Genomic Insights into Blood Pressure Regulation: Exploring Ion Channel and Transporter Gene Variations in Jordanian Hypertensive Individuals
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Gene and SNP Selection
2.3. Extraction and Genotyping of Genomic DNA
2.4. Statistical Analyses
3. Results
3.1. General Characteristics and Hardy–Weinberg Equilibrium (HWE) Test
3.2. Genotypic Distribution and Genetic Model Analysis of Polymorphisms with HTN
3.3. Genotype–Phenotype Association Analysis of HTN Patients
3.4. Haplotype Analysis of the KCNJ1, NEDD4L, and BDKRB2 Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newton-Cheh, C.; Larson, M.G.; Vasan, R.S.; Levy, D.; Bloch, K.D.; Surti, A.; Guiducci, C.; Kathiresan, S.; Benjamin, E.J.; Struck, J.; et al. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat. Genet. 2009, 41, 348–353. [Google Scholar] [CrossRef]
- Xi, B.; Shen, Y.; Zhao, X.; Chandak, G.R.; Cheng, H.; Hou, D.; Li, Y.; Ott, J.; Zhang, Y.; Wang, X.; et al. Association of common variants in/near six genes (ATP2B1, CSK, MTHFR, CYP17A1, STK39, and FGF5) with blood pressure/hypertension risk in chinese children. J. Hum. Hypertens. 2014, 28, 32–36. [Google Scholar] [CrossRef] [PubMed]
- McDonough, C.W.; Burbage, S.E.; Duarte, J.D.; Gong, Y.; Langaee, T.Y.; Turner, S.T.; Gums, J.G.; Chapman, A.B.; Bailey, K.R.; Beitelshees, A.L.; et al. Association of variants in NEDD4L with blood pressure response and adverse cardiovascular outcomes in hypertensive patients treated with thiazide diuretics. J. Hypertens. 2013, 31, 698–704. [Google Scholar] [CrossRef]
- Tobin, M.D.; Raleigh, S.M.; Newhouse, S.; Braund, P.; Bodycote, C.; Ogleby, J.; Cross, D.; Gracey, J.; Hayes, S.; Smith, T.; et al. Association of WNK1 gene polymorphisms and haplotypes with ambulatory blood pressure in the general population. Circulation 2005, 112, 3423–3429. [Google Scholar] [CrossRef]
- Newhouse, S.; Farrall, M.; Wallace, C.; Hoti, M.; Burke, B.; Howard, P.; Onipinla, A.; Lee, K.; Shaw-Hawkins, S.; Dobson, R.; et al. Polymorphisms in the WNK1 gene are associated with blood pressure variation and urinary potassium excretion. PLoS ONE 2009, 4, e5003. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhu, J.; Ren, L.; Ma, S.; Shen, B.; Yu, J.; Zhang, R.; Zhang, M.; He, Y.; Peng, H. Association between NPPA promoter methylation and hypertension: Results from Gusu cohort and replication in an independent sample. Clin. Epigenetics 2020, 12, 133. [Google Scholar] [CrossRef]
- Jamshidi, J.; Asnaashari, A.; Alipoor, R.; Mohammadi, S.; Roostaei, S.; Samadian, M.M.; Aliabadi, S.H.; Bahramali, E. ATP2B1rs2681472 and STK39 rs35929607 polymorphisms and risk of hypertension in iranian population. Med. J. Islam. Repub. Iran. 2018, 32, 14. [Google Scholar] [CrossRef]
- Xi, B.; Chen, M.; Chandak, G.R.; Shen, Y.; Yan, L.; He, J.; Mou, S.H. STK39 polymorphism is associated with essential hypertension: A systematic review and meta-analysis. PLoS ONE 2013, 8, e59584. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, F.; Lian, Q.; Ren, J.; Ren, K.; Wang, Y.; Wang, D.; Chu, C.; Wang, L.; Guo, T.; et al. Lack of family-based association between common variations in WNK1 and blood pressure level. Med. Sci. Monit. 2014, 20, 1958–1962. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, H.; Yang, J.; Zhou, L.; Hong, J.; Guo, Y.; Luo, W.; Chang, J. Genetic variation of NEDD4L is associated with essential hypertension in female Kazakh general population: A case-control study. BMC Med. Genet. 2009, 10, 130. [Google Scholar] [CrossRef] [PubMed]
