The Platelet-Specific Gene Signature in the Immunoglobulin G4-Related Disease Transcriptome
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Gene Expression Profiling Study by Nakajima et al.
2.2. Retrieval and Class Comparison Analysis of Gene Expression Data
2.3. Selection of DEGs for Downstream Analysis and Functional Enrichment Analysis
2.4. Venn Diagram and Cluster Analysis
3. Results
3.1. Class Comparison Analysis
3.2. Functional Enrichment Analysis
3.3. Venn Diagram and Cluster Analysis
3.4. The Results of Nakajima et al. Compared [19]
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, R.A.; Wuescher, L.M.; Worth, R.G. Platelets: Essential components of the immune system. Curr. Trends Immunol. 2015, 16, 65–78. [Google Scholar] [PubMed]
- Jenne, C.N.; Kubes, P. Platelets in inflammation and infection. Platelets 2015, 26, 286–292. [Google Scholar] [CrossRef]
- Maouia, A.; Rebetz, J.; Kapur, R.; Semple, J.W. The Immune Nature of Platelets Revisited. Transfus. Med. Rev. 2020, 34, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Manne, B.K.; Xiang, S.C.; Rondina, M.T. Platelet secretion in inflammatory and infectious diseases. Platelets 2017, 28, 155–164. [Google Scholar] [CrossRef]
- Dib, P.R.B.; Quirino-Teixeira, A.C.; Merij, L.B.; Pinheiro, M.B.M.; Rozini, S.V.; Andrade, F.B.; Hottz, E.D. Innate immune receptors in platelets and platelet-leukocyte interactions. J. Leukoc. Biol. 2020, 108, 1157–1182. [Google Scholar] [CrossRef]
- Gawaz, M.; Vogel, S. Platelets in tissue repair: Control of apoptosis and interactions with regenerative cells. Blood 2013, 122, 2550–2554. [Google Scholar] [CrossRef] [PubMed]
- Eisinger, F.; Patzelt, J.; Langer, H.F. The Platelet Response to Tissue Injury. Front. Med. 2018, 5, 317. [Google Scholar] [CrossRef] [PubMed]
- Postlethwaite, A.E.; Chiang, T.M. Platelet contributions to the pathogenesis of systemic sclerosis. Curr. Opin. Rheumatol. 2007, 19, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Ntelis, K.; Bogdanos, D.; Dimitroulas, T.; Sakkas, L.; Daoussis, D. Platelets in Systemic Sclerosis: The Missing Link Connecting Vasculopathy, Autoimmunity, and Fibrosis? Curr. Rheumatol. Rep. 2019, 21, 15. [Google Scholar] [CrossRef] [PubMed]
- Mazzucchelli, R.; Racchini, S.; Barbisan, F.; Galosi, A.B.; Giorgini, S. IgG4-related sclerosing disease: An emerging entity frequently misdiagnosed. Anal. Quant. Cytopathol. Histpathol. 2013, 35, 189–196. [Google Scholar] [PubMed]
- Karadeniz, H.; Vaglio, A. IgG4-related disease: A contemporary review. Turk. J. Med. Sci. 2020, 50, 1616–1631. [Google Scholar] [CrossRef] [PubMed]
- Perugino, C.A.; Stone, J.H. IgG4-related disease: An update on pathophysiology and implications for clinical care. Nat. Rev. Rheumatol. 2020, 16, 702–714. [Google Scholar] [CrossRef]
- Wallace, Z.S.; Katz, G.; Hernandez-Barco, Y.G.; Baker, M.C. Current and future advances in practice: IgG4-related disease. Rheumatol. Adv. Pract. 2024, 8, rkae020. [Google Scholar] [CrossRef]
