Assay (Hologic Gen-Probe, Inc.; Marlborough, MA, USA) [61] | CT 23S rRNA and NG 16S rRNA | CT/NG | Endocervical, vaginal, throat, rectal, and male urethral swab; urine specimens | 94.2–99.2% | Still requires a laboratory-based platform (Panther System) | Positive and negative control for CT/NG | Transcription-Mediated Amplification |
BD ProbeTec ET CT/NG Amplified DNA Assays (Becton Dickinson; Franklin Lakes, NJ, USA) [62] | CT cryptic plasmid DNA and NG pilin gene DNA sequence | CT/NG | Endocervical and urine specimens | 90.7–96% | Only allow genital infection diagnosis | Amplification control | Strand Displacement Amplification |
Xpert CT/NG (Cepheid; Sunnyvale, CA, USA) [63] | CT DNA and 2 targets of NG DNA | CT/NG | Vaginal, endocervical, oropharyngeal, and rectal swabs; urine samples | 95.6–100% | It is not currently a CLIA-waived test (it must be performed in specific laboratories used to moderate- or high-complexity testing) | Sample processing control, sample adequacy control, and probe check control | Real-Time PCR |
2.7. Near-Patient Testing
2.8. Next Step after Testing Positive for Chlamydia trachomatis
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishori, R.; McClaskey, E.L.; WinklerPrins, V.J. Chlamydia trachomatis infections: Screening, diagnosis, and management. Am. Fam. Physician 2012, 86, 1127–1132. [Google Scholar] [PubMed]
- Satpathy, G.; Behera, H.S.; Ahmed, N.H. Chlamydial eye infections: Current perspectives. Indian J. Ophthalmol. 2017, 65, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Mohseni, M.; Sung, S.; Takov, V. Chlamydia; StatPearls Publishing: St. Petersburg, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537286/ (accessed on 1 July 2024).
- Gallenga, C.E.; Maritati, M.; Del Boccio, M.; D’Aloisio, R.; Conti, P.; Mura, M.; Contini, C.; Gallenga, P.E. Why the SAFE—S Strategy for Trachoma? Are Musca sorbens or Scatophaga stercoraria Really the Culprit?—A Brief Historical Review from an Italian Point of View. Pathogens 2023, 12, 1419. [Google Scholar]
- Rodrigues, R.; Vieira-Baptista, P.; Catalão, C.; Borrego, M.J.; Sousa, C.; Vale, N. Chlamydial and Gonococcal Genital Infections: A Narrative Review. J. Pers. Med. 2023, 13, 1170. [Google Scholar] [CrossRef] [PubMed]
- Ginieri-Coccossis, M.; Triantafillou, E.; Papanikolaou, N.; Baker, R.; Antoniou, C.; Skevington, S.M.; Christodoulou, G.N. Quality of life and depression in chronic sexually transmitted infections in UK and Greece: The use of WHOQOL-HIV/STI BREF. Psychiatriki 2018, 29, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Witkin, S.S.; Minis, E.; Athanasiou, A.; Leizer, J.; Linhares, I.M. Chlamydia trachomatis: The Persistent Pathogen. Clin. Vaccine Immunol. 2017, 24, e00203-17. [Google Scholar] [CrossRef] [PubMed]
- Dukers-Muijrers, N.H.T.M.; Evers, Y.J.; Hoebe, C.J.P.A.; Wolffs, P.F.G.; de Vries, H.J.C.; Hoenderboom, B.; van der Sande, M.A.B.; Heijne, J.; Klausner, J.D.; Hocking, J.S.; et al. Controversies and evidence on Chlamydia testing and treatment in asymptomatic women and men who have sex with men: A narrative review. BMC Infect. Dis. 2022, 22, 255. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, C.M.; Ferone, M.E. Chlamydia trachomatis genital infections. Microb. Cell 2016, 3, 390. [Google Scholar] [CrossRef] [PubMed]
- Stamm, W.E. Chlamydia trachomatis infections of the adult. In Sexually Transmitted Diseases, 4th ed.; Holmes, K., Ed.; McGraw-Hill: New York, NY, USA, 2008; pp. 575–606. [Google Scholar]
- Páez-Canro, C.; Alzate, J.P.; González, L.M.; Rubio-Romero, J.A.; Lethaby, A.; Gaitán, H.G. Antibiotics for treating urogenital Chlamydia trachomatis infection in men and non-pregnant women. Cochrane Database Syst. Rev. 2019, 1, CD010871. [Google Scholar] [CrossRef]