- Persu, A.; Evenepoel, L.; Jin, Y.; Mendola, A.; Ngueta, G.; Yang, W.-Y.; Gruson, D.; Horman, S.; Staessen, J.A.; Vikkula, M. STK39 and WNK1 are potential hypertension susceptibility genes in the belhypgen cohort. Medicine 2016, 95, e2968. [Google Scholar] [CrossRef]
- Wu, Y.; Pan, X.; Jin, X. Haplotype-based association study between PRCP gene polymorphisms and essential hypertension in Hani minority group from a remote region of china. J. Renin. Angiotensin. Aldosterone Syst. 2020, 21, 1470320320981316. [Google Scholar] [CrossRef]
- Zhao, H.; Qi, Y.; Wang, Y.; Wang, Y.; Lu, C.; Xiao, Y.; Wang, B.; Niu, W. Interactive contribution of serine/threonine kinase 39 gene multiple polymorphisms to hypertension among northeastern Han Chinese. Sci. Rep. 2014, 4, 5116. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ji, L.D.; Zhang, L.N.; Dong, C.Z.; Fei, L.J.; Hua, S.; Tsai, J.Y.; Zhang, Y.P. Lack of association between STK39 and hypertension in the Chinese population. J. Hum. Hypertens. 2013, 27, 294–297. [Google Scholar] [CrossRef]
- Hou, W.; Liu, M.; Yu, S.; Wang, X.; Du, H.; Zhou, L.; Cao, W. Association of STK39 gene polymorphism with response to hydrochlorothiazide among ethnic Han Chinese with essential hypertension. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2019, 36, 639–644. [Google Scholar]
- Newhouse, S.J.; Wallace, C.; Dobson, R.; Mein, C.; Pembroke, J.; Farrall, M.; Clayton, D.; Brown, M.; Samani, N.; Dominiczak, A.; et al. Haplotypes of the WNK1 gene associate with blood pressure variation in a severely hypertensive population from the british genetics of hypertension study. Hum. Mol. Genet. 2005, 14, 1805–1814. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Cheng, M.; Wang, W.; Zhao, R.; Liu, Z. Involvement of WNK1-mediated potassium channels in the sexual dimorphism of blood pressure. Biochem. Biophys. Res. Commun. 2017, 485, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, Y.; Kamide, K.; Inamoto, N.; Tanaka, C.; Banno, M.; Takiuchi, S.; Kawano, Y.; Tomoike, H.; Miyata, T. Identification of 108 SNPs in TSC, WNK1, and WNK4 and their association with hypertension in a japanese general population. J. Hum. Genet. 2004, 49, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Bergaya, S.; Faure, S.; Baudrie, V.; Rio, M.; Escoubet, B.; Bonnin, P.; Henrion, D.; Loirand, G.; Achard, J.-M.; Jeunemaitre, X.; et al. WNK1 regulates vasoconstriction and blood pressure response to α 1-adrenergic stimulation in mice. Hypertension 2011, 58, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Hadchouel, J.; Soukaseum, C.; Büsst, C.; Zhou, X.-O.; Baudrie, V.; Zürrer, T.; Cambillau, M.; Elghozi, J.-L.; Lifton, R.P.; Loffing, J.; et al. Decreased ENaC expression compensates the increased NCC activity following inactivation of the kidney-specific isoform of WNK1 and prevents hypertension. Proc. Natl. Acad. Sci. USA 2010, 107, 18109–18114. [Google Scholar] [CrossRef] [PubMed]
- Cun, Y.; Li, J.; Tang, W.; Sheng, X.; Yu, H.; Zheng, B.; Xiao, C. Association of WNK1 exon 1 polymorphisms with essential hypertension in Hani and Yi minorities of China. J. Genet. Genom. 2011, 38, 165–171. [Google Scholar] [CrossRef]