- Wallace, Z.S.; Miles, G.; Smolkina, E.; Petruski-Ivleva, N.; Madziva, D.; Cook, C.; Fu, X.; Zhang, Y.; Stone, J.H.; Choi, H.K. Incidence, prevalence and mortality of IgG4-related disease in the USA: A claims-based analysis of commercially insured adults. Ann. Rheum. Dis. 2023, 82, 957–962. [Google Scholar] [CrossRef]
- Kamisawa, T.; Zen, Y.; Pillai, S.; Stone, J.H. IgG4-related disease. Lancet 2015, 385, 1460–1471. [Google Scholar] [CrossRef] [PubMed]
- Umehara, H.; Nakajima, A.; Nakamura, T.; Kawanami, T.; Tanaka, M.; Dong, L.; Kawano, M. IgG4-related disease and its pathogenesis—Cross-talk between innate and acquired immunity. Int. Immunol. 2014, 26, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Kawa, S. Immunoglobulin G4-related Disease: An Overview. JMA J. 2019, 2, 11–27. [Google Scholar] [CrossRef]
- Cai, S.; Chen, Y.; Lin, S.; Ye, C.; Zheng, F.; Dong, L. Multiple Processes May Involve in the IgG4-RD Pathogenesis: An Integrative Study via Proteomic and Transcriptomic Analysis. Front. Immunol. 2020, 11, 1795. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, A.; Masaki, Y.; Nakamura, T.; Kawanami, T.; Ishigaki, Y.; Takegami, T.; Kawano, M.; Yamada, K.; Tsukamoto, N.; Matsui, S.; et al. Decreased Expression of Innate Immunity-Related Genes in Peripheral Blood Mononuclear Cells from Patients with IgG4-Related Disease. PLoS ONE 2015, 10, e0126582. [Google Scholar] [CrossRef]
- Umehara, H.; Okazaki, K.; Masaki, Y.; Kawano, M.; Yamamoto, M.; Saeki, T.; Matsui, S.; Yoshino, T.; Nakamura, S.; Kawa, S.; et al. Comprehensive diagnostic criteria for IgG4-related disease (IgG4-RD), 2011. Mod. Rheumatol. 2012, 22, 21–30. [Google Scholar] [CrossRef]
- Gene Expression Omnibus. Available online: https://www.ncbi.nlm.nih.gov/geo/ (accessed on 9 September 2022).
- GEO Accession GSE66465. Available online: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66465 (accessed on 9 September 2022).
- GEO2R. Available online: https://www.ncbi.nlm.nih.gov/geo/geo2r/ (accessed on 9 September 2022).
- WebGestalt. Available online: https://www.webgestalt.org/ (accessed on 30 September 2022).
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef] [PubMed]
- Reactome. Available online: https://reactome.org/ (accessed on 21 October 2022).
- Venny 2.1.0. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 21 October 2022).
- Gillespie, M.; Jassal, B.; Stephan, R.; Milacic, M.; Rothfels, K.; Senff-Ribeiro, A.; Griss, J.; Sevilla, C.; Matthews, L.; Gong, C.; et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022, 50, D687–D692. [Google Scholar] [CrossRef]
- BRB-ArrayTools. Available online: https://brb.nci.nih.gov/BRB-ArrayTools/ (accessed on 28 October 2022).
- Java TreeView. Available online: https://jtreeview.sourceforge.net/ (accessed on 28 October 2022).
- Cluster 3.0. Available online: http://bonsai.hgc.jp/~mdehoon/software/cluster/ (accessed on 28 October 2022).
