An Examination of Temporomandibular Joint Disc Displacement through Magnetic Resonance Imaging by Integrating Artificial Intelligence: Preliminary Findings
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lau Rui Han, S.; Xiang, J.; Zeng, X.-X.; Fan, P.-D.; Cheng, Q.-Y.; Zhou, X.-M.; Ye, Z.; Xiong, X.; Wang, J. Relationship Between Temporomandibular Joint Effusion, Pain, and Jaw Function Limitation: A 2D and 3D Comparative Study. J. Pain Res. 2024, 17, 2051–2062. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, E.; Ohrbach, R.; Truelove, E.; Look, J.; Anderson, G.; Goulet, J.-P.; List, T.; Svensson, P.; Gonzalez, Y.; Lobbezoo, F.; et al. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: Recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Group†. J. Oral Facial Pain Headache 2014, 28, 6–27. [Google Scholar] [CrossRef] [PubMed]
- Riley, J.L.I.; Rindal, D.B.; Velly, A.M.; Anderson, G.C.; Johnson, K.S.; Gilbert, G.H.; Schiffman, E.L.; National Dental Practice-Based Research Network Collaborative Group. Practitioner/Practice- and Patient-Based Factors Contributing to Dental Practitioner Treatment Recommendations for Patients with Pain-Related TMDs: Findings from the National Dental PBRN. J. Oral Facial Pain Headache 2023, 37, 195–206. [Google Scholar] [CrossRef]
- Velly, A.M.; Anderson, G.C.; Look, J.O.; Riley, J.L.; Rindal, D.B.; Johnson, K.; Wang, Q.; Fricton, J.; Huff, K.; Ohrbach, R.; et al. Management of Painful Temporomandibular Disorders. J. Am. Dent. Assoc. 2022, 153, 144–157. [Google Scholar] [CrossRef] [PubMed]
- Monje Gil, F.; Martínez Artal, P.; Cuevas Queipo De Llano, A.; Muñoz Guerra, M.; González Ballester, D.; López Arcas, J.M.; López Cedrún, J.L.; Gutiérrez Pérez, J.L.; Martín-Granizo, R.; Del Castillo Pardo De Vera, J.L.; et al. Consensus Report and Recommendations on the Management of Late-Stage Internal Derangement of the Temporomandibular Joint. JCM 2024, 13, 3319. [Google Scholar] [CrossRef]
- Yap, A.U.; Lai, Y.C.; Ho, H.C.W. Prevalence of Temporomandibular Disorders and Their Associated Factors in Confucian Heritage Cultures: A Systematic Review and Meta-analysis. J. Oral Rehabil. 2024. [Google Scholar] [CrossRef]
- Shao, B.; Teng, H.; Dong, S.; Liu, Z. Finite Element Contact Stress Analysis of the Temporomandibular Joints of Patients with Temporomandibular Disorders under Mastication. Comput. Methods Programs Biomed. 2022, 213, 106526. [Google Scholar] [CrossRef]
- Cadar, M.; Almăşan, O. Dental Occlusion Characteristics in Subjects with Bruxism. Med. Pharm. Rep. 2023, 97, 70–75. [Google Scholar] [CrossRef]
- Almășan, O.; Leucuța, D.-C.; Dinu, C.; Buduru, S.; Băciuț, M.; Hedeșiu, M. Petrotympanic Fissure Architecture and Malleus Location in Temporomandibular Joint Disorders. Tomography 2022, 8, 2460–2470. [Google Scholar] [CrossRef]
- Jha, N.; Lee, K.; Kim, Y.-J. Diagnosis of Temporomandibular Disorders Using Artificial Intelligence Technologies: A Systematic Review and Meta-Analysis. PLoS ONE 2022, 17, e0272715. [Google Scholar] [CrossRef]
- Ozsari, S.; Güzel, M.S.; Yılmaz, D.; Kamburoğlu, K. A Comprehensive Review of Artificial Intelligence Based Algorithms Regarding Temporomandibular Joint Related Diseases. Diagnostics 2023, 13, 2700. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Punithakumar, K.; Major, P.W.; Le, L.H.; Nguyen, K.-C.T.; Pacheco-Pereira, C.; Kaipatur, N.R.; Nebbe, B.; Jaremko, J.L.; Almeida, F.T. Temporomandibular Joint Segmentation in MRI Images Using Deep Learning. J. Dent. 2022, 127, 104345. [Google Scholar] [CrossRef] [PubMed]