- Manunta, P.; Lavery, G.; Lanzani, C.; Braund, P.S.; Simonini, M.; Bodycote, C.; Zagato, L.; Carpini, S.D.; Tantardini, C.; Brioni, E.; et al. Physiological interaction between alpha-adducin and WNK1-NEDD4L pathways on sodium-related blood pressure regulation. Hypertension 2008, 52, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gong, W.-Y.; Liu, M.; Zhou, W.; Rao, J.; Li, Y.-Q.; Wu, J.-H.; Luo, D.; Wang, C.; Peng, H. A variant in the NEDD4L gene associates with hypertension in chronic kidney disease in the southeastern han chinese population. Am. J. Hypertens. 2020, 33, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Svensson-Färbom, P.; Wahlstrand, B.; Almgren, P.; Dahlberg, J.; Fava, C.; Kjeldsen, S.; Hedner, T.; Melander, O. A functional variant of the NEDD4L gene is associated with beneficial treatment response with β-blockers and diuretics in hypertensive patients. J. Hypertens. 2011, 29, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A. Advancing management of hypertension through pharmacogenomics. Ann. Med. 2012, 44 (Suppl. 1), S17–S22. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.S.; Hong, K.W.; Lim, J.E.; Hwang, S.Y.; Lee, S.H.; Shin, C.; Park, H.K.; Oh, B. Genetic variations in the sodium balance-regulating genes ENaC, NEDD4L, NDFIP2 and USP2 influence blood pressure and hypertension. Kidney Blood Press. Res. 2010, 33, 15–23. [Google Scholar] [CrossRef]
- Niu, W. The relationship between natriuretic peptide precursor a gene T2238C polymorphism and hypertension: A meta-analysis. Int. J. Hypertens. 2011, 2011, 653698. [Google Scholar] [CrossRef] [PubMed]
- Nyholt, D.R. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am. J. Hum. Genet. 2004, 74, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ji, L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 2005, 95, 221–227. [Google Scholar] [CrossRef]
- Delles, C.; McBride, M.W.; Graham, D.; Padmanabhan, S.; Dominiczak, A.F. Genetics of hypertension: From experimental animals to humans. Biochim. Biophys. Acta 2010, 1802, 1299–1308. [Google Scholar] [CrossRef]
- Cope, G.; Murthy, M.; Golbang, A.P.; Hamad, A.; Liu, C.-H.; Cuthbert, A.W.; O’shaughnessy, K.M. WNK1 affects surface expression of the ROMK potassium channel independent of WNK4. J. Am. Soc. Nephrol. 2006, 17, 1867–1874. [Google Scholar] [CrossRef] [PubMed]
- Subramanya, A.R.; Ellison, D.H. Distal convoluted tubule. Clin. J. Am. Soc. Nephrol. 2014, 9, 2147–2163. [Google Scholar] [CrossRef] [PubMed]
- Richardson, C.; Rafiqi, F.H.; Karlsson, H.K.R.; Moleleki, N.; Vandewalle, A.; Campbell, D.G.; Morrice, N.A.; Alessi, D.R. Activation of the thiazide-sensitive Na+-Cl− cotransporter by the WNK-regulated kinases SPAK and OSR1. J. Cell Sci. 2008, 121 Pt 5, 675–684. [Google Scholar] [CrossRef]
- Brown, A.; Meor Azlan, N.F.; Wu, Z.; Zhang, J. WNK-SPAK/OSR1-NCC kinase signaling pathway as a novel target for the treatment of salt-sensitive hypertension. Acta Pharmacol. Sin. 2021, 42, 508–517. [Google Scholar] [CrossRef]
- Huang, C.C.; Chung, C.M.; Hung, S.I.; Leu, H.B.; Lin, L.Y.; Huang, P.H.; Wu, T.C.; Lin, S.J.; Pan, W.H.; Chen, J.W. Genetic predictors of thiazide-induced serum potassium changes in nondiabetic hypertensive patients. Hypertens. Res. 2014, 37, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Liu, J.; Liu, Y.; Wang, H.; Wang, Z.; Liu, J.; Wen, S. Association study of WNK1 genetic variants and essential hypertension risk in the Northern Han Chinese in Beijing. Front. Genet. 2023, 14, 1234536. [Google Scholar] [CrossRef] [PubMed]