- Gideon, C.; Ynez, S.; Clare, S.; Cynthia, G.; Heather, A. Three-site screening for STIs in men who have sex with men using online self-testing in an English sexual health service. Sex. Transm. Infect. 2023, 99, 195. [Google Scholar] [CrossRef]
- Genevieve, A.F.S.v.L.; Christian, J.P.A.H.; Jeanne, A.M.C.D.; Petra, F.G.W.; Nicole, H.T.M.D.-M. Spontaneous clearance of urogenital, anorectal and oropharyngeal Chlamydia trachomatis and Neisseria gonorrhoeae in women, MSM and heterosexual men visiting the STI clinic: A prospective cohort study. Sex. Transm. Infect. 2019, 95, 505. [Google Scholar] [CrossRef]
- Nicole, H.T.M.D.-M.; Kevin, J.H.J.; Christian, J.P.A.H.; Hannelore, M.G.; Maarten, F.S.v.d.L.; Henry, J.C.d.V.; Sylvia, M.B.; Petra, F.G.W. Spontaneous clearance of Chlamydia trachomatis accounting for bacterial viability in vaginally or rectally infected women (FemCure). Sex. Transm. Infect. 2020, 96, 541. [Google Scholar] [CrossRef]
- Nicole, H.T.M.D.-M.; Petra, W.; Mayk, L.; Hannelore, M.G.; De Vries, H.; van der Loeff, M.S.; Sylvia, M.B.; Christian, J.P.A.H. Oropharyngeal Chlamydia trachomatis in women spontaneous clearance and cure after treatment (FemCure). Sex. Transm. Infect. 2021, 97, 147. [Google Scholar] [CrossRef]
- van Bergen, J.E.; Hoenderboom, B.M.; David, S.; Deug, F.; Heijne, J.C.; van Aar, F.; Hoebe, C.J.; Bos, H.; Dukers-Muijrers, N.H.; Götz, H.M. Where to go to in chlamydia control? From infection control towards infectious disease control. Sex. Transm. Infect. 2021, 97, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Brunham, R.C.; Rappuoli, R. Chlamydia trachomatis control requires a vaccine. Vaccine 2013, 31, 1892–1897. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.; Marques, L.; Vieira-Baptista, P.; Sousa, C.; Vale, N. Therapeutic Options for Chlamydia trachomatis Infection: Present and Future. Antibiotics 2022, 11, 1634. [Google Scholar] [CrossRef] [PubMed]
- Abdulabbas, H.T.; Mohammad Ali, A.N.; Farjadfar, A.; Arabfard, M.; Najafipour, S.; Kouhpayeh, A.; Ghasemian, A.; Behmard, E. Design of a novel multi-epitope vaccine candidate against Chlamydia trachomatis using structural and nonstructural proteins: An immunoinformatics study. J. Biomol. Struct. Dyn. 2023, 42, 4356–4369. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S.; Juel, H.B.; Bang, P.; Cheeseman, H.M.; Dohn, R.B.; Cole, T.; Kristiansen, M.P.; Korsholm, K.S.; Lewis, D.; Olsen, A.W.; et al. Safety and immunogenicity of the chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: A first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect. Dis. 2019, 19, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Lesiak-Markowicz, I.; Schötta, A.M.; Stockinger, H.; Stanek, G.; Markowicz, M. Chlamydia trachomatis serovars in urogenital and ocular samples collected 2014–2017 from Austrian patients. Sci. Rep. 2019, 9, 18327. [Google Scholar] [CrossRef] [PubMed]
- Morré, S.A.; Rozendaal, L.; Valkengoed, I.G.M.v.; Boeke, A.J.P.; Vader, P.C.v.V.; Schirm, J.; Blok, S.d.; Hoek, J.A.R.v.d.; Doornum, G.J.J.v.; Meijer, C.J.L.M.; et al. Urogenital Chlamydia trachomatis Serovars in Men and Women with a Symptomatic or Asymptomatic Infection: An Association with Clinical Manifestations? J. Clin. Microbiol. 2000, 38, 2292–2296. [Google Scholar] [CrossRef] [PubMed]
- Meyer, T. Diagnostic Procedures to Detect Chlamydia trachomatis Infections. Microorganisms 2016, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Worboys, M. Wellcome. Chlamydia: A Disease without a History. In The Hidden Affliction: Sexually Transmitted Infections and Infertility in History; Szreter, S., Ed.; University of Rochester Press: Rochester, NY, USA, 2019. [Google Scholar]
- Elçin Yenidünya, K. Molecular Approaches to the Diagnosis of Chlamydia. In Chlamydia; Mehmet, S., Ed.; IntechOpen: London, UK, 2023; p. 4. [Google Scholar]