- Saldanha, A.J. Java Treeview—Extensible visualization of microarray data. Bioinformatics 2004, 20, 3246–3248. [Google Scholar] [CrossRef]
- Jia, L.X.; Qi, G.M.; Liu, O.; Li, T.-T.; Yang, M.; Cui, W.; Zhang, W.-M.; Qi, Y.-F.; Du, J. Inhibition of Platelet Activation by Clopidogrel Prevents Hypertension-Induced Cardiac Inflammation and Fibrosis. Cardiovasc. Drugs Ther. 2013, 27, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Crooks, M.G.; Fahim, A.; Naseem, K.M.; Morice, A.H.; Hart, S.P. Increased Platelet Reactivity in Idiopathic Pulmonary Fibrosis Is Mediated by a Plasma Factor. PLoS ONE 2014, 9, e111347. [Google Scholar] [CrossRef]
- Zimmerman, G.A. Platelets: Inflammatory effector cells in the conflagration of cystic fibrosis lung disease. J. Clin. Investig. 2020, 130, 1632–1634. [Google Scholar] [CrossRef] [PubMed]
- Czajka, P.; Przybyłkowski, A.; Nowak, A.; Postula, M.; Wolska, M.; Mirowska-Guzel, D.; Czlonkowska, A.; Eyileten, C. Antiplatelet drugs and liver fibrosis. Platelets 2022, 33, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Garraud, O.; Cognasse, F. Are Platelets Cells? And If Yes, Are They Immune Cells? Front. Immunol. 2015, 6, 70. [Google Scholar] [CrossRef] [PubMed]
- Cecchetti, L.; Tolley, N.D.; Michetti, N.; Bury, L.; Weyrich, A.S.; Gresele, P. Megakaryocytes differentially sort mRNAs for matrix metalloproteinases and their inhibitors into platelets: A mechanism for regulating synthetic events. Blood 2011, 118, 1903–1911. [Google Scholar] [CrossRef] [PubMed]
- Rowley, J.W.; Schwertz, H.; Weyrich, A.S. Platelet mRNA. Curr. Opin. Hematol. 2012, 19, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Gnatenko, D.V.; Dunn, J.J.; McCorkle, S.R.; Weissmann, D.; Perrotta, P.L.; Bahou, W.F. Transcript profiling of human platelets using microarray and serial analysis of gene expression. Blood 2003, 101, 2285–2293. [Google Scholar] [CrossRef]
- Wang, L.; Östberg, O.; Wihlborg, A.K.; Brogren, H.; Jern, S.; Erlinge, D. Quantification of ADP and ATP receptor expression in human platelets. J. Thromb. Haemost. 2003, 1, 330–336. [Google Scholar] [CrossRef]
- McRedmond, J.P.; Park, S.D.; Reilly, D.F.; Coppinger, J.A.; Maguire, P.B.; Shields, D.C.; Fitzgerald, D.J. Integration of Proteomics and Genomics in Platelets. Mol. Cell. Proteom. 2004, 3, 133–144. [Google Scholar] [CrossRef]
- Rox, J.M.; Müller, J.; Pötzsch, B. Platelet Transcriptome Analysis. Transfus. Med. Hemother. 2006, 33, 177–182. [Google Scholar] [CrossRef]
- Davizon-Castillo, P.; Rowley, J.W.; Rondina, M.T. Megakaryocyte and Platelet Transcriptomics for Discoveries in Human Health and Disease. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1432–1440. [Google Scholar] [CrossRef]
- Fink, L.; Hölschermann, H.; Kwapiszewska, G.; Muyal, J.P.; Lengemann, B.; Bohle, R.M.; Santoso, S. Characterization of platelet-specific mRNA by real-time PCR after laser-assisted microdissection. Thromb. Haemost. 2003, 90, 749–756. [Google Scholar] [CrossRef]
- Morrell, C.N.; Aggrey, A.A.; Chapman, L.M.; Modjeski, K.L. Emerging roles for platelets as immune and inflammatory cells. Blood 2014, 123, 2759–2767. [Google Scholar] [CrossRef]
- Mantovani, A.; Garlanda, C. Platelet-macrophage partnership in innate immunity and inflammation. Nat. Immunol. 2013, 14, 768–770. [Google Scholar] [CrossRef]
