Can We Improve Mortality Prediction in Patients with Sepsis in the Emergency Department?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population Inclusion Criteria
2.3. Data Collection
2.4. Sample Collection and Biomarker Assays
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APACHE II | Acute Physiology and Chronic Health Evaluation II |
AUC | Area Under the Curve |
AZU1 | Azurocidin 1 |
CCI | Charlson Comorbidity Index |
CI | Confidence Interval |
ED | Emergency Department |
GCS | Glasgow Coma Scale |
hsCRP | High-sensitivity C-reactive protein |
ICU | Intensive Care Unit |
IL-6 | Interleukin-6 |
IQR | Inter-quartile range |
MEDS | Mortality in Emergency Department Sepsis |
NEWS | National Early Warning Score |
PCT | Procalcitonin |
qSOFA | Quick Sequential Organ Failure Assessment |
SAPS II and III | Simplified Acute Physiology Score II and III |
Se | Sensitivity |
SIRS | Systemic Inflammatory Response Syndrome |
SOFA | Sequential Organ Failure Assessment |
Sp | Specificity |
sTREM-1 | Soluble Triggering Receptor Expressed on Myeloid Cells-1 |
suPAR | Soluble urokinase plasminogen activator |
References
- Van den Berg, M.; van Beuningen, F.E.; Ter Maaten, J.C.; Bouma, H.R. Hospital-Related costs of sepsis around the world: A systematic review exploring the economic burden of sepsis. J. Crit. Care 2022, 71, 154096. [Google Scholar] [CrossRef] [PubMed]
- Cecconi, M.; Evans, L.; Levy, M.; Rhodes, A. Sepsis and septic shock. Lancet 2018, 392, 75–87. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Jedynak, M.; Siemiatkowski, A.; Mroczko, B.; Groblewska, M.; Milewski, R.; Szmitkowski, M. Soluble TREM-1 Serum Level can Early Predict Mortality of Patients with Sepsis, Severe Sepsis and Septic Shock. Arch. Immunol. Ther. Exp. 2018, 66, 299–306. [Google Scholar] [CrossRef]
- Kim, M.H.; Choi, J.H. An Update on Sepsis Biomarkers. Infect. Chemother. 2020, 52, 1–18. [Google Scholar] [CrossRef]
- Larsen, F.F.; Petersen, J.A. Novel biomarkers for sepsis: A narrative review. Eur. J. Intern. Med. 2017, 45, 46–50. [Google Scholar] [CrossRef]
- Oduncu, A.F.; Kıyan, G.S.; Yalçınlı, S. Comparison of qSOFA, SIRS, and NEWS scoring systems for diagnosis, mortality, and morbidity of sepsis in emergency department. Am. J. Emerg. Med. 2021, 48, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Ling, H.; Chen, M.; Dai, J.; Zhong, H.; Chen, R.; Shi, F. Evaluation of qSOFA combined with inflammatory mediators for diagnosing sepsis and predicting mortality among emergency department. Clin. Chim. Acta 2023, 544, 117352. [Google Scholar] [CrossRef] [PubMed]
- Casalboni, S.; Valli, G.; Terlizzi, F.; Mastracchi, M.; Fidelio, G.; De Marco, F. 30 Days Mortality Prognostic Value of POCT Bio-Adrenomedullin and Proenkephalin in Patients with Sepsis in the Emergency Department. Medicina 2022, 58, 1786. [Google Scholar] [CrossRef] [PubMed]
- Mourya, V.; Gupta, R.; Yadav, A.; Yadav, R. Lactate/Albumin ratio as prognostic tool for risk stratification in septic patients admitted to ICU. Crit. Care Innov. 2023, 6, 11–12. [Google Scholar] [CrossRef]
