Insights into the Two Most Common Cancers of Primitive Gut-Derived Structures and Their Microbial Connections
Abstract
:1. Introduction
2. The Large Intestine: E. coli and Cancer
3. Challenges with E. coli Management
4. Link between Chlamydia and Lung Cancer Risk
5. Antimicrobial Issues with Chlamydia
6. Potential Prevention Aspect: Bacteriophages
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joshi, S.; Kotecha, S. Lung growth and development. Early Hum. Dev. 2007, 83, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Pawlina, W. Histology, 9th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2024. [Google Scholar]
- Taal, B.G.; Visser, O. Epidemiology of neuroendocrine tumours. Neuroendocrinology 2004, 80 (Suppl. S1), 3–7. [Google Scholar] [CrossRef]
- Kasajima, A.; Klöppel, G. Neuroendocrine neoplasms of lung, pancreas and gut: A morphology-based comparison. Endocr. Relat. Cancer 2020, 27, R417–R432. [Google Scholar] [CrossRef] [PubMed]
- Rekhtman, N. Lung neuroendocrine neoplasms: Recent progress and persistent challenges. Mod. Pathol. 2022, 35 (Suppl. S1), 36–50. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Refsum, E.; Perrin, V.; Helsingen, L.M.; Wieszczy, P.; Løberg, M.; Bretthauer, M.; Adami, H.O.; Ye, W.; Blom, J.; et al. Inflammatory bowel disease and risk of adenocarcinoma and neuroendocrine tumors in the small bowel. Ann. Oncol. 2022, 33, 649–656. [Google Scholar] [CrossRef]
- Festa, S.; Zerboni, G.; Derikx, L.A.A.P.; Ribaldone, D.G.; Dragoni, G.; Buskens, C.; van Dijkum, E.N.; Pugliese, D.; Panzuto, F.; Krela-Kaźmierczak, I.; et al. Gastroenteropancreatic neuroendocrine neoplasms in patients with inflammatory bowel disease: An ECCO CONFER multicentre case series. J. Crohns Colitis 2022, 16, 940–945. [Google Scholar] [CrossRef]
- Vitale, G.; Dicitore, A.; Barrea, L.; Sbardella, E.; Razzore, P.; Campione, S.; Faggiano, A.; Colao, A.; Albertelli, M.; Altieri, B.; et al. From microbiota toward gastro-enteropancreatic neuroendocrine neoplasms: Are we on the highway to hell? Rev. Endocr. Metab. Disord 2021, 22, 511–525. [Google Scholar] [CrossRef]
- West, N.E.; Wise, P.E.; Herline, A.J.; Muldoon, R.L.; Chopp, W.V.; Schwartz, D.A. Carcinoid tumors are 15 times more common in patients with Crohn’s disease. Inflamm. Bowel Dis. 2007, 13, 1129–1134. [Google Scholar] [CrossRef]
- Porter, R.J.; Arends, M.J.; Churchhouse, A.M.D.; Din, S. Inflammatory bowel disease-associated colorectal cancer: Translational risks from mechanisms to medicines. J. Crohns Colitis 2021, 15, 2131–2141. [Google Scholar] [CrossRef]
- Gao, H.; Zheng, S.; Yuan, X.; Xie, J.; Xu, L. Causal association between inflammatory bowel disease and 32 site-specific extracolonic cancers: A Mendelian randomization study. BMC Med. 2023, 21, 389. [Google Scholar] [CrossRef]
- Kim, J.; Jung, J.H.; Jo, H.; Kim, M.H.; Kang, D.R.; Kim, H.M. Risk of uterine cervical cancer in inflammatory bowel disease: A systematic review and meta-analysis. Scand. J. Gastroenterol. 2023, 58, 1412–1421. [Google Scholar] [CrossRef] [PubMed]
- Lo, B.; Zhao, M.; Vind, I.; Burisch, J. The risk of extraintestinal cancer in inflammatory bowel disease: A systematic review and meta-analysis of population-based cohort studies. Clin. Gastroenterol. Hepatol. 2021, 19, 1117–1138.e19. [Google Scholar] [CrossRef] [PubMed]
- Cavalli, C.A.M.; Gabbiadini, R.; Dal Buono, A.; Quadarella, A.; De Marco, A.; Repici, A.; Bezzio, C.; Simonetta, E.; Aliberti, S.; Armuzzi, A. Lung involvement in inflammatory bowel diseases: Shared pathways and unwanted connections. J. Clin. Med. 2023, 12, 6419. [Google Scholar] [CrossRef] [PubMed]
- Lobatón, T.; Domènech, E. Bacterial intestinal superinfections in inflammatory bowel diseases beyond clostridum difficile. Inflamm. Bowel Dis. 2016, 22, 1755–1762. [Google Scholar] [CrossRef]
- Chen, Y.; Cui, W.; Li, X.; Yang, H. Interaction between commensal bacteria, immune response and the intestinal barrier in inflammatory bowel disease. Front. Immunol. 2021, 12, 761981. [Google Scholar] [CrossRef]
- Neri, B.; Stingone, C.; Romeo, S.; Sena, G.; Gesuale, C.; Compagno, M.; De Cristofaro, E.; Baciorri, F.; Del Vecchio Blanco, G.; Palmieri, G.; et al. Inflammatory bowel disease versus Chlamydia trachomatis infection: A case report and revision of the literature. Eur. J. Gastroenterol. Hepatol. 2020, 32, 454–457. [Google Scholar] [CrossRef]
- Córdova, A.; Quera, R.; Contreras, L.; Catalán, P.; Quezada, F.; Tinoco, J. Infectious proctitis and perianal disease: A gaze beyond inflammatory bowel disease. Rev. Chilena Infectol. 2021, 38, 820–823. [Google Scholar] [CrossRef]
- Smolarczyk, K.; Mlynarczyk-Bonikowska, B.; Majewski, S.; Rudnicka, E.; Unemo, M.; Fiedor, P. Lymphogranuloma venereum: An emerging problem in Poland. Postepy Dermatol. Alergol. 2022, 39, 587–593. [Google Scholar] [CrossRef]
- Müller, S.; Arni, S.; Varga, L.; Balsiger, B.; Hersberger, M.; Maly, F.; Seibold, F. Serological and DNA-based evaluation of Chlamydia pneumoniae infection in inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2006, 18, 889–894. [Google Scholar] [CrossRef]
- Chen, W.; Li, D.; Wilson, I.; Chadwick, V.S. Detection of Chlamydia pneumoniae by polymerase chain reaction-enzyme immunoassay in intestinal mucosal biopsies from patients with inflammatory bowel disease and controls. J. Gastroenterol. Hepatol. 2002, 17, 987–993. [Google Scholar] [CrossRef]
- Howe, S.E.; Shillova, N.; Konjufca, V. Dissemination of Chlamydia from the reproductive tract to the gastro-intestinal tract occurs in stages and relies on Chlamydia transport by host cells. PLoS Pathog. 2019, 15, e1008207. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G. Chlamydia overcomes multiple gastrointestinal barriers to achieve long-lasting colonization. Trends Microbiol. 2021, 29, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Quaglio, A.E.V.; Grillo, T.G.; De Oliveira, E.C.S.; Di Stasi, L.C.; Sassaki, L.Y. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J. Gastroenterol. 2022, 28, 4053–4060. [Google Scholar] [CrossRef] [PubMed]