- Marcoux, G.; Laroche, A.; Espinoza Romero, J.; Boilard, E. Role of platelets and megakaryocytes in adaptive immunity. Platelets 2021, 32, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Koupenova, M.; Livada, A.C.; Morrell, C.N. Platelet and Megakaryocyte Roles in Innate and Adaptive Immunity. Circ. Res. 2022, 130, 288–308. [Google Scholar] [CrossRef] [PubMed]
- Chapman, L.M.; Aggrey, A.A.; Field, D.J.; Srivastava, K.; Ture, S.; Yui, K.; Topham, D.J.; Baldwin, W.M.; Morrell, C.N. Platelets Present Antigen in the Context of MHC Class I. J. Immunol. 2012, 189, 916–923. [Google Scholar] [CrossRef]
- Deppermann, C.; Kubes, P. Start a fire, kill the bug: The role of platelets in inflammation and infection. Innate Immun. 2018, 24, 335–348. [Google Scholar] [CrossRef]
- Ho-Tin-Noé, B. The multifaceted roles of platelets in inflammation and innate immunity. Platelets 2018, 29, 531–532. [Google Scholar] [CrossRef] [PubMed]
- Rolfes, V.; Ribeiro, L.S.; Hawwari, I.; Böttcher, L.; Rosero, N.; Maasewerd, S.; Santos, M.L.S.; Prochnicki, T.; de Souza Silva, C.M.; de Souza Wanderley, C.W.; et al. Platelets Fuel the Inflammasome Activation of Innate Immune Cells. Cell Rep. 2020, 31, 107615. [Google Scholar] [CrossRef] [PubMed]
- Kral, J.B.; Schrottmaier, W.C.; Salzmann, M.; Assinger, A. Platelet Interaction with Innate Immune Cells. Transfus. Med. Hemother. 2016, 43, 78–88. [Google Scholar] [CrossRef]
- Ribeiro, L.S.; Migliari Branco, L.; Franklin, B.S. Regulation of Innate Immune Responses by Platelets. Front. Immunol. 2019, 10, 1320. [Google Scholar] [CrossRef]
- Ebermeyer, T.; Cognasse, F.; Berthelot, P.; Mismetti, P.; Garraud, O.; Hamzeh-Cognasse, H. Platelet Innate Immune Receptors and TLRs: A Double-Edged Sword. Int. J. Mol. Sci. 2021, 22, 7894. [Google Scholar] [CrossRef]
- Scherlinger, M.; Richez, C.; Tsokos, G.C.; Boilard, E.; Blanco, P. The role of platelets in immune-mediated inflammatory diseases. Nat. Rev. Immunol. 2023, 23, 495–510. [Google Scholar] [CrossRef]
- Rossaint, J.; Margraf, A.; Zarbock, A. Role of Platelets in Leukocyte Recruitment and Resolution of Inflammation. Front. Immunol. 2018, 9, 2712. [Google Scholar] [CrossRef]
- Suzuki-Inoue, K.; Inoue, O.; Ozaki, Y. Novel platelet activation receptor CLEC-2: From discovery to prospects. J. Thromb. Haemost. 2011, 9, 44–55. [Google Scholar] [CrossRef]
- Lorant, D.E.; Topham, M.K.; Whatley, R.E.; McEver, R.P.; McIntyre, T.M.; Prescott, S.M.; Zimmerman, G.A. Inflammatory roles of P-selectin. J. Clin. Investig. 1993, 92, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, X.; Wang, Q.; Zhang, M.; He, J.; Ming, S.; Wang, Z.; Cao, C.; Zhang, S.; Geng, L.; et al. TLT-1 Promotes Platelet–Monocyte Aggregate Formation to Induce IL-10–Producing B Cells in Tuberculosis. J. Immunol. 2022, 208, 1642–1651. [Google Scholar] [CrossRef]
- Della-Torre, E.; Lanzillotta, M.; Doglioni, C. Immunology of IgG4-related disease. Clin. Exp. Immunol. 2015, 181, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Della-Torre, E.; Rigamonti, E.; Perugino, C.; Baghai-Sain, S.; Sun, N.; Kaneko, N.; Maehara, T.; Rovati, L.; Ponzoni, M.; Milani, R.; et al. B lymphocytes directly contribute to tissue fibrosis in patients with IgG4-related disease. J. Allergy Clin. Immunol. 2020, 145, 968–981.e14. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, N.; Moriyama, M.; Maehara, T.; Chen, H.; Miyahara, Y.; Nakamura, S. Orchestration of Immune Cells Contributes to Fibrosis in IgG4-Related Disease. Immuno 2022, 2, 170–184. [Google Scholar] [CrossRef]