- Baldirà, J.; Ruiz-Rodríguez, J.C.; Ruiz-Sanmartin, A.; Chiscano, L.; Cortes, A.; Sistac, D.Á. Use of Biomarkers to Improve 28-Day Mortality Stratification in Patients with Sepsis and SOFA ≤ 6. Biomedicines 2023, 11, 2149. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, X.; Zhou, G.; Gao, S.; Pan, W.; Chen, J. SOFA in sepsis: With or without GCS. Eur. J. Med. Res. 2024, 29, 296. [Google Scholar] [CrossRef] [PubMed]
- Rahmatinejad, Z.; Tohidinezhad, F.; Reihani, H.; Rahmatinejad, F.; Pourmand, A.; Abu-Hanna, A. Prognostic utilization of models based on the APACHE II, APACHE IV, and SAPS II scores for predicting in-hospital mortality in emergency department. Am. J. Emerg. Med. 2020, 38, 1841–1846. [Google Scholar] [CrossRef] [PubMed]
- Asai, N.; Ohashi, W.; Sakanashi, D.; Suematsu, H.; Kato, H.; Watanabe, H. Combination of Sequential Organ Failure Assessment (SOFA) score and Charlson Comorbidity Index (CCI) could predict the severity and prognosis of candidemia more accurately than the Acute Physiology, Age, Chronic Health Evaluation II (APACHE II) score. BMC Infect. Dis. 2021, 21, 77. [Google Scholar] [CrossRef]
- Hu, T.; Lv, H.; Jiang, Y. The association between four scoring systems and 30-day mortality among intensive care patients with sepsis: A cohort study. Sci. Rep. 2021, 11, 11214. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, R.; Ye, X.; Liu, H.; Wei, J. SAPS III is superior to SOFA for predicting 28-day mortality in sepsis patients based on Sepsis 3.0 criteria. Int. J. Infect. Dis. 2022, 114, 135–141. [Google Scholar] [CrossRef]
- Tong-Minh, K.; Welten, I.; Endeman, H.; Hagenaars, T.; Ramakers, C. Predicting mortality in adult patients with sepsis in the emergency department by using combinations of biomarkers and clinical scoring systems: A systematic review. BMC Emerg. Med. 2021, 21, 70. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, S.; Chang, X. Understanding the complexity of sepsis mortality prediction via rule discovery and analysis: A pilot study. BMC Med. Inform. Decis. Mak. 2021, 21, 334. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, G.; He, Q.; Shen, J.; Xu, L.; Zhu, P. A promising candidate: Heparin-binding protein steps onto the stage of sepsis prediction. J. Immunol. Res. 2019, 2019, 7515346. [Google Scholar] [CrossRef]
- Xie, Y.; Zhuang, D.; Chen, H.; Zou, S.; Chen, W.; Chen, Y. 28-Day sepsis mortality prediction model from combined serial interleukin-6, lactate, and procalcitonin measurements: A retrospective cohort study. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 77–85. [Google Scholar] [CrossRef]
- Cong, S.; Ma, T.; Di, X.; Tian, C.; Zhao, M.; Wang, K. Diagnostic value of neutrophil CD64, procalcitonin, and interleukin-6 in sepsis: A meta-analysis. BMC Infect. Dis. 2021, 21, 384. [Google Scholar] [CrossRef]
- Velissaris, D.; Zareifopoulos, N.; Karamouzos, V.; Pierrakos, C.; Karanikolas, M. Soluble urokinase plasminogen activator receptor (suPAR) in the emergency department: An update. Casp. J. Intern. Med. 2022, 13, 650. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, J.; Guo, F.; Longhini, F.; Gao, Z.; Huang, Y.; Qiu, H. Combination of C-Reactive protein, procalcitonin and sepsis-related organ failure score for the diagnosis of sepsis in critical patients. Ann. Intensive Care 2016, 6, 51. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Feng, Y.; Liang, X.; Gui, S.; Ren, D.; Liu, Y. Elevations in presepsin, PCT, hs-CRP, and IL-6 levels predict mortality among septic patients in the ICU. J. Leukoc. Biol. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Liu, S.; Wang, X.; She, F.; Zhang, W.; Liu, H.; Zhao, X. Effects of neutrophil-to-lymphocyte ratio combined with interleukin-6 in predicting 28-day mortality in patients with sepsis. Front. Immunol. 2021, 12, 639735. [Google Scholar] [CrossRef]