- Mandai, S.; Mori, T.; Sohara, E.; Rai, T.; Uchida, S. Generation of Hypertension-Associated STK39 Polymorphism Knockin Cell Lines with the Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 System. Hypertension 2015, 66, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Kunnas, T.; Määttä, K.; Nikkari, S.T. Variant rs6749447 (T > G) in the serine threonine kinase gene is associated with cardiovascular complications, the Tampere adult population cardiovascular risk study. Medicine 2021, 100, e27566. [Google Scholar] [CrossRef] [PubMed]
- Araki, N.; Umemura, M.; Miyagi, Y.; Yabana, M.; Miki, Y.; Tamura, K.; Uchino, K.; Aoki, R. Expression, transcription, and possible antagonistic interaction of the human Nedd4L gene variant: Implications for essential hypertension. Hypertension 2008, 51, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Mo, X.; Zhou, Z.; Zhu, Z.; HuangFu, X.; Xu, T.; Wang, A.; Guo, Z.; Zhang, Y. Associations among NPPA gene polymorphisms, serum ANP levels, and hypertension in the Chinese Han population. J. Hum. Hypertens. 2019, 33, 641–647. [Google Scholar] [CrossRef]
- Lynch, A.I.; Boerwinkle, E.; Davis, B.R.; Ford, C.E.; Eckfeldt, J.H.; Leiendecker-Foster, C.; Arnett, D.K. Pharmacogenetic association of the NPPA T2238C genetic variant with cardiovascular disease outcomes in patients with hypertension. JAMA 2008, 299, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Liu, F.; Li, M.; He, J.; Huang, J.; Rao, D.C.; Hixson, J.E.; Gu, C.; Kelly, T.N.; Chen, S.; et al. Associations of variants in the CACNA1A and CACNA1C genes with longitudinal blood pressure changes and hypertension incidence: The gensalt study. Am. J. Hypertens. 2016, 29, 1301–1306. [Google Scholar] [CrossRef]
- Johnson, R.; Dludla, P.; Mabhida, S.; Benjeddou, M.; Louw, J.; February, F. Pharmacogenomics of amlodipine and hydrochlorothiazide therapy and the quest for improved control of hypertension: A mini review. Heart Fail. Rev. 2019, 24, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Bremer, T.; Man, A.; Kask, K.; Diamond, C. CACNA1C polymorphisms are associated with the efficacy of calcium channel blockers in the treatment of hypertension. Pharmacogenomics 2006, 7, 271–279. [Google Scholar] [CrossRef] [PubMed]
Gene | SNP_ID | Position | SNP | Functional Annotation |
---|---|---|---|---|
KCNJ1 | rs11600347 | 11:128863419 | C>A MA | Intron variant |
rs12795437 | 11:128860981 | G>C MA | Intron variant | |
rs59172778 | 11:128839231 | A>G MA | Missense variant | |
rs675388 | 11:128838114 | G>A MA | 3′-UTR variant | |
WNK1 | rs880054 | 12:879392 | C MA>A | Intron variant |
LUC7L2 | rs6947309 | 7:139351084 | C>T MA | Intron variant |
STK39 | rs6749447 | 2:168184876 | T>G MA | Intron variant |
NEDD4L | rs292449 | 18:58227849 | G>C MA | 5′-UTR variant |
rs75982813 | 18:58043776 | A>G MA | 2KB_upstream_variant | |
NPHS1 | rs3814995 | 19:35851310 | C>T MA | Intron variant |
BDKRB2 | rs8012552 | 14:96222430 | C MA>T | Intron variant |
rs1799722 | 14:96204802 | C>T MA | 2KB_upstream_variant | |
NPPA | rs5065 | 1:11846011 | A>G MA | Intron variant |
CACNA1C | rs1051375 | 12:2679713 | G MA>A | Synonymous variant |
rs2238032 | 12:2113566 | T>G MA | Intron variant | |
rs2239128 | 12:2648603 | T MA>C | Intron variant |
Category | Subcategory | Percentage (%)/Mean ± SD | |
---|---|---|---|
Controls | HTN Patients | ||
Gender | Male | 61.7% | 57.5% |
Female | 38.3% | 42.5% | |
Age | ----------- | 34.50 ± 12.44 | 58.84 ± 10.39 |
BMI | ----------- | 30.56 ± 56.26 | 33.35 ± 22.58 |
Smoker | Yes | 44% | 28% |
No | 56% | 72% |
Gene | SNP_ID | Cases (n = 200) | Controls (n = 224) | ||||
---|---|---|---|---|---|---|---|