- Dees, C.; Akhmetshina, A.; Zerr, P.; Reich, N.; Palumbo, K.; Horn, A.; Jüngel, A.; Beyer, C.; Krönke, G.; Zwerina, J.; et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J. Exp. Med. 2011, 208, 961–972. [Google Scholar] [CrossRef]
- Mann, D.A.; Oakley, F. Serotonin paracrine signaling in tissue fibrosis. Biochim. Biophys. Acta Mol. Basis Dis. 2013, 1832, 905–910. [Google Scholar] [CrossRef]
- Grewal, J.S.; Mukhin, Y.V.; Garnovskaya, M.N.; Raymond, J.R.; Greene, E.L. Serotonin 5-HT 2A receptor induces TGF-β1 expression in mesangial cells via ERK: Proliferative and fibrotic signals. Am. J. Physiol. Ren. Physiol. 1999, 276, F922–F930. [Google Scholar] [CrossRef]
- Karolczak, K.; Watala, C. Blood Platelets as an Important but Underrated Circulating Source of TGFβ. Int. J. Mol. Sci. 2021, 22, 4492. [Google Scholar] [CrossRef]
- Affandi, A.J.; Carvalheiro, T.; Ottria, A.; de Haan, J.J.; Brans, M.A.; Brandt, M.M.; Tieland, R.G.; Lopes, A.P.; Fernández, B.M.; Bekker, C.P.; et al. CXCL4 drives fibrosis by promoting several key cellular and molecular processes. Cell Rep. 2022, 38, 110189. [Google Scholar] [CrossRef]
- Castor, C.W.; Miller, J.W.; Walz, D.A. Structural and biological characteristics of connective tissue activating peptide (CTAP-III), a major human platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 1983, 80, 765–769. [Google Scholar] [CrossRef]
- Feng, Q.; Gu, J.; Chen, J.; Zheng, W.; Pan, H.; Xu, X.; Deng, C.; Yang, B. TSP1 promotes fibroblast proliferation and extracellular matrix deposition via the IL6/JAK2/STAT3 signalling pathway in keloids. Exp. Dermatol. 2022, 31, 1533–1542. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Li, Q.; Liu, Y.; Zhang, R.; Chen, H. SPARC promotes fibroblast proliferation, migration, and collagen production in keloids by inactivation of p53. J. Dermatol. Sci. 2023, 109, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Zhou, X.; Ji, W.J.; Zhang, Y.-Y.; Ma, Y.-Q.; Zhang, J.-Q.; Li, Y.-M. The Emerging Role of miR-223 in Platelet Reactivity: Implications in Antiplatelet Therapy. BioMed Res. Int. 2015, 2015, 981841. [Google Scholar] [CrossRef] [PubMed]
- Czajka, P.; Fitas, A.; Jakubik, D.; Eyileten, C.; Gasecka, A.; Wicik, Z.; Siller-Matula, J.M.; Filipiak, K.J.; Postula, M. MicroRNA as Potential Biomarkers of Platelet Function on Antiplatelet Therapy: A Review. Front. Physiol. 2021, 12, 652579. [Google Scholar] [CrossRef]
- Shi, R.; Ge, L.; Zhou, X.; Ji, W.-J.; Lu, R.-Y.; Zhang, Y.-Y.; Zeng, S.; Liu, X.; Zhao, J.-H.; Zhang, W.-C.; et al. Decreased platelet miR-223 expression is associated with high on-clopidogrel platelet reactivity. Thromb. Res. 2013, 131, 508–513. [Google Scholar] [CrossRef]
- Gutierrez, B.; Grados, A.; Palat, S.; Ribeiro, E.; Le Gouellec, N.; Haroche, J.; Papo, T.; Harlé, J.-R.; Ly, K.; Schleinitz, N.; et al. THU0556 Arterial and venous thrombotic events in IgG4-related disease: A national observational retrospective study. Ann. Rheum. Dis. 2019, 78, 568. Available online: https://ard.bmj.com/content/78/Suppl_2/568.1 (accessed on 9 January 2023).