- Yu, B.; Chen, M.; Zhang, Y.; Cao, Y.; Yang, J.; Wei, B. Diagnostic and Prognostic Value of Interleukin-6 in Emergency Department Sepsis Patients. Infect. Drug Resist. 2022, 15, 5557–5566. [Google Scholar] [CrossRef] [PubMed]
- Kahn, F.; Tverring, J.; Mellhammar, L.; Wetterberg, N.; Bläckberg, A.; Studahl, E. Heparin-Binding protein as a prognostic biomarker of sepsis and disease severity at the emergency department. Shock 2019, 52, e135–e145. [Google Scholar] [CrossRef]
- Hung, S.-K.; Lan, H.-M.; Han, S.-T.; Wu, C.-C.; Chen, K.-F. Current Evidence and Limitation of Biomarkers for Detecting Sepsis and Systemic Infection. Biomedicines 2020, 8, 494. [Google Scholar] [CrossRef] [PubMed]
- Turgman, O.; Schinkel, M.; Wiersinga, W.J. Host Response Biomarkers for Sepsis in the Emergency Room. In Annual Update in Intensive Care and Emergency Medicine 2023; Vincent, J.-L., Ed.; Springer Nature: Cham, Switzerland, 2023; pp. 71–81. ISBN 978-3-031-23005-9. [Google Scholar]
- Smok, B.; Domagalski, K.; Pawłowska, M. Diagnostic and Prognostic Value of IL-6 and sTREM-1 in SIRS and Sepsis in Children. Mediat. Inflamm. 2020, 2020, 8201585. [Google Scholar] [CrossRef]
- Jirak, P.; Haertel, F.; Mirna, M.; Rezar, R.; Lichtenauer, M.; Paar, V. A Comparative Analysis of Novel Biomarkers in Sepsis and Cardiovascular Disease. Appl. Sci. 2022, 12, 1419. [Google Scholar] [CrossRef]
- Ganesan, P.; Shanmugam, P.; Sattar, S.B.A.; Shankar, S.L. Evaluation of IL-6, CRP and hs-CRP as early markers of neonatal sepsis. J. Clin. Diagn. Res. 2016, 10, DC13–DC17. [Google Scholar] [CrossRef]
- Liu, J.; Bai, C.; Li, B.; Shan, A.; Shi, F.; Yao, C. Mortality prediction using a novel combination of biomarkers in the first day of sepsis in intensive care units. Sci. Rep. 2021, 11, 1275. [Google Scholar] [CrossRef] [PubMed]
- Iwase, S.; Nakada, T.; Hattori, N.; Takahashi, W.; Takahashi, N.; Aizimu, T. Interleukin-6 as a diagnostic marker for infection in critically ill patients: A systematic review and meta-analysis. Am. J. Emerg. Med. 2019, 37, 260–265. [Google Scholar] [CrossRef]
- Fisher, J.; Linder, A. Heparin-Binding protein: A key player in the pathophysiology of organ dysfunction in sepsis. J. Intern. Med. 2017, 281, 562–574. [Google Scholar] [CrossRef] [PubMed]
- Limongi, D.; D’Agostini, C.; Ciotti, M. New sepsis biomarkers. Asian Pac. J. Trop. Biomed. 2016, 6, 516–519. [Google Scholar] [CrossRef]
- Guarino, M.; Perna, B.; Cesaro, A.E.; Maritati, M.; Spampinato, M.D.; Contini, C. 2023 update on sepsis and septic shock in adult patients: Management in the emergency department. J. Clin. Med. 2023, 12, 3188. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Moldawer, L.L.; Opal, S.M.; Reinhart, K.; Turnbull, I.R.; Vincent, J.-L. Sepsis and septic shock. Nat. Rev. Primer 2016, 2, 16045. [Google Scholar] [CrossRef]