- Lopez, L.R.; Ahn, J.H.; Alves, T.; Arthur, J.C. Microenvironmental factors that shape bacterial metabolites in inflammatory bowel disease. Front. Cell. Infect. Microbiol. 2022, 12, 934619. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, J.; Adlerberth, I.; Östblom, A.; Saksena, P.; Öresland, T.; Börjesson, L. Effect of probiotics (Lactobacillus plantarum 299 plus Bifidobacterium Cure21) in patients with poor ileal pouch function: A randomised controlled trial. Scand. J. Gastroenterol. 2016, 51, 1087–1092. [Google Scholar] [CrossRef]
- Fan, H.; Du, J.; Liu, X.; Zheng, W.W.; Zhuang, Z.H.; Wang, C.D.; Gao, R. Effects of pentasa-combined probiotics on the microflora structure and prognosis of patients with inflammatory bowel disease. Turk. J. Gastroenterol. 2019, 30, 680–685. [Google Scholar] [CrossRef]
- Fedorak, R.N.; Feagan, B.G.; Hotte, N.; Leddin, D.; Dieleman, L.A.; Petrunia, D.M.; Enns, R.; Bitton, A.; Chiba, N.; Paré, P.; et al. The probiotic VSL#3 has anti-inflammatory effects and could reduce endoscopic recurrence after surgery for Crohn’s disease. Clin. Gastroenterol. Hepatol. 2015, 13, 928–935.e2. [Google Scholar]
- Groeger, D.; O’Mahony, L.; Murphy, E.F.; Bourke, J.F.; Dinan, T.G.; Kiely, B.; Shanahan, F.; Quigley, E.M. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes 2013, 4, 325–339. [Google Scholar] [CrossRef]
- Matsuoka, K.; Uemura, Y.; Kanai, T.; Kunisaki, R.; Suzuki, Y.; Yokoyama, K.; Yoshimura, N.; Hibi, T. Efficacy of Bifidobacterium breve fermented milk in maintaining remission of ulcerative colitis. Dig. Dis. Sci. 2018, 63, 1910–1919. [Google Scholar] [CrossRef]
- Palumbo, V.D.; Romeo, M.; Marino Gammazza, A.; Carini, F.; Damiani, P.; Damiano, G.; Buscemi, S.; Lo Monte, A.I.; Gerges-Geagea, A.; Jurjus, A.; et al. The long-term effects of probiotics in the therapy of ulcerative colitis: A clinical study. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2016, 160, 372–377. [Google Scholar] [CrossRef]
- Shadnoush, M.; Hosseini, R.S.; Khalilnezhad, A.; Navai, L.; Goudarzi, H.; Vaezjalali, M. Effects of probiotics on gut microbiota in patients with inflammatory bowel disease: A double-blind, placebo-controlled clinical trial. Korean J. Gastroenterol. 2015, 65, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, H.; Nakase, H.; Inoue, S.; Kawanami, C.; Itani, T.; Ohana, M.; Kusaka, T.; Uose, S.; Hisatsune, H.; Tojo, M.; et al. Efficacy of probiotic treatment with Bifidobacterium longum 536 for induction of remission in active ulcerative colitis: A randomized, double-blinded, placebo-controlled multicenter trial. Dig. Endosc. 2016, 28, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Khan, Z.; Malik, A.; Kalam, M.A.; Cash, P.; Ashraf, M.T.; Alshamsan, A. Colorectal cancer-inflammatory bowel disease nexus and felony of Escherichia coli. Life Sci. 2017, 180, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Dubinsky, V.; Reshef, L.; Rabinowitz, K.; Wasserberg, N.; Dotan, I.; Gophna, U. Escherichia coli strains from patients with inflammatory bowel diseases have disease-specific genomic adaptations. J. Crohns Colitis 2022, 16, 1584–1597. [Google Scholar] [CrossRef] [PubMed]
- Leimbach, A.; Hacker, J.; Dobrindt, U.E. coli as an all-rounder: The thin line between commensalism and pathogenicity. Curr. Top. Microbiol. Immunol. 2013, 358, 3–32. [Google Scholar]
- Santos, A.C.M.; Santos, F.F.; Silva, R.M.; Gomes, T.A.T. Diversity of hybrid- and hetero-pathogenic Escherichia coli and their potential implication in more severe diseases. Front. Cell. Infect Microbiol. 2020, 10, 339. [Google Scholar] [CrossRef]
- Sidjabat, H.E.; Paterson, D.L. Multidrug-resistant Escherichia coli in Asia: Epidemiology and management. Expert Rev. Anti Infect. Ther. 2015, 13, 575–591. [Google Scholar] [CrossRef]
- Martin, H.M.; Campbell, B.J.; Hart, C.A.; Mpofu, C.; Nayar, M.; Singh, R.; Englyst, H.; Williams, H.F.; Rhodes, J.M. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 2004, 127, 80–93. [Google Scholar] [CrossRef]
- Magdy, A.; Elhadidy, M.; Abd Ellatif, M.E.; El Nakeeb, A.; Abdallah, E.; Thabet, W.; Youssef, M.; Khafagy, W.; Morshed, M.; Farid, M. Enteropathogenic Escherichia coli (EPEC): Does it have a role in colorectal tumourigenesis? A prospective cohort study. Int. J. Surg. 2015, 18, 169–173. [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Tsunematsu, Y.; Matsuzaki, N.; Hirayama, Y.; Higashiguchi, F.; Sato, M.; Iwashita, Y.; Miyoshi, N.; Mutoh, M.; Ishikawa, H.; et al. Characterization of colibactin-producing Escherichia coli isolated from Japanese patients with colorectal cancer. Jpn. J. Infect. Dis. 2020, 73, 437–442. [Google Scholar] [CrossRef]
- Nouri, R.; Hasani, A.; Shirazi, K.M.; Alivand, M.R.; Sepehri, B.; Sotoodeh, S.; Hemmati, F.; Rezaee, M.A. Escherichia coli and colorectal cancer: Unfolding the enigmatic relationship. Curr. Pharm. Biotechnol. 2022, 23, 1257–1268. [Google Scholar] [PubMed]
- Miyasaka, T.; Yamada, T.; Uehara, K.; Sonoda, H.; Matsuda, A.; Shinji, S.; Ohta, R.; Kuriyama, S.; Yokoyama, Y.; Takahashi, G.; et al. Pks-positive Escherichia coli in tumor tissue and surrounding normal mucosal tissue of colorectal cancer patients. Cancer Sci. 2024, 115, 1184–1195. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Ramazzotti, D.; Heide, T.; Spiteri, I.; Fernandez-Mateos, J.; James, C.; Magnani, L.; Graham, T.A.; Sottoriva, A. Contribution of pks(+) E. coli mutations to colorectal carcinogenesis. Nat. Commun. 2023, 14, 7827. [Google Scholar] [CrossRef] [PubMed]
- Lin, O.S. Acquired risk factors for colorectal cancer. Methods Mol. Biol. 2009, 472, 361–372. [Google Scholar]
- Giovannucci, E. Modifiable risk factors for colon cancer. Gastroenterol. Clin. N. Am. 2002, 31, 925–943. [Google Scholar] [CrossRef]
- Pan, S.Y.; Zhou, C.B.; Deng, J.W.; Zhou, Y.L.; Liu, Z.H.; Fang, J.Y. The effects of pks(+) Escherichia coli and bile acid in colorectal tumorigenesis among people with cholelithiasis or cholecystectomy. J. Gastroenterol. Hepatol. 2024, 39, 868–879. [Google Scholar] [CrossRef]
- de Oliveira Alves, N.; Dalmasso, G.; Nikitina, D.; Vaysse, A.; Ruez, R.; Ledoux, L.; Pedron, T.; Bergsten, E.; Boulard, O.; Autier, L.; et al. The colibactin-producing Escherichia coli alters the tumor microenvironment to immunosuppressive lipid overload facilitating colorectal cancer progression and chemoresistance. Gut Microbes 2024, 16, 2320291. [Google Scholar] [CrossRef]