HWE c p-Value | MAF b | MA a | HWE c p-Value | MAF b | MA a | ||
KCNJ1 | rs11600347 | 1 | 0.07 | A | 0.6 | 0.08 | A |
rs12795437 | 0.59 | 0.07 | C | 1 | 0.07 | C | |
rs59172778 | Monomorphic SNP------------------------------- | ||||||
rs675388 | 1 | 0.14 | A | 1 | 0.12 | A | |
WNK1 | rs880054 | 1 | 0.5 | C=T | 0.87 | 0.41 | T |
LUC7L2 | rs6947309 | 0.75 | 0.34 | T | 0.17 | 0.34 | T |
STK39 | rs6749447 | 0.46 | 0.43 | G | 0.31 | 0.35 | G |
NEDD4L | rs292449 | 0.77 | 0.46 | C | 0.64 | 0.48 | C |
rs75982813 | 1 | 0.05 | G | 1 | 0.04 | G | |
NPHS1 | rs3814995 | 0.84 | 0.23 | T | 0.28 | 0.23 | T |
BDKRB2 | rs8012552 | 0.55 | 0.41 | C | 0.26 | 0.38 | C |
rs1799722 | 0.37 | 0.39 | T | 0.87 | 0.38 | T | |
NPPA | rs5065 | 0.35 | 0.19 | G | 0.22 | 0.2 | G |
CACNA1C | rs1051375 | 0.67 | 0.48 | G | 0.44 | 0.47 | A |
rs2238032 | 1 | 0.01 | G | 0.083 | 0.02 | G | |
rs2239128 | 0.36 | 0.38 | T | 0.88 | 0.43 | T |
Gene | SNP_ID | Genotype/Allele | Frequency | p-Value | |
---|---|---|---|---|---|
Controls N (%) | Cases N (%) | ||||
NPPA | rs5065 | A/A | 112 (67%) | 132 (67%) | 0.94 |
A/G | 48 (28%) | 56 (28%) | |||
G/G | 9 (5%) | 9 (5%) | |||
A | 272 | 320 | 0.7 | ||
G | 66 | 74 | |||
STK39 | rs6749447 | G/G | 24 (15%) | 38 (19%) | 0.16 |
T/G | 69 (42%) | 90 (46%) | |||
T/T | 72 (44%) | 67 (34%) | |||
G | 117 | 166 | 0.05 | ||
T | 213 | 224 | |||
BDKRB2 | rs8012552 | C/C | 28 (17%) | 30 (15%) | 0.34 |
C/T | 73 (43%) | 100 (51%) | |||
T/T | 68 (4%) | 67 (34%) | |||
C | 129 | 160 | 0.5 | ||
T | 209 | 234 | |||
rs1799722 | C/C | 63 (37%) | 76 (39%) | 0.7 | |
T/C | 82 (49%) | 88 (45%) | |||
T/T | 24 (14%) | 33 (17%) | |||
C | 208 | 240 | 0.86 | ||
T | 130 | 154 | |||
KCNJ1 | rs11600347 | C/C | 143 (85%) | 171 (87%) | 0.41 |
C/A | 26 (15%) | 25 (13%) | |||
A/A | 0 (0%) | 1 (1%) | |||
C | 312 | 367 | 0.66 | ||
A | 26 | 27 | |||
rs12795437 | G/G | 141 (86%) | 172 (87%) | 0.48 | |
G/C | 23 (14%) | 24 (12%) | |||
C/C | 0 (0%) | 1 (1%) | |||
G | 305 | 368 | 0.83 | ||
C | 23 | 26 | |||
rs59172778 | Monomorphic SNP | ||||
rs675388 | G/G | 130 (77%) | 145 (74%) | 0.68 | |
G/A | 37 (22%) | 48 (24%) | |||
A/A | 2 (1%) | 4 (2%) | |||
G | 297 | 338 | 0.41 | ||
A | 41 | 56 | |||
WNK1 | rs880054 | C/C | 59 (36%) | 49 (25%) | |
C/T | 79 (48%) | 99 (51%) | 0.049 | ||
T/T | 28 (17%) | 48 (24%) | |||
C | 197 | 197 | 0.01 | ||
T | 135 | 195 | |||
LUC7L2 | rs6947309 | C/C | 77 (46%) | 88 (45%) | 0.7 |
C/T | 68 (40%) | 86 (44%) | |||
T/T | 24 (14%) | 23 (12%) | |||
C | 222 | 262 | 0.81 | ||
T | 116 | 132 | |||
NEDD4L | rs292449 | G/G | 42 (26%) | 56 (30%) | 0.71 |
C/G | 85 (52%) | 92 (48%) | |||
C/C | 36 (22%) | 42 (22%) | |||
G | 169 | 204 | 0.62 | ||
C | 157 | 176 | |||
rs75982813 | A/A | 156 (93%) | 179 (91%) | 0.49 | |
G/A | 12 (7%) | 18 (9%) | |||
A | 324 | 376 | 0.5 | ||
G | 12 | 18 | |||
NPHS1 | rs3814995 | C/C | 102 (60%) | 118 (60%) | 0.8 |
C/T | 55 (33%) | 68 (35%) | |||
T/T | 12 (07%) | 11 (06%) | |||
C | 259 | 304 | 0.86 | ||
T | 79 | 90 | |||
CACNA1C | rs2239128 | C/C | 53 (32%) | 79 (40%) | 0.22 |
C/T | 84 (50%) | 86 (44%) | |||
T/T | 31 (18%) | 31 (16%) | |||
C | 190 | 244 | 0.12 | ||
T | 146 | 148 | |||
rs2238032 | G/G | 1 (1%) | 0 (0%) | 0.11 | |
T/G | 6 (4%) | 2 (1%) | |||
T/T | 159 (96%) | 194 (99%) | |||
T | 324 | 390 | 0.05 | ||
G | 8 | 2 | |||
rs1051375 | A/A | 35 (21%) | 55 (28%) | 0.28 | |
G/A | 90 (53%) | 95 (48%) | |||
G/G | 44 (26%) | 47 (24%) | |||
G | 178 | 189 | 0.21 | ||
A | 160 | 205 |
Gene | SNP_ID | Model | Genotype | Controls N (%) | Cases N (%) | OR (95% CI) | p-Value |