- Taylor-Robinson, D.; Thomas, B.J. Laboratory techniques for the diagnosis of chlamydial infections. Genitourin. Med. 1991, 67, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Kamel, R.M. Screening for Chlamydia trachomatis infection among infertile women in Saudi Arabia. Int. J. Womens Health 2013, 5, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Guo, Y.; Jiang, Y.; Liu, Y.; Wang, M.; You, C.; Liu, Q. Sensitivity of the Standard Chlamydia trachomatis Culture Method Is Improved After One Additional In Vitro Passage. J. Clin. Lab. Anal. 2016, 30, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.T.; Taylor-Robinson, D. Detection of Chlamydia trachomatis in rapidly produced McCoy cell monolayers. J. Clin. Pathol. 1980, 33, 591–594. [Google Scholar] [CrossRef]
- Papp, J.R.; Schachter, J.; Gaydos, C.A.; Van Der Pol, B. Recommendations for the Laboratory-Based Detection of Chlamydia trachomatis and Neisseria gonorrhoeae; Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services: Atlanta, GA, USA, 2014. Available online: https://www.cdc.gov/mmwr/pdf/rr/rr6302.pdf (accessed on 1 May 2024).
- Kiselev, A.; Stamm, W.; Yates, J.; Lampe, M. Expression, Processing, and Localization of PmpD of Chlamydia trachomatis Serovar L2 during the Chlamydial Developmental Cycle. PLoS ONE 2007, 2, e568. [Google Scholar] [CrossRef] [PubMed]
- Nishiwaki-Dantas, M.C.; de Abreu, M.T.; de Melo, C.M.; Romero, I.L.; Neto, R.B.M.; Dantas, P.E.C. Direct fluorescent antibody assay and polymerase chain reaction for the detection of Chlamydia trachomatis in patients with vernal keratoconjunctivitis. Clinics 2011, 66, 2013–2018. [Google Scholar] [CrossRef] [PubMed]
- Chernesky, M.A. The laboratory diagnosis of Chlamydia trachomatis infections. Can. J. Infect. Dis. Med. Microbiol. 2005, 16, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Tam, M.R.; Stamm, W.E.; Handsfield, H.H.; Stephens, R.; Kuo, C.-C.; Holmes, K.K.; Ditzenberger, K.; Krieger, M.; Nowinski, R.C. Culture-Independent Diagnosis of Chlamydia trachomatis Using Monoclonal Antibodies. N. Engl. J. Med. 1984, 310, 1146–1150. [Google Scholar] [CrossRef] [PubMed]
- Unemo, M.; Papp, J.R. 3—Infections Caused by Chlamydia Trachomatis. In Atlas of Sexually Transmitted Diseases and AIDS, 4th ed.; Morse, S.A., Ballard, R.C., Holmes, K.K., Moreland, A.A., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2010; pp. 40–63. [Google Scholar]
- Schepetiuk, S.; Kok, T.; Martin, L.; Waddell, R.; Higgins, G. Detection of Chlamydia trachomatis in urine samples by nucleic acid tests: Comparison with culture and enzyme immunoassay of genital swab specimens. J. Clin. Microbiol. 1997, 35, 3355–3357. [Google Scholar] [CrossRef] [PubMed]
- Sachse, K.; Grossmann, E.; Jäger, C.; Diller, R.; Hotzel, H. Detection of Chlamydia suis from clinical specimens: Comparison of PCR, antigen ELISA, and culture. J. Microbiol. Methods 2003, 54, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Robinson, D.; Thomas, B.J.; Osborn, M.F. Evaluation of enzyme immunoassay (Chlamydiazyme) for detecting Chlamydia trachomatis in genital tract specimens. J. Clin. Pathol. 1987, 40, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Hammerschlag, M.R.; Rettig, P.J.; Shields, M.E. False positive results with the use of chlamydial antigen detection tests in the evaluation of suspected sexual abuse in children. Pediatr. Infect. Dis. J. 1988, 7, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Saikku, P.; Puolakkainen, M.; Leinonen, M.; Nurminen, M.; Nissinen, A.; Howard, L.V.; Coleman, P.F. Cross-Reactivity between Chlamydiazyme and Acinetobacter Strains. N. Engl. J. Med. 1986, 314, 922–923. [Google Scholar] [CrossRef] [PubMed]
- MicroTrak® II Chlamydia EIA—Trinity Biotech PLC. MicroTrak. Available online: https://www.yumpu.com/en/document/view/12496962/microtrakr-iichlamydia-eia-trinity-biotech-plc (accessed on 1 May 2024).