- Yoshimi, Y.; Mine, Y.; Ito, S.; Takeda, S.; Okazaki, S.; Nakamoto, T.; Nagasaki, T.; Kakimoto, N.; Murayama, T.; Tanimoto, K. Image Preprocessing with Contrast-Limited Adaptive Histogram Equalization Improves the Segmentation Performance of Deep Learning for the Articular Disk of the Temporomandibular Joint on Magnetic Resonance Images. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2024, 138, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Nozawa, M.; Ito, H.; Ariji, Y.; Fukuda, M.; Igarashi, C.; Nishiyama, M.; Ogi, N.; Katsumata, A.; Kobayashi, K.; Ariji, E. Automatic Segmentation of the Temporomandibular Joint Disc on Magnetic Resonance Images Using a Deep Learning Technique. Dentomaxillofacial Radiol. 2022, 51, 20210185. [Google Scholar] [CrossRef]
- Ito, S.; Mine, Y.; Yoshimi, Y.; Takeda, S.; Tanaka, A.; Onishi, A.; Peng, T.-Y.; Nakamoto, T.; Nagasaki, T.; Kakimoto, N.; et al. Automated Segmentation of Articular Disc of the Temporomandibular Joint on Magnetic Resonance Images Using Deep Learning. Sci. Rep. 2022, 12, 221. [Google Scholar] [CrossRef]
- Taborri, J.; Molinaro, L.; Russo, L.; Palmerini, V.; Larion, A.; Rossi, S. Comparison of Machine Learning Algorithms Fed with Mobility-Related and Baropodometric Measurements to Identify Temporomandibular Disorders. Sensors 2024, 24, 3646. [Google Scholar] [CrossRef]
- Rokhshad, R.; Mohammad-Rahimi, H.; Sohrabniya, F.; Jafari, B.; Shobeiri, P.; Tsolakis, I.A.; Ourang, S.A.; Sultan, A.S.; Khawaja, S.N.; Bavarian, R.; et al. Deep Learning for Temporomandibular Joint Arthropathies: A Systematic Review and Meta-analysis. J. Oral Rehabil. 2024, 51, 1632–1644. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, T.; Zheng, Y.; Xiong, Y.; Liu, W.; Zeng, W.; Tang, W.; Liu, C. Machine Learning-Based Medical Imaging Diagnosis in Patients with Temporomandibular Disorders: A Diagnostic Test Accuracy Systematic Review and Meta-Analysis. Clin. Oral Investig. 2024, 28, 186. [Google Scholar] [CrossRef]
- Mureșanu, S.; Almășan, O.; Hedeșiu, M.; Dioșan, L.; Dinu, C.; Jacobs, R. Artificial Intelligence Models for Clinical Usage in Dentistry with a Focus on Dentomaxillofacial CBCT: A Systematic Review. Oral Radiol. 2023, 39, 18–40. [Google Scholar] [CrossRef]
- Thanathornwong, B.; Treebupachatsakul, T.; Teechot, T.; Poomrittigul, S.; Warin, K.; Suebnukarn, S. Temporomandibular Joint Disorders Multi-Class Classification Using Deep Learning. Stud. Health Technol. Inform. 2024, 310, 1495–1496. [Google Scholar] [CrossRef]
- Dong, K.; Zhou, C.; Ruan, Y.; Li, Y. MobileNetV2 Model for Image Classification. In Proceedings of the 2020 2nd International Conference on Information Technology and Computer Application (ITCA), Guangzhou, China, 18–20 December 2020; IEEE: Guangzhou, China, 2020; pp. 476–480. [Google Scholar]
- Salehi, A.W.; Khan, S.; Gupta, G.; Alabduallah, B.I.; Almjally, A.; Alsolai, H.; Siddiqui, T.; Mellit, A. A Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope. Sustainability 2023, 15, 5930. [Google Scholar] [CrossRef]
- Shrivastava, M.; Ye, L. Neuroimaging and Artificial Intelligence for Assessment of Chronic Painful Temporomandibular Disorders-a Comprehensive Review. Int. J. Oral Sci. 2023, 15, 58. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.; Kim, J.-Y.; Kim, S.-J.; Huh, J.-K.; Kim, J.-W.; Choi, J. Explainable Deep Learning-Based Clinical Decision Support Engine for MRI-Based Automated Diagnosis of Temporomandibular Joint Anterior Disk Displacement. Comput. Methods Programs Biomed. 2023, 233, 107465. [Google Scholar] [CrossRef] [PubMed]
- Talaat, W.M.; Shetty, S.; Al Bayatti, S.; Talaat, S.; Mourad, L.; Shetty, S.; Kaboudan, A. An Artificial Intelligence Model for the Radiographic Diagnosis of Osteoarthritis of the Temporomandibular Joint. Sci. Rep. 2023, 13, 15972. [Google Scholar] [CrossRef]
- Make Sense. Available online: https://www.makesense.ai/ (accessed on 12 July 2024).
- ImageNet. Available online: https://image-net.org/ (accessed on 12 July 2024).