---|---|---|---|---|---|---|---|
NPHS1 | rs3814995 | Codominant | C/C | 102 (60.4%) | 118 (59.9%) | 1 | 0.8 |
C/T | 55 (32.5%) | 68 (34.5%) | 1.07 (0.69–1.66) | ||||
T/T | 12 (7.1%) | 11 (5.6%) | 0.79 (0.34–1.87) | ||||
Dominant | C/C | 102 (60.4%) | 118 (59.9%) | 1 | 0.93 | ||
C/T-T/T | 67 (39.6%) | 79 (40.1%) | 1.02 (0.67–1.55) | ||||
Recessive | C/C-C/T | 157 (92.9%) | 186 (94.4%) | 1 | 0.55 | ||
T/T | 12 (7.1%) | 11 (5.6%) | 0.77 (0.33–1.80) | ||||
Overdominant | C/C-T/T | 114 (67.5%) | 129 (65.5%) | 1 | 0.69 | ||
C/T | 55 (32.5%) | 68 (34.5%) | 1.09 (0.71–1.69) | ||||
STK39 | rs6749447 | Codominant | T/T | 72 (43.6%) | 67 (34.4%) | 1 | 0.16 |
G/T | 69 (41.8%) | 90 (46.1%) | 1.40 (0.89–2.21) | ||||
G/G | 24 (14.6%) | 38 (19.5%) | 1.70 (0.92–3.13) | ||||
Dominant | T/T | 72 (43.6%) | 67 (34.4%) | 1 | 0.072 | ||
G/T-G/G | 93 (56.4%) | 128 (65.6%) | 1.48 (0.97–2.27) | ||||
Recessive | T/T-G/T | 141 (85.5%) | 157 (80.5%) | 1 | 0.21 | ||
G/G | 24 (14.6%) | 38 (19.5%) | 1.42 (0.81–2.49) | ||||
Overdominant | T/T-G/G | 96 (58.2%) | 105 (53.9%) | 1 | 0.41 | ||
G/T | 69 (41.8%) | 90 (46.1%) | 1.19 (0.78–1.81) | ||||
NEDD4L | rs292449 | Codominant | G/G | 42 (25.8%) | 56 (29.5%) | 1 | 0.71 |
C/G | 85 (52.1%) | 92 (48.4%) | 0.81 (0.49–1.33) | ||||
C/C | 36 (22.1%) | 42 (22.1%) | 0.88 (0.48–1.59) | ||||
Dominant | G/G | 42 (25.8%) | 56 (29.5%) | 1 | 0.44 | ||
C/G-C/C | 121 (74.2%) | 134 (70.5%) | 0.83 (0.52–1.33) | ||||
Recessive | G/G-C/G | 127 (77.9%) | 148 (77.9%) | 1 | 1 | ||
C/C | 36 (22.1%) | 42 (22.1%) | 1.00 (0.60–1.66) | ||||
Overdominant | G/G-C/C | 78 (47.9%) | 98 (51.6%) | 1 | 0.49 | ||
C/G | 85 (52.1%) | 92 (48.4%) | 0.86 (0.57–1.31) | ||||
rs75982813 | Codominant | A/A | 156 (92.9%) | 179 (90.9%) | 1 | 0.49 | |
G/A | 12 (7.1%) | 18 (9.1%) | 1.31 (0.61–2.80) | ||||
KCNJ1 | rs11600347 | Codominant | C/C | 143 (84.6%) | 171 (86.8%) | 1 | 0.41 |
C/A | 26 (15.4%) | 25 (12.7%) | 0.80 (0.44–1.45) | ||||
A/A | 0 (0%) | 1 (0.5%) | 0.00 (0.00–NA) | ||||
Dominant | C/C | 143 (84.6%) | 171 (86.8%) | 1 | 0.55 | ||
C/A-A/A | 26 (15.4%) | 26 (13.2%) | 0.84 (0.46–1.50) | ||||
Recessive | C/C-C/A | 169 (100%) | 196 (99.5%) | 1 | 0.27 | ||
A/A | 0 (0%) | 1 (0.5%) | 0.00 (0.00–NA) | ||||
Overdominant | C/C-A/A | 143 (84.6%) | 172 (87.3%) | 1 | 0.46 | ||
C/A | 26 (15.4%) | 25 (12.7%) | 0.80 (0.44–1.45) | ||||
rs12795437 | Codominant | G/G | 141 (86%) | 172 (87.3%) | 1 | 0.48 | |
G/C | 23 (14%) | 24 (12.2%) | 0.86 (0.46–1.58) | ||||
C/C | 0 (0%) | 1 (0.5%) | 0.00 (0.00–NA) | ||||
Dominant | G/G | 141 (86%) | 172 (87.3%) | 1 | 0.71 | ||
G/C-C/C | 23 (14%) | 25 (12.7%) | 0.89 (0.48–1.64) | ||||
Recessive | G/G-G/C | 164 (100%) | 196 (99.5%) | 1 | 0.27 | ||
C/C | 0 (0%) | 1 (0.5%) | 0.00 (0.00–NA) | ||||
Overdominant | G/G-C/C | 141 (86%) | 173 (87.8%) | 1 | 0.61 | ||
G/C | 23 (14%) | 24 (12.2%) | 0.85 (0.46–1.57) | ||||
rs59172778 | ---------------------------------Monomorphic SNP---------------------------- | ||||||
rs675388 | Codominant | G/G | 130 (76.9%) | 145 (73.6%) | 1 | 0.68 | |
G/A | 37 (21.9%) | 48 (24.4%) | 1.16 (0.71–1.90) | ||||
A/A | 2 (1.2%) | 4 (2%) | 1.79 (0.32–9.95) | ||||
Dominant | G/G | 130 (76.9%) | 145 (73.6%) | 1 | 0.46 | ||
G/A-A/A | 39 (23.1%) | 52 (26.4%) | 1.20 (0.74–1.93) | ||||
Recessive | G/G-G/A | 167 (98.8%) | 193 (98%) | 1 | 0.52 | ||
A/A | 2 (1.2%) | 4 (2%) | 1.73 (0.31–9.57) | ||||
Overdominant | G/G-A/A | 132 (78.1%) | 149 (75.6%) | 1 | 0.58 | ||