- Akinduti, P.A.; Izevbigie, O.O.; Akinduti, O.A.; Enwose, E.O.; Amoo, E.O. Fecal carriage of colibactin-encoding Escherichia coli associated with colorectal cancer among a student populace. Open Forum Infect. Dis. 2024, 11, ofae106. [Google Scholar] [CrossRef]
- Dalmasso, G.; Cougnoux, A.; Faïs, T.; Bonnin, V.; Mottet-Auselo, B.; Nguyen, H.T.; Sauvanet, P.; Barnich, N.; Jary, M.; Pezet, D.; et al. Colibactin-producing Escherichia coli enhance resistance to chemotherapeutic drugs by promoting epithelial to mesenchymal transition and cancer stem cell emergence. Gut Microbes 2024, 16, 2310215. [Google Scholar] [CrossRef]
- Bosák, J.; Kohoutová, D.; Hrala, M.; Křenová, J.; Morávková, P.; Rejchrt, S.; Bureš, J.; Šmajs, D. Escherichia coli from biopsies differ in virulence genes between patients with colorectal neoplasia and healthy controls. Front. Microbiol. 2023, 14, 1141619. [Google Scholar] [CrossRef]
- Wassenaar, T.M. E. coli and colorectal cancer: A complex relationship that deserves a critical mindset. Crit. Rev. Microbiol. 2018, 44, 619–632. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Zhang, Y.; Ma, Y.; Zhou, X.; Sun, L.; Jiang, C.; Zhang, Z.; Fu, W. Role of the gut microbiota and its metabolites in tumorigenesis or development of colorectal cancer. Adv. Sci. 2023, 10, e2205563. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Fu, M.; Li, X.; Zhang, B.; Wan, C. Enterohemorrhagic Escherichia coli effector EspF triggers oxidative DNA lesions in intestinal epithelial cells. Infect. Immun. 2024, 92, e0000124. [Google Scholar] [CrossRef] [PubMed]
- Nouri, R.; Hasani, A.; Shirazi, K.M.; Sefiadn, F.Y.; Mazraeh, F.N.; Sattarpour, S.; Rezaee, M.A. Colonization of the gut mucosa of colorectal cancer patients by pathogenic mucosa-associated Escherichia coli strains. Diagn. Microbiol. Infect. Dis. 2024, 109, 116229. [Google Scholar] [CrossRef]
- Ayabe, R.I.; White, M.G. Metastasis and the microbiome: The impact of bacteria in disseminated colorectal cancer. Front. Biosci. Landmark Ed. 2024, 29, 152. [Google Scholar] [CrossRef]
- Butt, J.; Jenab, M.; Werner, J.; Fedirko, V.; Weiderpass, E.; Dahm, C.C.; Tjønneland, A.; Olsen, A.; Boutron-Ruault, M.C.; Rothwell, J.A.; et al. Association of pre-diagnostic antibody responses to Escherichia coli and Bacteroides fragilis toxin proteins with colorectal cancer in a European cohort. Gut Microbes 2021, 13, 1–14. [Google Scholar] [CrossRef]
- He, T.; Cheng, X.; Xing, C. The gut microbial diversity of colon cancer patients and the clinical significance. Bioengineered 2021, 12, 7046–7060. [Google Scholar] [CrossRef]
- Iwasaki, M.; Kanehara, R.; Yamaji, T.; Katagiri, R.; Mutoh, M.; Tsunematsu, Y.; Sato, M.; Watanabe, K.; Hosomi, K.; Kakugawa, Y.; et al. Association of Escherichia coli containing polyketide synthase in the gut microbiota with colorectal neoplasia in Japan. Cancer Sci. 2022, 113, 277–286. [Google Scholar] [CrossRef]
- Iyadorai, T.; Mariappan, V.; Vellasamy, K.M.; Wanyiri, J.W.; Roslani, A.C.; Lee, G.K.; Sears, C.; Vadivelu, J. Prevalence and association of pks+ Escherichia coli with colorectal cancer in patients at the University Malaya Medical Centre, Malaysia. PLoS ONE 2020, 15, e0228217. [Google Scholar] [CrossRef]
- Kamali Dolatabadi, R.; Fazeli, H.; Emami, M.H.; Karbasizade, V.; Maghool, F.; Fahim, A.; Rahimi, H. Phenotypic and genotypic characterization of clinical isolates of intracellular adherent-invasive Escherichia coli among different stages, family history, and treated colorectal cancer patients in Iran. Front. Cell. Infect. Microbiol. 2022, 12, 938477. [Google Scholar] [CrossRef]
- López-Siles, M.; Camprubí-Font, C.; Gómez Del Pulgar, E.M.; Sabat Mir, M.; Busquets, D.; Sanz, Y.; Martinez-Medina, M. Prevalence, abundance, and virulence of adherent-invasive Escherichia coli in ulcerative colitis, colorectal cancer, and coeliac disease. Front. Immunol. 2022, 13, 748839. [Google Scholar] [CrossRef] [PubMed]
- Messaritakis, I.; Vogiatzoglou, K.; Tsantaki, K.; Ntretaki, A.; Sfakianaki, M.; Koulouridi, A.; Tsiaoussis, J.; Mavroudis, D.; Souglakos, J. The prognostic value of the detection of microbial translocation in the blood of colorectal cancer patients. Cancers 2020, 12, 1058. [Google Scholar] [CrossRef] [PubMed]
- Mirzarazi, M.; Bashiri, S.; Hashemi, A.; Vahidi, M.; Kazemi, B.; Bandehpour, M. The OmpA of commensal Escherichia coli of CRC patients affects apoptosis of the HCT116 colon cancer cell line. BMC Microbiol. 2022, 22, 139. [Google Scholar] [CrossRef] [PubMed]
- Rondepierre, F.; Meynier, M.; Gagniere, J.; Deneuvy, V.; Deneuvy, A.; Roche, G.; Baudu, E.; Pereira, B.; Bonnet, R.; Barnich, N.; et al. Preclinical and clinical evidence of the association of colibactin-producing Escherichia coli with anxiety and depression in colon cancer. World J. Gastroenterol. 2024, 30, 2817–2826. [Google Scholar] [CrossRef] [PubMed]
- Wachsmannova, L.; Majek, J.; Zajac, V.; Stevurkova, V.; Ciernikova, S. The study of bacteria in biopsies from Slovak colorectal adenoma and carcinoma patients. Neoplasma 2018, 65, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Wegener, H.C. Antibiotic resistance—Linking human and animal health. In Improving Food Safety through a One Health Approach; Institute of Medicine (US)/The National Academies Press: Washington, DC, USA, 2012; A15; pp. 331–349. [Google Scholar]
- Giufrè, M.; Mazzolini, E.; Cerquetti, M.; Brusaferro, S.; CCM2015 One-Health ESBL-Producing Escherichia coli Study Group. Extended-spectrum β-lactamase-producing Escherichia coli from extraintestinal infections in humans and from food-producing animals in Italy: A ‘One Health’ study. Int. J. Antimicrob. Agents 2021, 58, 106433. [Google Scholar] [CrossRef]
- Lupindu, A.M.; Dalsgaard, A.; Msoffe, P.L.; Ngowi, H.A.; Mtambo, M.M.; Olsen, J.E. Transmission of antibiotic-resistant Escherichia coli between cattle, humans and the environment in peri-urban livestock keeping communities in Morogoro, Tanzania. Prev. Vet. Med. 2015, 118, 477–482. [Google Scholar] [CrossRef]