- Kumar, D.S.; Wasnik, S.B.; Yadav, A.; Yadav, R. Association of glycosylated hemoglobin with mortality of patients in intensive care unit: A prospective observation study. Crit. Care Innov. 2024, 7, 24–33. [Google Scholar] [CrossRef]
- Trebuian, C.I.; Popa, D.; Buleu, F.; Sutoi, D.; Williams, C.G. COVID-19 Related Acute Respiratory Distress Syndrome versus Classical Acute Respiratory Distress Syndrome Patients: Inflammatory Biomarkers as Predictors of Mortality in Pulmonary Septic Shock. Int. J. Gen. Med. 2024, 17, 3337–3347. [Google Scholar] [CrossRef] [PubMed]
- Villar, J.; Short, J.H.; Lighthall, G. Lactate Predicts Both Short- and Long-Term Mortality in Patients with and without Sepsis. Infect. Dis. Res. Treat. 2019, 12, 1178633719862776. [Google Scholar] [CrossRef] [PubMed]
- Trebuian, C.I.; Brici, O.M.; Sutoi, D.; Popa, D.I.; Chioibas, D.R.; Mederle, O.A. Lactate Levels and Clearance: Key Predictors of Prognosis for COVID-19 and Non-COVID-19 Septic Shock Patients in the Emergency Department. Clin. Pract. 2024, 14, 834–845. [Google Scholar] [CrossRef] [PubMed]
- Hassan, E.A.; Abdel Rehim, A.S.; Ahmed, A.O.; Abdullahtif, H.; Attia, A. Clinical Value of Presepsin in Comparison to hsCRP as a Monitoring and Early Prognostic Marker for Sepsis in Critically Ill Patients. Medicina 2019, 55, 36. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Li, B.; Lin, Y.; Shi, F.; Chen, W.; Wu, W. Combining blood-based biomarkers to predict mortality of sepsis at arrival at the Emergency Department. Med. Sci. Monit. 2021, 27, e929527. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.K.; Huffman, K.M.; Kraus, W.E.; Kraus, V.B. Critical appraisal of four IL-6 immunoassays. PLoS ONE 2012, 7, e30659. [Google Scholar] [CrossRef] [PubMed]
- Trzeciak, A.; Pietropaoli, A.P.; Kim, M. Biomarkers and Associated Immune Mechanisms for Early Detection and Therapeutic Management of Sepsis. Immune Netw. 2020, 20, e23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; La, M.; Sun, J.; Chen, M.; Liu, D.; Liu, X. Diagnostic value and prognostic significance of procalcitonin combined with C-Reactive protein in patients with bacterial bloodstream infection. Comput. Math. Methods Med. 2022, 2022, 6989229. [Google Scholar] [CrossRef]
- Pregernig, A.; Müller, M.; Held, U.; Beck-Schimmer, B. Prediction of mortality in adult patients with sepsis using six biomarkers: A systematic review and meta-analysis. Ann. Intensive Care 2019, 9, 125. [Google Scholar] [CrossRef]
- Ruangsomboon, O.; Panjaikaew, P.; Monsomboon, A.; Chakorn, T.; Permpikul, C.; Limsuwat, C. Diagnostic and prognostic utility of presepsin for sepsis in very elderly patients in the emergency department. Clin. Chim. Acta 2020, 510, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, S.-H.; Jang, J.H.; Park, J.H.; Jo, K.M.; No, T.-H. Clinical usefulness of biomarkers for diagnosis and prediction of prognosis in sepsis and septic shock. Medicine 2022, 101, e31895. [Google Scholar] [CrossRef]