G/A | 37 (21.9%) | 48 (24.4%) | 1.15 (0.71–1.87) | ||||
WNK1 | rs880054 | Codominant | C/C | 59 (35.5%) | 49 (25%) | 1 | 0.049 |
C/T | 79 (47.6%) | 99 (50.5%) | 1.51 (0.93–2.44) | ||||
T/T | 28 (16.9%) | 48 (24.5%) | 2.06 (1.13–3.76) | ||||
Dominant | C/C | 59 (35.5%) | 49 (25%) | 1 | 0.029 | ||
C/T-T/T | 107 (64.5%) | 147 (75%) | 1.65 (1.05–2.60) | ||||
Recessive | C/C-C/T | 138 (83.1%) | 148 (75.5%) | 1 | 0.074 | ||
T/T | 28 (16.9%) | 48 (24.5%) | 1.60 (0.95–2.69) | ||||
Overdominant | C/C-T/T | 87 (52.4%) | 97 (49.5%) | 1 | 0.58 | ||
C/T | 79 (47.6%) | 99 (50.5%) | 1.12 (0.74–1.70) | ||||
LUC7L2 | rs6947309 | Codominant | C/C | 77 (45.6%) | 88 (44.7%) | 1 | 0.7 |
C/T | 68 (40.2%) | 86 (43.6%) | 1.11 (0.71–1.72) | ||||
T/T | 24 (14.2%) | 23 (11.7%) | 0.84 (0.44–1.60) | ||||
Dominant | C/C | 77 (45.6%) | 88 (44.7%) | 1 | 0.86 | ||
C/T-T/T | 92 (54.4%) | 109 (55.3%) | 0.96 (0.64–1.46) | ||||
Recessive | C/C-C/T | 145 (85.8%) | 174 (88.3%) | 1 | 0.47 | ||
T/T | 24 (14.2%) | 23 (11.7%) | 1.25 (0.68–2.31) | ||||
Overdominant | C/C-T/T | 101 (59.8%) | 111 (56.4%) | 1 | 0.51 | ||
C/T | 68 (40.2%) | 86 (43.6%) | 1.04 (0.69–1.57) | ||||
NPPA | rs5065 | Codominant | A/A | 112 (66.3%) | 132 (67%) | 1 | 0.95 |
A/G | 48 (28.4%) | 56 (28.4%) | 0.99 (0.62–1.57) | ||||
G/G | 9 (5.3%) | 9 (4.6%) | 0.85 (0.33–2.21) | ||||
Dominant | A/A | 112 (66.3%) | 132 (67%) | 1 | 0.88 | ||
A/G-G/G | 57 (33.7%) | 65 (33%) | 0.97 (0.63–1.50) | ||||
Recessive | A/A-A/G | 160 (94.7%) | 188 (95.4%) | 1 | 0.74 | ||
G/G | 9 (5.3%) | 9 (4.6%) | 0.85 (0.33–2.20) | ||||
Overdominant | A/A-G/G | 121 (71.6%) | 141 (71.6%) | 1 | 1 | ||
A/G | 48 (28.4%) | 56 (284%) | 1.00 (0.63–1.58) | ||||
BDKRB2 | rs8012552 | Codominant | T/T | 68 (40.2%) | 67 (34%) | 1 | 0.34 |
C/T | 73 (43.2%) | 100 (50.8%) | 1.39 (0.88–2.19) | ||||
C/C | 28 (16.6%) | 30 (15.2%) | 1.09 (0.59–2.01) | ||||
Dominant | T/T | 68 (40.2%) | 67 (34%) | 1 | 0.22 | ||
C/T-C/C | 101 (59.8%) | 130 (66%) | 1.31 (0.85–2.00) | ||||
Recessive | T/T-C/T | 141 (83.4%) | 167 (84.8%) | 1 | 0.73 | ||
C/C | 28 (16.6%) | 30 (15.2%) | 0.90 (0.52–1.59) | ||||
Overdominant | T/T-C/C | 96 (56.8%) | 97 (49.2%) | 1 | 0.15 | ||
C/T | 73 (43.2%) | 100 (50.8%) | 1.36 (0.90–2.05) | ||||
rs1799722 | Codominant | C/C | 63 (37.3%) | 76 (38.6%) | 1 | 0.7 | |
T/C | 82 (48.5%) | 88 (44.7%) | 0.89 (0.57–1.39) | ||||
T/T | 24 (14.2%) | 33 (16.8%) | 1.14 (0.61–2.12) | ||||
Dominant | C/C | 63 (37.3%) | 76 (38.6%) | 1 | 0.8 | ||
T/C-T/T | 106 (62.7%) | 121 (61.4%) | 0.95 (0.62–1.45) | ||||
Recessive | C/C-T/C | 145 (85.8%) | 164 (83.2%) | 1 | 0.5 | ||
T/T | 24 (14.2%) | 33 (16.8%) | 1.22 (0.69–2.15) | ||||
Overdominant | C/C-T/T | 87 (51.5%) | 109 (55.3%) | 1 | 0.46 | ||
T/C | 82 (48.5%) | 88 (44.7%) | 0.86 (0.57–1.29) | ||||
CACNA1C | rs2239128 | Codominant | C/C | 53 (31.6%) | 79 (40.3%) | 1 | 0.22 |
T/C | 84 (50%) | 86 (43.9%) | 1.46 (0.92–2.31) | ||||
T/T | 31 (18.4%) | 31 (15.8%) | 1.49 (0.81–2.74) | ||||
Dominant | C/C | 53 (31.6%) | 79 (40.3%) | 1 | 0.082 | ||
T/C-T/T | 115 (68.5%) | 117 (59.7%) | 1.47 (0.95–2.26) | ||||
Recessive | C/C-T/C | 137 (81.5%) | 165 (84.2%) | 1 | 0.51 | ||
T/T | 31 (18.4%) | 31 (15.8%) | 1.20 (0.70–2.08) | ||||
Overdominant | C/C-T/T | 84 (50%) | 110 (56.1%) | 1 | 0.24 | ||
T/C | 84 (50%) | 86 (43.9%) | 1.28 (0.85–1.93) | ||||
rs2238032 | Codominant | T/T | 159 (95.8%) | 194 (99%) | 1 | 0.11 | |
G/T | 6 (3.6%) | 2 (1%) | 0.27 (0.05–1.37) | ||||
G/G | 1 (0.6%) | 0 (0%) | 0.00 (0.00–NA) | ||||
Dominant | T/T | 159 (95.8%) | 194 (99%) | 1 | 0.05 | ||