- Gutema, F.D.; Rasschaert, G.; Agga, G.E.; Jufare, A.; Duguma, A.B.; Abdi, R.D.; Duchateau, L.; Crombe, F.; Gabriël, S.; De Zutter, L. Occurrence, molecular characteristics, and antimicrobial resistance of Escherichia coli O157 in cattle, beef, and humans in Bishoftu Town, Central Ethiopia. Foodborne Pathog. Dis. 2021, 18, 1–7. [Google Scholar] [CrossRef]
- Sebastian, S.; Tom, A.A.; Babu, J.A.; Joshy, M. Antibiotic resistance in Escherichia coli isolates from poultry environment and UTI patients in Kerala, India: A comparison study. Comp. Immunol. Microbiol. Infect. Dis. 2021, 75, 101614. [Google Scholar] [CrossRef]
- van Hoek, A.H.A.M.; Dierikx, C.; Bosch, T.; Schouls, L.; van Duijkeren, E.; Visser, M. Transmission of ESBL-producing Escherichia coli between broilers and humans on broiler farms. J. Antimicrob. Chemother. 2020, 75, 543–549. [Google Scholar] [CrossRef]
- Toombs-Ruane, L.J.; Benschop, J.; French, N.P.; Biggs, P.J.; Midwinter, A.C.; Marshall, J.C.; Chan, M.; Drinković, D.; Fayaz, A.; Baker, M.G.; et al. Carriage of extended-spectrum-beta-lactamase- and AmpC beta-lactamase-producing Escherichia coli strains from humans and pets in the same households. Appl. Environ. Microbiol. 2020, 86, e01613-20. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, L.; Buldain, D.; Gortari Castillo, L.; Buchamer, A.; Chirino-Trejo, M.; Mestorino, N. Pet and stray dogs as reservoirs of antimicrobial-resistant Escherichia coli. Int. J. Microbiol. 2021, 2021, 6664557. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, H.; Yu, X.; Zhou, H.; Li, B.; Chen, G.; Ye, Z.; Wang, Y.; Cui, X.; Zheng, Y.; et al. Impact of antimicrobial stewardship managed by clinical pharmacists on antibiotic use and drug resistance in a Chinese hospital, 2010–2016: A retrospective observational study. BMJ Open 2019, 9, e026072. [Google Scholar] [CrossRef] [PubMed]
- Aliabadi, S.; Anyanwu, P.; Beech, E.; Jauneikaite, E.; Wilson, P.; Hope, R.; Majeed, A.; Muller-Pebody, B.; Costelloe, C. Effect of antibiotic stewardship interventions in primary care on antimicrobial resistance of Escherichia coli bacteraemia in England (2013-18): A quasi-experimental, ecological, data linkage study. Lancet Infect. Dis. 2021, 21, 1689–1700. [Google Scholar] [CrossRef] [PubMed]
- Peñalva, G.; Fernández-Urrusuno, R.; Turmo, J.M.; Hernández-Soto, R.; Pajares, I.; Carrión, L.; Vázquez-Cruz, I.; Botello, B.; García-Robredo, B.; Cámara-Mestres, M.; et al. Long-term impact of an educational antimicrobial stewardship programme in primary care on infections caused by extended-spectrum β-lactamase-producing Escherichia coli in the community: An interrupted time-series analysis. Lancet Infect. Dis. 2020, 20, 199–207. [Google Scholar] [CrossRef]
- Esteve-Palau, E.; Grau, S.; Herrera, S.; Sorlí, L.; Montero, M.; Segura, C.; Durán, X.; Horcajada, J.P. Impact of an antimicrobial stewardship program on urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli. Rev. Esp. Quimioter. Span. J. Chemother. 2018, 31, 110–117. [Google Scholar]
- Ziv-On, E.; Friger, M.D.; Saidel-Odes, L.; Borer, A.; Shimoni, O.; Nikonov, A.; Nesher, L. Impact of an antibiotic stewardship program on the incidence of resistant Escherichia coli: A quasi-experimental study. Antibiotics 2021, 10, 179. [Google Scholar] [CrossRef]
- Vanrompay, D.; Nguyen, T.L.A.; Cutler, S.J.; Butaye, P. Antimicrobial resistance in Chlamydiales, Rickettsia, Coxiella, and other intracellular pathogens. Microbiol. Spectr. 2018, 6, 10–128. [Google Scholar] [CrossRef]
- Zomorodipour, A.; Andersson, S.G. Obligate intracellular parasites: Rickettsia prowazekii and Chlamydia trachomatis. FEBS. Lett. 1999, 452, 11–15. [Google Scholar] [CrossRef]
- Schmitz-Esser, S.; Linka, N.; Collingro, A.; Beier, C.L.; Neuhaus, H.E.; Wagner, M.; Horn, M. ATP/ADP translocases: A common feature of obligate intracellular amoebal symbionts related to Chlamydiae and Rickettsiae. J. Bacteriol. 2004, 186, 683–691. [Google Scholar] [CrossRef]
- Samanta, D.; Mulye, M.; Clemente, T.M.; Justis, A.V.; Gilk, S.D. Manipulation of host cholesterol by obligate intracellular bacteria. Front. Cell. Infect. Microbiol. 2017, 7, 165. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Moore, T.F.; Pandit, R.; Burke, A.D.; Borsch, D.M. An overview of selected bacterial infections in cancer, their virulence factors, and some aspects of infection management. Biology 2023, 12, 963. [Google Scholar] [CrossRef]
- Laurila, A.L.; Anttila, T.; Läärä, E.; Bloigu, A.; Virtamo, J.; Albanes, D.; Leinonen, M.; Saikku, P. Serological evidence of an association between Chlamydia pneumoniae infection and lung cancer. Int. J. Cancer 1997, 74, 31–34. [Google Scholar] [CrossRef]
- Koyi, H.; Brandén, E.; Gnarpe, J.; Gnarpe, H.; Arnholm, B.; Hillerdal, G. Chlamydia pneumoniae may be associated with lung cancer. Preliminary report on a seroepidemiological study. APMIS 1999, 107, 828–832. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.A.; Wang, S.P.; Nazar-Stewart, V.; Grayston, J.T.; Vaughan, T.L. Association of Chlamydia pneumoniae immunoglobulin A seropositivity and risk of lung cancer. Cancer Epidemiol. Biomark. Prev. 2000, 9, 1263–1266. [Google Scholar]
- Kocazeybek, B. Chronic Chlamydophila pneumoniae infection in lung cancer, a risk factor: A case-control study. J. Med. Microbiol. 2003, 52 Pt 8, 721–726. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Z.; Xiong, W.; Qiu, M.; Kang, S.; Xu, Q.; Cai, L.; He, F. Combined and interaction effect of Chlamydia pneumoniae infection and smoking on lung cancer: A case-control study in Southeast China. BMC Cancer 2020, 20, 903. [Google Scholar] [CrossRef]
- Chebak, M.; Azzouzi, M.; Chaibi, H.; Fakhkhari, M.; Benamri, I.; Mguil, M.; Hajjout, K.; Zegmout, A.; Tiresse, N.; Rhorfi, I.A.; et al. Assessment of the association of Chlamydia e pneumoniae infection with lung cancer in a Moroccan patients’ cohort. Asian Pac. J. Cancer Prev. 2023, 24, 659–665. [Google Scholar] [CrossRef]
- Liu, Z.; Su, M.; Yu, S.C.; Yin, Z.H.; Zhou, B.S. Association of Chlamydia pneumoniae immunoglobulin G antibodies with the risk of lung cancer among non-smoking women in Liaoning, China. Thorac. Cancer 2010, 1, 126–129. [Google Scholar] [CrossRef]