- van der Does, Y.; Limper, M.; Jie, K.E.; Schuit, S.C.E.; Jansen, H.; Pernot, N. Procalcitonin-guided antibiotic therapy in patients with fever in a general emergency department population: A multicentre non-inferiority randomized clinical trial (HiTEMP study). Clin. Microbiol. Infect. 2018, 24, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Wirz, Y.; Meier, M.A.; Bouadma, L.; Luyt, C.E.; Wolff, M.; Chastre, J. Effect of procalcitonin-guided antibiotic treatment on clinical outcomes in intensive care unit patients with infection and sepsis patients: A patient-level meta-analysis of randomized trials. Crit. Care 2018, 22, 191. [Google Scholar] [CrossRef] [PubMed]
Characteristics [Median (IQR)] | Survivors (Group = 34) | Non-Survivors (Group = 33) | p | |
---|---|---|---|---|
Gender, n (%) | ||||
Male | 16 (47.1) | 12 (36.4) | 0.52 * | |
Female | 18 (52.9) | 21 (63.6) | ||
Age, years | 72 (63.75–81.25) | 78 (65.5–85) | 0.11 ** | |
Recent hospitalization, n (%) | 6 (17.6) | 7 (21.2) | 0.95 * | |
ICU stay (days) | 2 (1–11.75) | 5 (2–9) | 0.48 ** | |
Oxygen mask, n (%) | 18 (52.9) | 17 (51.5) | 1.00 * | |
Mechanical ventilation, n (%) | 3 (8.8) | 17 (51.5) | <0.001 * | |
Non-invasive ventilation, n (%) | 0 (0) | 2 (6.1) | 0.23 * | |
Vasoactive, n (%) | 7 (20.6) | 12 (36.4) | 0.24 * | |
Antibiotics administered, (n%) | 1 | 22 (75.9) | 24 (85.7) | 0.54 * |
2 | 7 (24.1) | 4 (14.3) | ||
Parameters | ||||
Heart rate | 110 (93.5–115.25) | 115.25 (100.5–124.5) | 0.14 ** | |
Mean arterial pressure (mmHg) | 63 (56.75–72.25) | 60 (53–65.5) | 0.14 ** | |
Temperature (˚C) | 38 (36–39) | 37 (36–38) | 0.01 ** | |
Oxygen Saturation (%) | 94.5 (88.75–97) | 94 (86–97) | 0.50 ** | |
Lactate (mmol/L) | 2 (1–3) | 4 (2–7.5) | <0.001 ** | |
Comorbidities, n (%) | ||||
Cardiovascular disease | 27 (79.4) | 29 (87.9) | 0.54 * | |
Diabetes | 19 (55.9) | 17 (51.5) | 0.91 * | |
Chronic kidney disease | 9 (26.5) | 7 (21.2) | 0.82 * | |
Chronic lung disease | 9 (26.5) | 5 (15.2) | 0.40 * | |
Obesity | 15 (44.1) | 11 (33.3) | 0.51 * | |
Neuropsychiatry | 14 (41.2) | 21 (63.6) | 0.11 * | |
Site of sepsis, n (%) | ||||
Neurologic | 0 (0) | 1 (3) | 0.49 * | |
Respiratory | 15 (44.1) | 21 (63.6) | 0.17 * | |
Cardiac | 0 (0) | 1 (3) | 0.49 * | |
Digestive | 8 (23.5) | 4 (12.1) | 0.36 * | |
Skin and soft tissue | 13 (38.2) | 13 (39.4) | 1.00 * | |
Urinary | 24 (70.6) | 20 (60.6) | 0.54 * |
Parameters † | Survival Group | Non-Survival Group | p | |
---|---|---|---|---|
Biomarkers | ||||
sTREM-1 (pg/mL) | 185.3 (80.70–722.90) | 274.5 (94.55–967.95) | 0.59 ** | |
hsCRP (pg/mL) | 26.05 (16–29.95) | 18.4 (15.75–24.30) | 0.10 ** | |
PCT (pg/mL) | 9.4 (2.70–20.67) | 15.2 (4.70–56.10) | 0.09 ** | |
AZU1 (ng/mL) | 8.3 (7.47–9.12) | 7.6 (6.90–8.55) | 0.05 ** | |
suPAR (ng/mL) | 7421 (6060.75–8900.25) | 8256 (6995–9601) | 0.05 ** | |
IL-6 (pg/mL) | 290.4 (76.30–529.22) | 694 (346.50–858.30) | <0.001 ** | |
Scores, n (%) | ||||
SIRS | 2 | 7 (20.60) | 6 (18.20) | 0.52 * |
3 | 14 (41.20) | 18 (54.50) | ||
4 | 13 (38.20) | 9 (27.20) | ||
qSOFA | 1 | 8 (23.50) | 2(6.10) | 0.001 * |
2 | 18 (52.90) | 8 (24.20) | ||
3 | 8 (23.50) | 23 (69.70) | ||
GCS | 15 (12.75–15) | 11 (6.50–14.50) | <0.001 ** | |
CCI | CCI Score | 6.5 (4–9) | 7 (6–9) | 0.34 ** |
CCI % | 1 (0–53) | 0 (0–2) | 0.14 ** | |
NEWS | 10 (7–12) | 13 (10.5–15) | 0.003 ** | |
MEDS score | 12.5 (11–16) | 16 (11–17) | 0.14 ** | |
SOFA | 5 (3–9.25) | 10 (7–13) | 0.001 ** | |