G/T-G/G | 7 (4.2%) | 2 (1%) | 0.23 (0.05–1.14) | ||||
Recessive | T/T-G/T | 165 (99.4%) | 196 (100%) | 1 | 0.21 | ||
G/G | 1 (0.6%) | 0 (0%) | 0.00 (0.00–NA) | ||||
Overdominant | T/T-G/G | 160 (96.4%) | 194 (99%) | 1 | 0.09 | ||
G/T | 6 (3.6%) | 2 (1%) | 0.27 (0.05–1.38) | ||||
rs1051375 | Codominant | G/G | 44 (26%) | 47 (23.9%) | 1 | 0.28 | |
G/A | 90 (53.2%) | 95 (48.2%) | 1.01 (0.61–1.67) | ||||
A/A | 35 (20.7%) | 55 (27.9%) | 0.68 (0.38–1.23) | ||||
Dominant | G/G | 44 (26%) | 47 (23.9%) | 1 | 0.63 | ||
G/A-A/A | 125 (74%) | 150 (76.1%) | 0.89 (0.55–1.43) | ||||
Recessive | G/G-G/A | 134 (79.3%) | 142 (72.1%) | 1 | 0.11 | ||
A/A | 35 (20.7%) | 55 (27.9%) | 0.67 (0.42–1.10) | ||||
Overdominant | G/G-A/A | 79 (46.8%) | 102 (51.8%) | 1 | 0.34 | ||
G/A | 90 (53.2%) | 95 (48.2%) | 1.22 (0.81–1.85) |
Gene | SNPs | Genetic Model | Significant Finding | Effect on HTN | p-Value | Odds Ratio (OR) |
---|---|---|---|---|---|---|
WNK1 | rs880054 | Codominant | Individuals with the TT genotype are 2.06 times more likely to have hypertension compared to individuals with the CC genotype. | Increase Risk of HTN | 0.049 | 2.06 |
Dominant | Individuals with at least one T allele (genotype TT or CT) are 1.6 times more likely to have hypertension compared to individuals with the CC genotype. | Increase Risk of HTN | 0.029 | 1.65 |
Gene | Haplotypes | Frequency | Odd Ratio (95% CI) | p-Value | |
---|---|---|---|---|---|
Controls | Cases | ||||
KCNJ1 | C G G | 0.8018 | 0.7973 | 1 | --- |
C G A | 0.1213 | 0.1341 | 1.18 (0.77–1.83) | 0.45 | |
A C G | 0.068 | 0.058 | 0.97 (0.53–1.75) | 0.91 | |
NEDD4L | G A | 0.4957 | 0.5059 | 1 | --- |
C A | 0.4686 | 0.4484 | 0.94 (0.69–1.27) | 0.67 | |
G G | 0.0229 | 0.0307 | 1.36 (0.37–5.00) | 0.65 | |
BDKRB2 | T C | 0.3641 | 0.369 | 1 | --- |
C C | 0.2513 | 0.2402 | 0.94 (0.60–1.47) | 0.8 | |
T T | 0.2542 | 0.2249 | 0.87 (0.55–1.37) | 0.54 | |
C T | 0.1304 | 0.1659 | 1.23 (0.78–1.93) | 0.38 | |
CACNA1C | C T A | 0.4165 | 0.4728 | 1 | --- |
T T G | 0.3534 | 0.3295 | 0.80 (0.58–1.12) | 0.19 | |
C T G | 0.1491 | 0.1452 | 0.85 (0.55–1.33) | 0.48 | |
T T A | 0.0569 | 0.0474 | 0.75 (0.35–1.58) | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, M.A.; AL-Eitan, L.; Ibdah, R.; Bani Khalid, I.; Darabseh, S.; Alasmar, M.; Ataa, A. Genomic Insights into Blood Pressure Regulation: Exploring Ion Channel and Transporter Gene Variations in Jordanian Hypertensive Individuals. Medicina 2025, 61, 156. https://doi.org/10.3390/medicina61010156
Alghamdi MA, AL-Eitan L, Ibdah R, Bani Khalid I, Darabseh S, Alasmar M, Ataa A. Genomic Insights into Blood Pressure Regulation: Exploring Ion Channel and Transporter Gene Variations in Jordanian Hypertensive Individuals. Medicina. 2025; 61(1):156. https://doi.org/10.3390/medicina61010156
Chicago/Turabian StyleAlghamdi, Mansour Abdullah, Laith AL-Eitan, Rasheed Ibdah, Islam Bani Khalid, Salma Darabseh, Maryam Alasmar, and Asaad Ataa. 2025. "Genomic Insights into Blood Pressure Regulation: Exploring Ion Channel and Transporter Gene Variations in Jordanian Hypertensive Individuals" Medicina 61, no. 1: 156. https://doi.org/10.3390/medicina61010156
APA StyleAlghamdi, M. A., AL-Eitan, L., Ibdah, R., Bani Khalid, I., Darabseh, S., Alasmar, M., & Ataa, A. (2025). Genomic Insights into Blood Pressure Regulation: Exploring Ion Channel and Transporter Gene Variations in Jordanian Hypertensive Individuals. Medicina, 61(1), 156. https://doi.org/10.3390/medicina61010156