- Drokow, E.K.; Effah, C.Y.; Agboyibor, C.; Budu, J.T.; Arboh, F.; Kyei-Baffour, P.A.; Xiao, Y.; Zhang, F.; Wu, I.X. Microbial infections as potential risk factors for lung cancer: Investigating the role of human papillomavirus and chlamydia pneumoniae. AIMS Public Health 2023, 10, 627–646. [Google Scholar] [CrossRef]
- Premachandra, N.M.; Jayaweera, J.A.A.S. Chlamydia pneumoniae infections and development of lung cancer: Systematic review. Infect. Agent. Cancer 2022, 17, 11. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.K.; Gaydos, C.A.; Agreda, P.; Holden, J.P.; Chatterjee, N.; Goedert, J.J.; Caporaso, N.E.; Engels, E.A. Chlamydia pneumoniae infection and risk for lung cancer. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1498–1505. [Google Scholar] [CrossRef] [PubMed]
- Aigelsreiter, A.; Gerlza, T.; Deutsch, A.J.; Leitner, E.; Beham-Schmid, C.; Beham, A.; Popper, H.; Borel, N.; Pospischil, A.; Raderer, M.; et al. Chlamydia psittaci Infection in nongastrointestinal extranodal MALT lymphomas and their precursor lesions. Am. J. Clin. Pathol. 2011, 135, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Apostolou, P.; Tsantsaridou, A.; Papasotiriou, I.; Toloudi, M.; Chatziioannou, M.; Giamouzis, G. Bacterial and fungal microflora in surgically removed lung cancer samples. J. Cardiothorac. Surg. 2011, 6, 137. [Google Scholar] [CrossRef] [PubMed]
- Mishkin, N.; Miranda, I.C.; Carrasco, S.E.; Cheleuitte-Nieves, C.; Arbona, R.R.J.; Wingert, C.; Sun, J.C.; Lipman, N.S. Chlamydia muridarum associated pulmonary and urogenital disease and pathology in a colony of enzootically infected Il12rb2 deficient and Stat1 knockout mice. Comp. Med. 2024, 74, 121–129. [Google Scholar] [CrossRef]
- Chu, D.J.; Guo, S.G.; Pan, C.F.; Wang, J.; Du, Y.; Lu, X.F.; Yu, Z.Y. An experimental model for induction of lung cancer in rats by Chlamydia pneumoniae. Asian Pac. J. Cancer Prev. 2012, 13, 2819–2822. [Google Scholar] [CrossRef]
- Rizzo, A.; Carratelli, C.R.; De Filippis, A.; Bevilacqua, N.; Tufano, M.A.; Buommino, E. Transforming activities of Chlamydia pneumoniae in human mesothelial cells. Int. Microbiol. 2014, 17, 185–193. [Google Scholar]
- Chu, D.J.; Yao, D.E.; Zhuang, Y.F.; Hong, Y.; Zhu, X.C.; Fang, Z.R.; Yu, J.; Yu, Z.Y. Azithromycin enhances the favorable results of paclitaxel and cisplatin in patients with advanced non-small cell lung cancer. Genet. Mol. Res. 2014, 13, 2796–2805. [Google Scholar] [CrossRef]
- Chen, Z.; Zhuang, J.; Liu, M.; Xu, X.; Liu, Y.; Yang, S.; Xie, J.; Lin, N.; Lai, F.; He, F. Longitudinal analysis of quality of life in primary lung cancer patients with chlamydia pneumoniae infection: A time-to-deterioration model. BMC Pulm. Med. 2024, 24, 36. [Google Scholar] [CrossRef]
- Zhang, W.; Qiao, T.; Zhou, D.; Yuan, S. Correlation between Chlamydia pneumoniae IgG positive in lung cancer patients and cytokines related to radiation-induced pulmonary lesion. Zhongguo Fei Ai Za Zhi Chin. J. Lung Cancer 2011, 14, 132–136. [Google Scholar]
- Zele-Starcević, L.; Plecko, V.; Budimir, A.; Kalenić, S. Choice of antimicrobial drug for infections caused by Chlamydia trachomatis and Chlamydophila pneumoniae. Acta Med. Croat. 2004, 58, 329–333. [Google Scholar]
- Shao, L.; You, C.; Cao, J.; Jiang, Y.; Liu, Y.; Liu, Q. High treatment failure rate is better explained by resistance gene detection than by minimum inhibitory concentration in patients with urogenital Chlamydia trachomatis infection. Int. J. Infect. Dis. 2020, 96, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Yuan, J.; Wu, Z.; Wang, L.; Wu, S.; Chen, Q.; Zhang, Z.; Chen, Z.; Zou, X.; Hu, Q.; et al. Distribution of drug-resistant genes in alveolar lavage fluid from patients with psittacosis and traceability analysis of causative organisms. Front. Microbiol. 2023, 14, 1182604. [Google Scholar] [CrossRef] [PubMed]
- Borges, V.; Isidro, J.; Correia, C.; Cordeiro, D.; Vieira, L.; Lodhia, Z.; Fernandes, C.; Rodrigues, A.M.; Azevedo, J.; Alves, J.; et al. Transcontinental Dissemination of the L2b/D-Da Recombinant Chlamydia trachomatis lymphogranuloma venereum (LGV) Strain: Need of broad multi-country molecular surveillance. Clin. Infect. Dis. 2021, 73, e1004–e1007. [Google Scholar] [CrossRef] [PubMed]
- Pitt, R.; Doyle, R.; Theilgaard Christiansen, M.; Horner, P.; Hathorn, E.; Alexander, S.; Woodford, N.; Cole, M.; Breuer, J. Whole-genome sequencing of Chlamydia trachomatis isolates from persistently infected patients. Int. J. STD AIDS 2022, 33, 442–446. [Google Scholar] [CrossRef]
- Páez-Canro, C.; Alzate, J.P.; González, L.M.; Rubio-Romero, J.A.; Lethaby, A.; Gaitán, H.G. Antibiotics for treating urogenital Chlamydia trachomatis infection in men and non-pregnant women. Cochrane Database Syst. Rev. 2019, 1, CD010871. [Google Scholar] [CrossRef]
- O’Brien, K.S.; Emerson, P.; Hooper, P.J.; Reingold, A.L.; Dennis, E.G.; Keenan, J.D.; Lietman, T.M.; Oldenburg, C.E. Antimicrobial resistance following mass azithromycin distribution for trachoma: A systematic review. Lancet Infect. Dis. 2019, 19, e14–e25. [Google Scholar] [CrossRef]
- Maldonado-Calderón, J.L.; López-Márquez, F.C.; Ruiz-Flores, P. Azithromycin as a treatment for Chlamydia trachomatis? Gac. Med. Mex. 2018, 154, 689–692. [Google Scholar]
- Chaiwattanarungruengpaisan, S.; Thongdee, M.; Arya, N.; Paungpin, W.; Sirimanapong, W.; Sariya, L. Diversity and genetic characterization of Chlamydia isolated from Siamese crocodiles (Crocodylus siamensis). Acta Trop. 2024, 253, 107183. [Google Scholar] [CrossRef]
- Marti, H.; Suchland, R.J.; Rockey, D.D. The impact of lateral gene transfer in Chlamydia. Front. Cell. Infect. Microbiol. 2022, 12, 861899. [Google Scholar] [CrossRef]
- Unterweger, C.; Schwarz, L.; Jelocnik, M.; Borel, N.; Brunthaler, R.; Inic-Kanada, A.; Marti, H. Isolation of tetracycline-resistant Chlamydia suis from a pig herd affected by reproductive disorders and conjunctivitis. Antibiotics 2020, 9, 187. [Google Scholar] [CrossRef] [PubMed]
- Bommana, S.; Polkinghorne, A. Mini review: Antimicrobial control of Chlamydial infections in animals: Current practices and issues. Front. Microbiol. 2019, 10, 113. [Google Scholar] [CrossRef] [PubMed]