APACHE II | APACHEII score | 21 (14.75–24.25) | 26 (21.50–33) | <0.001 ** |
APACHE II % | 40 (22.50–46.75) | 55 (40–73) | <0.001 ** | |
SAPS II | SAPS II score | 46.5 (39.75–56.75) | 66 (56–85) | <0.001 ** |
SAPS II % | 38.1 (27.12–61.37) | 78.5 (59.8–95) | <0.001 ** | |
SAPS III | SAPS III score | 64.5 (59–71.25) | 81 (69.50–95) | <0.001 ** |
SAPS III % | 45 (33.87–58.97) | 75 (56–88.55) | <0.001 ** |
AUC (95% CI) | Cutoff | Se (95% CI) | Sp (95% CI) | p | |
---|---|---|---|---|---|
Biomarkers | |||||
IL-6 (pg/mL) | 0.73 (0.61–0.83) | >538 | 63.64 (45.1–79.6) | 79.41 (62.1–91.3) | <0.001 |
suPAR (ng/mL) | 0.63 (0.51–0.75) | >7447 | 69.70 (51.3–84.4) | 58.82 (40.7–75.4) | 0.04 |
PCT (pg/mL) | 0.62 (0.49–0.73) | >19.8 | 48.48 (30.8–66.5) | 76.47 (58.8–89.3) | 0.08 |
hsCRP (pg/mL) | 0.61 (0.48–0.73) | ≤24.9 | 81.82 (64.5–93.0) | 52.94 (35.1–70.2) | 0.10 |
sTREM-1 (pg/mL) | 0.53 (0.41–0.66) | >189 | 63.64 (45.1–79.6) | 52.94 (35.1–70.2) | 0.59 |
AZU1 (ng/mL) | 0.63 (0.5–0.7) | ≤7.7 | 63.64 (45.1–79.6) | 67.65 (49.5–82.6) | 0.05 |
Scores | |||||
GCS | 0.75 (0.63–0.85) | ≤12 | 66.67 (48.2–82.0) | 76.47 (58.8–89.3) | <0.001 |
NEWS | 0.71 (0.58–0.81) | >11 | 69.7 (51.3–84.4) | 73.53 (55.6–87.1) | 0.001 |
SOFA | 0.74 (0.62–0.84) | >6 | 81.82 (64.5–93) | 58.82 (40.7–75.4) | <0.001 |
APACHE II | 0.77 (0.66–0.87) | >23 | 69.7 (51.3–84.4) | 73.53 (55.6–87.1) | <0.001 |
SAPS II | 0.82 (0.70–0.90) | >43.8 | 93.94 (79.8–99.3) | 61.76 (43.6–77.8) | <0.001 |
SAPS III | 0.82 (0.71–0.90) | >67 | 90.91 (75.7–98.1) | 67.65 (49.5–82.6) | <0.001 |
Combinations | |||||
IL-6 + suPAR | 0.74 (0.62–0.84) | >0.54 | 66.67 (48.2–82) | 76.47 (58.8–89.3) | <0.001 |
IL-6 + AZU | 0.78 (0.66–0.87) | >0.34 | 90.91 (75.7–98.1) | 52.94 (35.1–70.2) | <0.001 |
IL-6 + SOFA + SAPSII + APACHE II | 0.85 (0.75–0.93) | >0.61 | 63.64 (45.1–79.6) | 94.12 (80.3–99.3) | <0.001 |
IL-6 + AZU + SOFA + SAPSII + APACHE II | 0.82 (0.76–0.94) | >0.53 | 75.76 (57.7–88.9) | 82.35 (65.5–93.2) | <0.001 |
IL-6 + suPAR + AZU + SOFA + SAPSII+ APACHE II | 0.86 (0.76–0.93) | >0.53 | 75.76 (57.7–88.9) | 82.35 (65.5–93.2) | <0.001 |
SOFA + SAPSII + APACHEII | 0.83 (0.72–0.91) | >0.4 | 81.82 (54.5–93) | 70.59 (52.5–84.9) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luka, S.; Golea, A.; Vesa, Ș.C.; Leahu, C.-E.; Zăgănescu, R.; Ionescu, D. Can We Improve Mortality Prediction in Patients with Sepsis in the Emergency Department? Medicina 2024, 60, 1333. https://doi.org/10.3390/medicina60081333
Luka S, Golea A, Vesa ȘC, Leahu C-E, Zăgănescu R, Ionescu D. Can We Improve Mortality Prediction in Patients with Sepsis in the Emergency Department? Medicina. 2024; 60(8):1333. https://doi.org/10.3390/medicina60081333
Chicago/Turabian StyleLuka, Sonia, Adela Golea, Ștefan Cristian Vesa, Crina-Elena Leahu, Raluca Zăgănescu, and Daniela Ionescu. 2024. "Can We Improve Mortality Prediction in Patients with Sepsis in the Emergency Department?" Medicina 60, no. 8: 1333. https://doi.org/10.3390/medicina60081333
APA StyleLuka, S., Golea, A., Vesa, Ș. C., Leahu, C.-E., Zăgănescu, R., & Ionescu, D. (2024). Can We Improve Mortality Prediction in Patients with Sepsis in the Emergency Department? Medicina, 60(8), 1333. https://doi.org/10.3390/medicina60081333