- Becker, Y. Chlamydia Medical Microbiology, 4th ed.; Chapter 39; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996. Available online: https://www.ncbi.nlm.nih.gov/books/NBK8091/ (accessed on 1 May 2024).
- Rawla, P.T.K.; Limaiem, F. Lymphogranuloma Venereum; StatPearls: St. Petersburg, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537362/ (accessed on 1 May 2024).
- João, M.; Ana Cláudia, C.; Maria dos Anjos, P. Psittacosis. In Insights from Veterinary Medicine; Rita, P.-C., Ed.; IntechOpen: London, UK, 2013; Ch. 5. [Google Scholar]
- Rice, C.E. The Use of Complement-Fixation Tests in the Study and Diagnosis of Viral Diseases in Man and Animals—A Review: Part VII. The Psittacosis-Lymphogranuloma Venereum Group. Can. J. Comp. Med. Vet. Sci. 1961, 25, 74–79. [Google Scholar] [PubMed]
- Molano, M.; Tabrizi, S.N.; Phillips, S.; Danielewski, J.; Cornall, A.; Morre, S.A.; Garland, S.M. Development of a rapid colorimetric multiplex PCR–reverse line blot for the detection and typing of 14 Chlamydia trachomatis genovars. J. Med. Microbiol. 2018, 67, 1560–1570. [Google Scholar] [CrossRef] [PubMed]
- Hybrid Capture II CT/GC Test. Available online: https://www.qiagen.com/us/products/diagnostics-and-clinical-research/sexual-reproductive-health/sti-testing/digene-hc2-ctgc-dna-test (accessed on 1 May 2024).
- Sarier, M.; Sepin, N.; Duman, I.; Demir, M.; Hizel, A.; Göktaş, Ş.; Emek, M.; Kukul, E.; Soylu, A. Microscopy of Gram-stained urethral smear in the diagnosis of urethritis: Which threshold value should be selected? Andrologia 2018, 50, e13143. [Google Scholar] [CrossRef] [PubMed]
- Sarıer, M.; Duman, I.; Göktaş, Ş.; Demir, M.; Kukul, E. Results of multiplex polymerase chain reaction assay to ıdentify urethritis pathogens. J. Urol. Surg. 2017, 4, 18–22. [Google Scholar] [CrossRef]
- Wernecke, M.; Mullen, C. Molecular Biology|Molecular Biology in Microbiological Analysis. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 808–814. [Google Scholar]
- Shetty, S.; Kouskouti, C.; Schoen, U.; Evangelatos, N.; Vishwanath, S.; Satyamoorthy, K.; Kainer, F.; Brand, A. Diagnosis of Chlamydia trachomatis genital infections in the era of genomic medicine. Braz. J. Microbiol. 2021, 52, 1327–1339. [Google Scholar] [CrossRef] [PubMed]
- Janssen, K.J.H.; Dirks, J.A.M.C.; Dukers-Muijrers, N.H.T.M.; Hoebe, C.J.P.A.; Wolffs, P.F.G. Review of Chlamydia trachomatis viability methods: Assessing the clinical diagnostic impact of NAAT positive results. Expert Rev. Mol. Diagn. 2018, 18, 739–747. [Google Scholar] [CrossRef] [PubMed]
- The Labs Crucial Role in CT/NG Screening and Detection. Available online: https://diagnostics.roche.com/content/dam/diagnostics/us/en/resource-center/CT-NG-white-paper.pdf (accessed on 1 May 2024).
- CTGCTV2 for BD MAX™ System. Available online: http://static.bd.com/documents/eifu/ZMG_P0237_EN_C_03.pdf (accessed on 1 May 2024).