- Wahdan, A.; Rohner, L.; Marti, H.; Bacciarini, L.N.; Menegatti, C.; Di Francesco, A.; Borel, N. Prevalence of Chlamydiaceae and tetracycline resistance genes in wild boars of Central Europe. J. Wildl. Dis. 2020, 56, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, A.; Morandi, F.; Marti, H.; Santagati, C.; Borel, N. Chlamydia suis and tetracycline resistance genes in Italian wild boar (Sus scrofa). Vet. Ital. 2021, 57, 151–154. [Google Scholar] [CrossRef]
- Shima, K.; Coopmeiners, J.; Graspeuntner, S.; Dalhoff, K.; Rupp, J. Impact of micro-environmental changes on respiratory tract infections with intracellular bacteria. FEBS Lett. 2016, 590, 3887–3904. [Google Scholar] [CrossRef]
- Matsuo, J.; Sakai, K.; Okubo, T.; Yamaguchi, H. Chlamydia pneumoniae enhances Interleukin 8 (IL-8) production with reduced azithromycin sensitivity under hypoxia. APMIS 2019, 127, 131–138. [Google Scholar] [CrossRef]
- Harvie, M.C.; Carey, A.J.; Armitage, C.W.; O’Meara, C.P.; Peet, J.; Phillips, Z.N.; Timms, P.; Beagley, K.W. Chlamydia-infected macrophages are resistant to azithromycin treatment and are associated with chronic oviduct inflammation and hydrosalpinx development. Immunol. Cell Biol. 2019, 97, 865–876. [Google Scholar] [CrossRef]
- Fong, C.K.; Yang-Feng, T.L.; Lerner-Tung, M.B. Re-examination of the McCoy cell line for confirmation of its mouse origin: Karyotyping, electron microscopy and reverse transcriptase assay for endogenous retrovirus. Clin. Diagn. Virol. 1994, 2, 95–103. [Google Scholar] [CrossRef]
- Gorphe, P. A comprehensive review of Hep-2 cell line in translational research for laryngeal cancer. Am. J. Cancer Res. 2019, 9, 644–649. [Google Scholar]
- Wang, S.A.; Papp, J.R.; Stamm, W.E.; Peeling, R.W.; Martin, D.H.; Holmes, K.K. Evaluation of antimicrobial resistance and treatment failures for Chlamydia trachomatis: A meeting report. J. Infect. Dis. 2005, 191, 917–923. [Google Scholar] [CrossRef]
- Mestrovic, T.; Ljubin-Sternak, S. Molecular mechanisms of Chlamydia trachomatis resistance to antimicrobial drugs. Front. Biosci. Landmark Ed. 2018, 23, 656–670. [Google Scholar] [CrossRef] [PubMed]
- Benamri, I.; Azzouzi, M.; Sanak, K.; Moussa, A.; Radouani, F. An overview of genes and mutations associated with Chlamydiae species’ resistance to antibiotics. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 59. [Google Scholar] [CrossRef] [PubMed]
- Koskela, P.; Anttila, T.; Bjørge, T.; Brunsvig, A.; Dillner, J.; Hakama, M.; Hakulinen, T.; Jellum, E.; Lehtinen, M.; Lenner, P.; et al. Chlamydia trachomatis infection as a risk factor for invasive cervical cancer. Int. J. Cancer 2000, 85, 35–39. [Google Scholar] [CrossRef]
- Bhuvanendran Pillai, A.; Mun Wong, C.; Dalila Inche Zainal Abidin, N.; Fazlinda Syed Nor, S.; Fathulzhafran Mohamed Hanan, M.; Rasidah Abd Ghani, S.; Afzan Aminuddin, N.; Safian, N. Chlamydia infection as a risk factor for cervical cancer: A systematic review and meta-analysis. Iran. J. Public Health 2022, 51, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Idahl, A.; Le Cornet, C.; González Maldonado, S.; Waterboer, T.; Bender, N.; Tjønneland, A.; Hansen, L.; Boutron-Ruault, M.C.; Fournier, A.; Kvaskoff, M.; et al. Serologic markers of Chlamydia trachomatis and other sexually transmitted infections and subsequent ovarian cancer risk: Results from the EPIC cohort. Int. J. Cancer 2020, 147, 2042–2052. [Google Scholar] [CrossRef]
- Krupp, K.; Madhivanan, P. Antibiotic resistance in prevalent bacterial and protozoan sexually transmitted infections. Indian J. Sex. Transm. Dis. AIDS 2015, 36, 3–8. [Google Scholar]
- Wang, S.; Guo, R.; Guo, Y.L.; Shao, L.L.; Liu, Y.; Wei, S.J.; Liu, Y.J.; Liu, Q.Z. Biological effects of chlamydiaphage phiCPG1 capsid protein Vp1 on chlamydia trachomatis in vitro and in vivo. J. Huazhong Univ. Sci. Technol. Med. Sci. 2017, 37, 115–121. [Google Scholar] [CrossRef]
- Rosenwald, A.G.; Murray, B.; Toth, T.; Madupu, R.; Kyrillos, A.; Arora, G. Evidence for horizontal gene transfer between Chlamydophila pneumoniae and Chlamydia phage. Bacteriophage 2014, 4, e965076. [Google Scholar] [CrossRef]
- Śliwa-Dominiak, J.; Suszyńska, E.; Pawlikowska, M.; Deptuła, W. Chlamydia bacteriophages. Arch. Microbiol. 2013, 195, 765–771. [Google Scholar] [CrossRef]
- Hoestgaard-Jensen, K.; Christiansen, G.; Honoré, B.; Birkelund, S. Influence of the Chlamydia pneumoniae AR39 bacteriophage CPAR39 on chlamydial inclusion morphology. FEMS Immunol. Med. Microbiol. 2011, 62, 148–1456. [Google Scholar] [CrossRef]
- Salim, O.; Skilton, R.J.; Lambden, P.R.; Fane, B.A.; Clarke, I.N. Behind the chlamydial cloak: The replication cycle of chlamydiaphage Chp2, revealed. Virology 2008, 377, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Liu, Q.; Lian, T.; Shao, L. The phiCPG1 chlamydiaphage can infect Chlamydia trachomatis and significantly reduce its infectivity. Virus Res. 2019, 267, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Summers, W.C. The strange history of phage therapy. Bacteriophage 2012, 2, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Chanishvili, N. Phage therapy--history from Twort and d’Herelle through Soviet experience to current approaches. Adv. Virus Res. 2012, 83, 3–40. [Google Scholar]
- Brives, C.; Pourraz, J. Phage therapy as a potential solution in the fight against AMR: Obstacles and possible futures. Palgrave Commun. 2020, 6, 100. [Google Scholar] [CrossRef]
- Principi, N.; Silvestri, E.; Esposito, S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front. Pharmacol. 2019, 10, 513. [Google Scholar] [CrossRef]
- Sharma, S.; Chatterjee, S.; Datta, S.; Prasad, R.; Dubey, D.; Prasad, R.K.; Vairale, M.G. Bacteriophages and its applications: An overview. Folia Microbiol. 2017, 62, 17–55. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Z.; Xia, Y.; Chen, Z.; Zong, R.; Meng, Q.; Wang, W.; Zhuang, W.; Meng, X.; Chen, G. Characterization of an Escherichia coli phage Tequatrovirus YZ2 and its application in bacterial wound infection. Virology 2024, 597, 110155. [Google Scholar] [CrossRef]
- Tomat, D.; Mercanti, D.; Balagué, C.; Quiberoni, A. Phage biocontrol of enteropathogenic and Shiga toxin-producing Escherichia coli during milk fermentation. Lett. Appl. Microbiol. 2013, 57, 3–10. [Google Scholar] [CrossRef]