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv 2019, arXiv:1801.04381. [Google Scholar] [CrossRef]
- Reda, B.; Contardo, L.; Prenassi, M.; Guerra, E.; Derchi, G.; Marceglia, S. Artificial Intelligence to Support Early Diagnosis of Temporomandibular Disorders: A Preliminary Case Study. J. Oral Rehabil. 2023, 50, 31–38. [Google Scholar] [CrossRef]
- Kao, Z.-K.; Chiu, N.-T.; Wu, H.-T.H.; Chang, W.-C.; Wang, D.-H.; Kung, Y.-Y.; Tu, P.-C.; Lo, W.-L.; Wu, Y.-T. Classifying Temporomandibular Disorder with Artificial Intelligent Architecture Using Magnetic Resonance Imaging. Ann. Biomed. Eng. 2023, 51, 517–526. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Kim, D.; Jeon, K.J.; Kim, H.; Huh, J.-K. Using Deep Learning to Predict Temporomandibular Joint Disc Perforation Based on Magnetic Resonance Imaging. Sci. Rep. 2021, 11, 6680. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Won, J.H.; Kim, S.; Auh, Q.-S.; Noh, Y.-K. Advantages of Deep Learning with Convolutional Neural Network in Detecting Disc Displacement of the Temporomandibular Joint in Magnetic Resonance Imaging. Sci. Rep. 2022, 12, 11352. [Google Scholar] [CrossRef]
- Sano, T.; Widmalm, S.-E.; Yamamoto, M.; Sakuma, K.; Araki, K.; Matsuda, Y.; Okano, T. Usefulness of Proton Density and T2-Weighted vs. T1-Weighted MRI in Diagnoses of TMJ Disk Status. CRANIO® 2003, 21, 253–258. [Google Scholar] [CrossRef]
- Lee, C.; Ha, E.-G.; Choi, Y.J.; Jeon, K.J.; Han, S.-S. Synthesis of T2-Weighted Images from Proton Density Images Using a Generative Adversarial Network in a Temporomandibular Joint Magnetic Resonance Imaging Protocol. Imaging Sci. Dent. 2022, 52, 393. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Cheng, M.; Wang, S.; Li, F.; Zhou, Q. Automatic Detection of Anteriorly Displaced Temporomandibular Joint Discs on Magnetic Resonance Images Using a Deep Learning Algorithm. Dentomaxillofacial Radiol. 2022, 51, 20210341. [Google Scholar] [CrossRef] [PubMed]
- Vinayahalingam, S.; Berends, B.; Baan, F.; Moin, D.A.; Van Luijn, R.; Bergé, S.; Xi, T. Deep Learning for Automated Segmentation of the Temporomandibular Joint. J. Dent. 2023, 132, 104475. [Google Scholar] [CrossRef] [PubMed]
- Kreiner, M.; Viloria, J. A Novel Artificial Neural Network for the Diagnosis of Orofacial Pain and Temporomandibular Disorders. J. Oral Rehabil. 2022, 49, 884–889. [Google Scholar] [CrossRef]
- Quinn, T.P.; Jacobs, S.; Senadeera, M.; Le, V.; Coghlan, S. The Three Ghosts of Medical AI: Can the Black-Box Present Deliver? Artif. Intell. Med. 2022, 124, 102158. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, L.; Shi, W.; Liu, J.; He, W.; Jiang, Z. A Visualization Method Based on the Grad-CAM for Medical Image Segmentation Model. In Proceedings of the 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS), Changchun, China, 23–26 September 2021; IEEE: Changchun, China, 2021; pp. 242–247. [Google Scholar]
Dataset Characteristics | |||||
---|---|---|---|---|---|
MRI Section | Condition | Patients | Condition | TMJs | |
Sagittal | No DD | 11 | No DD | 37 | |
ADD | bilateral | 24 | DDwR | 34 | |
unilateral | 15 | DDwoR | 29 | ||
Coronal | No DD | 11 | No DD | 54 | |
MDD * | 20 | MDD | 25 | ||
LDD * | 21 | LDD | 21 | ||
Total | 50 | Total | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almășan, O.; Mureșanu, S.; Hedeșiu, P.; Cotor, A.; Băciuț, M.; Roman, R.; TEAM Project Group. An Examination of Temporomandibular Joint Disc Displacement through Magnetic Resonance Imaging by Integrating Artificial Intelligence: Preliminary Findings. Medicina 2024, 60, 1396. https://doi.org/10.3390/medicina60091396
Almășan O, Mureșanu S, Hedeșiu P, Cotor A, Băciuț M, Roman R, TEAM Project Group. An Examination of Temporomandibular Joint Disc Displacement through Magnetic Resonance Imaging by Integrating Artificial Intelligence: Preliminary Findings. Medicina. 2024; 60(9):1396. https://doi.org/10.3390/medicina60091396
Chicago/Turabian StyleAlmășan, Oana, Sorana Mureșanu, Petra Hedeșiu, Andrei Cotor, Mihaela Băciuț, Raluca Roman, and TEAM Project Group. 2024. "An Examination of Temporomandibular Joint Disc Displacement through Magnetic Resonance Imaging by Integrating Artificial Intelligence: Preliminary Findings" Medicina 60, no. 9: 1396. https://doi.org/10.3390/medicina60091396