- Van Der Pol, B.; Torres-Chavolla, E.; Kodsi, S.; Cooper, C.K.; Davis, T.E.; Fife, K.H.; Taylor, S.N.; Augenbraun, M.H.; Gaydos, C.A. Clinical Performance of the BD CTGCTV2 Assay for the BD MAX System for Detection of Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis Infections. Sex. Transm. Dis. 2021, 48, 134–140. [Google Scholar] [CrossRef] [PubMed]
- ALINITY m STI ASSAY. Available online: https://www.molecular.abbott/int/en/products/infectious-disease/alinity-m-sti-assay (accessed on 1 May 2024).
- Abbott Real Time CT/NG. Available online: https://www.molecular.abbott/content/dam/add/molecular/products/pdf-/ctng-8l07-91-us-final.pdf (accessed on 1 May 2024).
- Van Der Pol, B.; Fife, K.; Taylor Stephanie, N.; Nye Melinda, B.; Chavoustie Steven, E.; Eisenberg David, L.; Crane, L.; Hirsch, G.; Arcenas, R.; Marlowe Elizabeth, M. Evaluation of the Performance of the Cobas CT/NG Test for Use on the Cobas 6800/8800 Systems for Detection of Chlamydia trachomatis and Neisseria gonorrhoeae in Male and Female Urogenital Samples. J. Clin. Microbiol. 2019, 57. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cai, Y.-M.; Li, S.-L.; Cao, N.-X.; Zhu, X.-F.; Wang, F.; Han, Y.; Yin, Y.-P.; Chen, X.-S. Anatomical site prevalence and genotypes of Chlamydia trachomatis infections among men who have sex with men: A multi-site study in China. BMC Infect. Dis. 2019, 19, 1041. [Google Scholar] [CrossRef] [PubMed]
- cobas® CT/NG. Available online: https://diagnostics.roche.com/global/en/products/params/cobas-ct-ng.html (accessed on 1 May 2024).
- FDA Alinity m STI Assay. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf20/K202977.pdf (accessed on 1 May 2024).
- BD ProbeTec ET CT/NG Amplified DNA Assays. Available online: https://www.fda.gov/media/77337/download (accessed on 1 May 2024).
- Xpert CT/NG. Available online: https://www.cepheid.com/content/dam/www-cepheid-com/documents/package-insert-files/Xpert-CTNG-US-ENGLISH-Package-Insert-301-0234--Rev-K.pdf (accessed on 1 May 2024).
- Screening of Chlamydia—CDC Recommendation; CDC. Available online: https://www.cdc.gov/std/chlamydia/stdfact-chlamydia-detailed.htm#:~:text=Screening%20programs%20can%20reduce%20rates%20of%20adverse%20sequelae%20in%20women.&text=CDC%20recommends%20yearly%20chlamydia%20screening,has%20a%20sexually%20transmitted%20infection (accessed on 1 May 2024).
- Peng, L.; Chen, J.L.; Wang, D. Progress and Perspectives in Point of Care Testing for Urogenital Chlamydia trachomatis Infection: A Review. Med. Sci. Monit. 2020, 26, e920873. [Google Scholar] [CrossRef] [PubMed]
- Natoli, L.; Guy, R.J.; Shephard, M.; Causer, L.; Badman, S.G.; Hengel, B.; Tangey, A.; Ward, J.; Coburn, T.; Anderson, D.; et al. “I Do Feel Like a Scientist at Times”: A Qualitative Study of the Acceptability of Molecular Point-Of-Care Testing for Chlamydia and Gonorrhoea to Primary Care Professionals in a Remote High STI Burden Setting. PLoS ONE 2015, 10, e0145993. [Google Scholar] [CrossRef] [PubMed]
- Causer, L.M.; Hengel, B.; Natoli, L.; Tangey, A.; Badman, S.G.; Tabrizi, S.N.; Whiley, D.; Ward, J.; Kaldor, J.M.; Guy, R.J. A field evaluation of a new molecular-based point-of-care test for chlamydia and gonorrhoea in remote Aboriginal health services in Australia. Sex. Health 2015, 12, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.R.; Bristow, C.C.; Wierzbicki, M.R.; Sarno, M.; Asbel, L.; French, A.; Gaydos, C.A.; Hazan, L.; Mena, L.; Madhivanan, P.; et al. Performance of a single-use, rapid, point-of-care PCR device for the detection of Neisseria gonorrhoeae, Chlamydia trachomatis, and Trichomonas vaginalis: A cross-sectional study. Lancet Infect. Dis. 2021, 21, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Adamson, P.C.; Klausner, J.D. Diagnostic Tests for Detecting Chlamydia trachomatis and Neisseria gonorrhoeae in Rectal and Pharyngeal Specimens. J. Clin. Microbiol. 2022, 60, e0021121. [Google Scholar] [CrossRef] [PubMed]
- Clinical Laboratory Improvement Amendments (CLIA); FDA. Available online: https://www.fda.gov/medical-devices/ivd-regulatory-assistance/clinical-laboratory-improvement-amendments-clia (accessed on 1 May 2024).