- Sarker, S.A.; Sultana, S.; Reuteler, G.; Moine, D.; Descombes, P.; Charton, F.; Bourdin, G.; McCallin, S.; Ngom-Bru, C.; Neville, T.; et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: A randomized trial in children from Bangladesh. EBioMedicine 2016, 4, 124–137. [Google Scholar] [CrossRef]
- Nikulin, N.; Nikulina, A.; Zimin, A.; Aminov, R. Phages for treatment of Escherichia coli infections. Prog. Mol. Biol. Transl. Sci. 2023, 200, 171–206. [Google Scholar] [PubMed]
- Pakbin, B.; Brück, W.M.; Rossen, J.W.A. Virulence factors of enteric pathogenic Escherichia coli: A review. Int. J. Mol. Sci. 2021, 22, 9922. [Google Scholar] [CrossRef] [PubMed]
- Galtier, M.; De Sordi, L.; Sivignon, A.; de Vallée, A.; Maura, D.; Neut, C.; Rahmouni, O.; Wannerberger, K.; Darfeuille-Michaud, A.; Desreumaux, P.; et al. Bacteriophages targeting adherent invasive Escherichia coli strains as a promising new treatment for Crohn’s disease. J. Crohns Colitis 2017, 11, 840–847. [Google Scholar] [CrossRef]
- Titécat, M.; Rousseaux, C.; Dubuquoy, C.; Foligné, B.; Rahmouni, O.; Mahieux, S.; Desreumaux, P.; Woolston, J.; Sulakvelidze, A.; Wannerberger, K.; et al. Safety and efficacy of an AIEC-targeted bacteriophage cocktail in a mice colitis model. J. Crohns Colitis 2022, 16, 1617–1627. [Google Scholar] [CrossRef] [PubMed]
Investigators | Study Design | Findings |
---|---|---|
Bengtsson et al., 2016 (Sweden) [26] | Patients with poor pouch function after restorative operative procedure for ulcerative colitis: probiotic group (n = 17, Lactobacillus plantarum and Bifidobacterium infantis) and placebo (n = 16). | There was no statistically significant difference between the two groups—probiotics did not improve pouch-associated dysfunction. |
Fan et al., 2019 (China) [27] | 40 patients with IBD: control group (n = 19, treatment with mesalazine) and probiotic group (n = 21, mesalazine + probiotics). | After treatment, fecal bacterial counts decreased significantly in both groups, but the number of Lactobacilli and Bifidobacterium increased significantly only in the probiotic group, which also showed lower levels of inflammatory markers (IL-6 and hs-CRP). |
Fedorak et al., 2015 (Canada) [28] | Patients with Crohn’s disease within 1 month of ileocolonic resection and re-anastomosis: probiotic group (n = 59; received Lactobacillus—4 strains, Bifidobacterium—3 strains, and Streptococcus salivarius—thermophilus), and placebo (n = 60). | At day 90, there were no statistical differences between the probiotic and placebo groups. However, lower mucosal levels of inflammatory cytokines (e.g., IL-1β and IL-8) and a lower rate of recurrence in the probiotic group were noted. |
Groeger et al., 2013 (Ireland) [29] | Probiotic feeding: ulcerative colitis (n = 22) for 6 weeks; psoriasis (n = 26), chronic fatigue syndrome (n = 48), healthy subjects with probiotic intake (n = 10), and healthy subjects with placebo (n = 12) for 8 weeks. | Probiotic consumption (Bifidobacterium infantis) resulted in diminished blood CRP levels in all disorders compared to placebo. Blood levels of IL-6 were decreased in ulcerative colitis. |
Matsuoka et al., 2018 (Japan) [30] | 195 patients with ulcerative colitis: placebo (n = 97) and probiotic group (n = 98, Bifidobacterium breve and Lactobacillus acidophilus). | There were no significant differences between the two groups. However, regardless of treatment, there was a significant reduction in Bifidobacterium species before relapse. |
Palumbo et al., 2016 (Italy) [31] | Ulcerative colitis: 30 patients—mesalazine treatment, 30 patients—mesalazine + probiotics (Lactobacillus acidophilus, Lactobacillus salivarius, and Bifidobacterium bifidus). The treatment was continued for 2 years. | Patients with combination treatment displayed better improvement in comparison with the mesalazine group. |
Shadnoush et al., 2015 (Iran) [32] | 105 IBD patients with probiotic yogurt, 105 IBD patients with placebo, and 95 healthy persons with yogurt (intervention for 8 weeks). | The mean numbers of Lactobacillus, Bifidobacterium, and Bacteroides in the stool specimens among IBD patients receiving yogurt were significantly increased. |
Tamaki et al., 2016 (Japan) [33] | Patients with active ulcerative colitis: probiotic group (n = 24, Bifidobacterium longum) and placebo (n = 23)—clinical trial for 8 weeks. | Probiotic supplementation decreased UCDAI scores. |
Investigators, Place of Study, and Study Plan | Results in Brief |
---|---|
Butt et al., 2021 (6 Western European countries) [57] The European Prospective Investigation into Nutrition and Cancer (EPIC) study—pre-diagnostic serum samples from incident colon cancer cases and matched controls (n = 442 pairs). | Immunoglobulin A (IgA) seropositivity to E. coli protein Ag43 and IgG seropositivity to enterotoxigenic Bacteroides fragilis toxin BFT-1 were significantly associated with higher odds of developing cancer. |
He et al., 2021 (China) [58] Fecal samples from 61 colon cancer patients and 72 normal persons were analyzed to evaluate the microbial diversity and composition. | In comparison to the normal control group, the numbers of E. coli, along with Prevetella copri, were significantly higher among cancer patients. |
Iwasaki et al., 2022 (Japan) [59] 543 participants with colonic growth (22 cancer and 521 adenomas) and 425 participants with normal colon (controls). The study aimed to assess the prevalence of E. coli containing polyketide synthase (pks). | The percentage of pks+ E coli was 32.6% among cases (cancer and adenoma) and 30.8% among controls. There was no statistically significant association between pks+ E coli and colonic lesions. |
Iyadorai et al., 2020 (Malaysia) [60] Fresh tissue samples from 48 colon cancer patients (both malignant and nearby non-malignant tissues) and 23 healthy controls (normal colon tissues) were collected for the detection of pks+ E coli. | 8 colon cancer patients (16.7%) and 1 healthy control (4.3%) were found to be positive for pks+ E. coli. |