- Van Der Pol, B.; Gaydos, C.A. A profile of the binx health io® molecular point-of-care test for chlamydia and gonorrhea in women and men. Expert Rev. Mol. Diagn. 2021, 21, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Visby Medical™ CT and NG Detection. Available online: https://www.visbymedical.com/news/visby-medical-receives-fda-clearance-and-clia-waiver-for-second-generation-sexual-health-test-for-women/#:~:text=%E2%80%A2%20Press%20Release-,Visby%20Medical%E2%84%A2%20Receives%20FDA%20Clearance%20and%20CLIA%20Waiver%20for,San%20Jose%2C%20Calif (accessed on 1 May 2024).
- Dawkins, M.; Bishop, L.; Walker, P.; Otmaskin, D.; Ying, J.; Schmidt, R.; Harnett, G.; Abraham, T.; Gaydos, C.A.; Schoolnik, G.; et al. Clinical Integration of a Highly Accurate Polymerase Chain Reaction Point-of-Care Test Can Inform Immediate Treatment Decisions for Chlamydia, Gonorrhea, and Trichomonas. Sex. Transm. Dis. 2022, 49, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Gift, T.L.; Pate, M.S.; Hook, E.W., III; Kassler, W.J. The Rapid Test Paradox: When Fewer Cases Detected Lead to More Cases Treated: A Decision Analysis of Tests for: Chlamydia trachomatis. Sex. Transm. Dis. 1999, 26, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Gaydos, C.A.; Barnes, M.R.; Jett-Goheen, M.; Blake, D.R. Comparative effectiveness of a rapid point-of-care test for detection of Chlamydia trachomatis among women in a clinical setting. Sex. Transm. Infect. 2013, 89, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Turner, K.M.; Round, J.; Horner, P.; Macleod, J.; Goldenberg, S.; Deol, A.; Adams, E.J. An early evaluation of clinical and economic costs and benefits of implementing point of care NAAT tests for Chlamydia trachomatis and Neisseria gonorrhoea in genitourinary medicine clinics in England. Sex. Transm. Infect. 2014, 90, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.; Sousa, C.; Vale, N. Chlamydia trachomatis as a Current Health Problem: Challenges and Opportunities. Diagnostics 2022, 12, 1795. [Google Scholar] [CrossRef]
- CDC. STI Treatment Guidelines; Division of STD Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention: 2021. Available online: https://www.cdc.gov/std/treatment-guidelines/chlamydia.htm (accessed on 1 May 2024).
- Van Ommen, C.E.; Malleson, S.; Grennan, T. A practical approach to the diagnosis and management of chlamydia and gonorrhea. CMAJ 2023, 195, E844–E849. [Google Scholar] [CrossRef] [PubMed]
- WHO Implementing the Global Health Sector Strategies on HIV, Viral Hepatitis and Sexually Transmitted Infections, 2022–2030. Available online: https://iris.who.int/bitstream/handle/10665/376814/9789240094925-eng.pdf (accessed on 1 May 2024).