Kamali Dolatabadi et al., 2022 (Iran) [61] Colorectal tissue samples were collected from 150 subjects during colonoscopy: 30 subjects with normal results, 30 subjects with normal results but a positive family history of colon cancer, 30 subjects with normal results but a history of colon cancer, 30 patients with adenocarcinoma-in-situ, and 30 patients with adenocarcinoma. | 74 intracellular E. coli were isolated from all subjects (among them, there were 24 adherent-invasive E. coli/AIEC strains). The majority were isolated from rectal specimens (31/74). AIEC strains generally belonged to B2 and D phylogenetic groups. |
López-Siles et al., 2022 (Spain) [62] AIEC phenotype was examined in 4233 E. coli isolated from the ileum and colon biopsy samples from 14 ulcerative colitis and 15 colon cancer patients. | Regarding the prevalence of AIEC, one cancer patient had AIEC-like isolates (6.7%), whereas 5 patients with ulcerative colitis harbored AIEC-like isolates (35.7%). All AIEC-like strains belonged to the B1 phylogroup except one, which was isolated from an ulcerative colitis patient. |
Messaritakis et al., 2020 (Greece) [63] Microbial DNA fragments in peripheral blood were analyzed for the β-galactosidase gene of E. coli (along with the glutamine synthase gene of B. fragilis and DNA coding for 5.8S rRNA of Candida albicans) from 397 colon cancer patients and 32 healthy blood donors. | E. coli β-galactosidase gene was detected in 104 patients (26.2%). Detection of these microbial fragments was significantly associated with metastatic disease and prognosis. |
Mirzarazi et al., 2022 (Iran) [64] Fecal samples were collected from 20 newly diagnosed colon cancer patients (before treatment) and 50 healthy persons. | 55% of E.coli isolates from patients’ samples, and 26% of E. coli from healthy persons belonged to the B2 phylogenetic group. Moreover, the outer membrane protein A (OmpA) was overexpressed in the E. coli B2 phylogenetic group isolated from cancer patients, compared to the control group. The protein significantly decreased the expression of pro-apoptotic genes (Bax and Bak) and p53. |
Rondepierre et al., 2024 (France) [65] Patients with colon cancer were evaluated for present and lifetime psychiatric problems. Out of 64 suitable patients, 12 participated. In this limited cohort, patients were followed up after surgery. | All patients with colonization by colibactin-producing E. coli presented with psychiatric disorders several years before cancer diagnosis. |
Wachsmannova et al., 2018 (Slovakia) [66] Analysis was performed to identify the presence of intracellular bacteria in colorectal biopsy samples that were collected from 10 colon cancer patients, 10 cases with adenomas, and 9 healthy controls. | The noticeable increase in intracellular E. coli in patients with carcinoma and colorectal adenomas was statistically significant in comparison to biopsy tissue samples from controls. |
Bacteria | Species | Diseases | |
---|---|---|---|
Chlamydiae | Chlamydia trachomatis | Trachoma biovar (serovars- A, B, Ba, C) | Trachoma: chronic conjunctivitis, visual impairment, blindness |
Genital tract biovar (serovars- D, E, F, G, H, I, J, K) | Non-specific urethritis, prostatitis, epididymitis, infertility, cervicitis, pelvic inflammatory disease, ectopic pregnancy, premature delivery, inclusion conjunctivitis, neonatal pneumonia; can promote HIV infection and cervical cancer pathogenesis | ||
LGV biovar (serovars- L1, L2, L3) | Lymphogranuloma venereum | ||
Chlamydia pneumoniae | Pharyngitis, sinusitis, ear infection, laryngitis, bronchitis, pneumonia; may contribute to asthma, arthritis, atherosclerosis, myocarditis and encephalitis | ||
Chlamydia psittaci | Respiratory infection (psittacosis), pneumonia; can initiate complications such as hepatitis, endocarditis, and inflammation of the nerves/brain | ||
Spread by (vectors) | |||
Rickettsiae | Rickettsia rickettsii | Ticks | Rocky Mountain spotted fever |
Rickettsia akari | Mouse mite | Rickettsialpox | |
Rickettsia conorii | Ticks | Mediterranean spotted fever or Boutonneuse fever (ssp. Conorii, spread by dog tick); Indian tick typhus (ssp. Indica); Israeli spotted fever (ssp. Israelensis) | |
Rickettsia sibirica | Ticks | North Asian or Siberian tick typhus | |
Rickettsia australis | Ticks | Australian tick typhus or Queensland tick typhus | |
Rickettsia felis | Flea | Pseudotyphus of California | |
Rickettsia japonica | Ticks | Japanese spotted fever | |
Rickettsia africae | Ticks | African tick bite fever | |
Rickettsia prowazekii | Body lice | Epidemic typhus or sylvatic typhus (contact with flying squirrels) | |
Rickettsia typhi | Fleas | Endemic typhus or murine typhus | |
Orientia tsutsugamushi (family Rickettsiaceae) | Mites | Scrub typhus |
Antimicrobial Agents | Chlamydia Species | Mutated Genes |
---|---|---|
Macrolides (azithromycin, erythromycin) | C. trachomatis | 23S rRNA, rplD, rplV |
C. psittaci | 23S rRNA | |
Tetracyclines (tetracycline, doxycycline, minocycline) | C. trachomatis | tetA, tetR, rpoB |
Fluoroquinolone (ciprofloxacin, ofloxain, sparfloxacin) | C. trachomatis | gyrA, parC, ygeD |
C. pneumoniae | gyrA | |
Rifamycins (rifampin) | C. trachomatis, C. pneumoniae | rpoB |
Aminoglycosides (gentamicin, streptomycin, kasugamycin) | C. trachomatis | ksgA |
C. psittaci | 16S rRNA, rpoB | |
Lincomycin | C. trachomatis | 23S rRNA |
Fosfomycin | C. trachomatis | murA |
Trimethoprim | C. trachomatis | folA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ray, A.; Moore, T.F.; Naik, D.S.L.; Borsch, D.M. Insights into the Two Most Common Cancers of Primitive Gut-Derived Structures and Their Microbial Connections. Medicina 2024, 60, 1515. https://doi.org/10.3390/medicina60091515
Ray A, Moore TF, Naik DSL, Borsch DM. Insights into the Two Most Common Cancers of Primitive Gut-Derived Structures and Their Microbial Connections. Medicina. 2024; 60(9):1515. https://doi.org/10.3390/medicina60091515
Chicago/Turabian StyleRay, Amitabha, Thomas F. Moore, Dayalu S. L. Naik, and Daniel M. Borsch. 2024. "Insights into the Two Most Common Cancers of Primitive Gut-Derived Structures and Their Microbial Connections" Medicina 60, no. 9: 1515. https://doi.org/10.3390/medicina60091515
APA StyleRay, A., Moore, T. F., Naik, D. S. L., & Borsch, D. M. (2024). Insights into the Two Most Common Cancers of Primitive Gut-Derived Structures and Their Microbial Connections. Medicina, 60(9), 1515. https://doi.org/10.3390/medicina60091515