- Garcia-Teillard, D.; García-Delpech, S.; Udaondo, P. Trachoma and the Importance of Sexual Infective Route in Developed Countries. Comment on Gallenga et al. Why the SAFE-S Strategy for Trachoma? Are Musca sorbens or Scatophaga stercoraria Really the Culprit?—A Brief Historical Review from an Italian Point of View. Pathogens 2023, 12, 1419. Pathogens 2024, 13, 413. [Google Scholar]
- Maritati, M.; Contini, C.; Del Boccio, M.; D’Aloisio, R.; Conti, P.; Mura, M.; Gallenga, P.E.; Gallenga, C.E. About Chlamydia trachomatis. Reply to Garcia-Teillard et al. Trachoma and the Importance of Sexual Infective Route in Developed Countries. Comment on “Gallenga et al. Why the SAFE-S Strategy for Trachoma? Are Musca sorbens or Scatophaga stercoraria Really the Culprit?-A Brief Historical Review from an Italian Point of View. Pathogens 2023, 12, 1419”. Pathogens 2024, 13, 414. [Google Scholar]
- Rönn, M.M.; Mc Grath-Lone, L.; Davies, B.; Wilson, J.D.; Ward, H. Evaluation of the performance of nucleic acid amplification tests (NAATs) in detection of chlamydia and gonorrhoea infection in vaginal specimens relative to patient infection status: A systematic review. BMJ Open 2019, 9, e022510. [Google Scholar] [CrossRef] [PubMed]
- Mayaud, P.; Mabey, D. Approaches to the control of sexually transmitted infections in developing countries: Old problems and modern challenges. Sex. Transm. Infect. 2004, 80, 174. [Google Scholar] [CrossRef] [PubMed]
- US Preventive Services Task Force. Screening for Chlamydia and Gonorrhea: US Preventive Services Task Force Recommendation Statement. JAMA 2021, 326, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Hocking, J.S.; Geisler, W.M.; Kong, F.Y.S. Update on the Epidemiology, Screening, and Management of Chlamydia trachomatis Infection. Infect. Dis. Clin. N. Am. 2023, 37, 267–288. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.C.W.; Lau, S.T.H.; Choi, E.P.H.; Tucker, J.D.; Fairley, C.K.; Saunders, J.M. A Systematic Literature Review of Reviews on the Effectiveness of Chlamydia Testing. Epidemiol. Rev. 2019, 41, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Francisco Vaz, P.; João Borges da, C. Chlamydia Trachomatis Genital Infections among Portuguese Adolescents. J. Port. Soc. Dermatol. Venereol. 2020, 78, 237–243. [Google Scholar] [CrossRef]
- Jardim Santos, C.; Gomes, B.; Ribeiro, A.I. Mapping Geographical Patterns and High Rate Areas for Sexually Transmitted Infections in Portugal: A Retrospective Study Based on the National Epidemiological Surveillance System. Sex. Transm. Dis. 2020, 47, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Pinho-Bandeira, T.; Cabral Veríssimo, V.; Sá Machado, R. The epidemiology of chlamydia, gonorrhoea and syphilis in Portugal: Where do we go from now? Eur. J. Public Health 2020, 30 (Suppl. S5), ckaa165.538. [Google Scholar] [CrossRef]
- Haag, M.; Zemp, E.; Hersberger, K.E.; Arnet, I. Who Is Best to Test? A Systematic Review of Chlamydia Infections in Switzerland. Int. J. Environ. Res. Public Health 2020, 17, 9389. [Google Scholar] [CrossRef] [PubMed]
- Gumashta, R.; Gumashta, J. Need based resource utilization: The key to successful syndromic management of sexually transmitted diseases in developing countries. Prog. Health Sci. 2013, 3, 94–99. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, R.; Silva, A.R.; Sousa, C.; Vale, N. Addressing Challenges in Chlamydia trachomatis Detection: A Comparative Review of Diagnostic Methods. Medicina 2024, 60, 1236. https://doi.org/10.3390/medicina60081236
Rodrigues R, Silva AR, Sousa C, Vale N. Addressing Challenges in Chlamydia trachomatis Detection: A Comparative Review of Diagnostic Methods. Medicina. 2024; 60(8):1236. https://doi.org/10.3390/medicina60081236
Chicago/Turabian StyleRodrigues, Rafaela, Ana Rita Silva, Carlos Sousa, and Nuno Vale. 2024. "Addressing Challenges in Chlamydia trachomatis Detection: A Comparative Review of Diagnostic Methods" Medicina 60, no. 8: 1236. https://doi.org/10.3390/medicina60081236
APA StyleRodrigues, R., Silva, A. R., Sousa, C., & Vale, N. (2024). Addressing Challenges in Chlamydia trachomatis Detection: A Comparative Review of Diagnostic Methods. Medicina, 60(8), 1236. https://doi.org/10.3390/medicina60081236