- Tripathy, J.P. Secondary Data Analysis: Ethical Issues and Challenges. Iran. J. Public Health 2013, 42, 1478–1479. [Google Scholar] [PubMed]
- Cheng, H.G.; Phillips, M.R. Secondary analysis of existing data: Opportunities and implementation. Shanghai Arch. Psychiatry 2014, 26, 371–375. [Google Scholar] [CrossRef]
Number of Differentially Expressed Genes | |||||||
---|---|---|---|---|---|---|---|
BT vs. HC | BT vs. AT | ||||||
FC | p | Total | Increased 1 | Decreased 2 | Total | Increased 1 | Decreased 2 |
≥1 | ≤0.05 | 268 | 204 | 64 | 230 | 107 | 123 |
≥1.5 | ≤0.05 | 77 | 49 | 28 | 61 | 13 | 48 |
≥2 | ≤0.05 | 25 | 13 | 12 | 33 | 3 | 30 |
≥3 | ≤0.05 | 5 | - | 5 | 14 | - | 14 |
≥4 | ≤0.05 | 1 | - | 1 | 7 | - | 7 |
≥5 | ≤0.05 | - | - | - | 3 | - | 3 |
Increased Expression 1 | Decreased Expression 2 | ||||
---|---|---|---|---|---|
Gene Symbol | FC | Gene Symbol | FC | ||
BT vs. HC | |||||
1 | HIST1H2BB | 2.69 | 1 | CLC | −4.26 |
2 | NR4A2 | 2.49 | 2 | MS4A3 | −3.34 |
3 | SNORD75 | 2.42 | 3 | DEFA1B | −3.21 |
4 | RGS1 | 2.16 | 4 | LRRN3 | −2.70 |
5 | AREG | 2.04 | 5 | CXCR1 | −2.46 |
6 | SNORD28 | 2.03 | 6 | HBB | −2.31 |
7 | SNORD3D | 2.03 | 7 | CA1 | −2.24 |
8 | NR4A3 | 1.96 | 8 | CXCR2 | −2.22 |
9 | RNU5E-1 | 1.91 | 9 | MMP8 | −2.09 |
10 | SNORA80E | 1.90 | 10 | MME | −2.07 |
11 | SNORD78 | 1.85 | 11 | CRISP3 | −1.98 |
12 | THBS1 | 1.85 | 12 | ALAS2 | −1.98 |
13 | SNORD50B | 1.73 | 13 | CPA3 | −1.95 |
14 | HIST1H3J | 1.73 | 14 | SLC25A37 | −1.82 |
15 | SNORA4 | 1.72 | 15 | FCER1A | −1.79 |
BT vs. AT | |||||
1 | HIST1H2BB | 2.47 | 1 | DEFA1B | −5.95 |
2 | IFI44L | 2.16 | 2 | MMP8 | −4.74 |
3 | SNORA80E | 2.09 | 3 | MS4A3 | −4.63 |
4 | TNFRSF17 | 1.96 | 4 | DEFA4 | −4.37 |
5 | SNORD75 | 1.64 | 5 | CEACAM8 | −4.13 |
6 | GNG11 | 1.64 | 6 | CA1 | −3.70 |
7 | CD38 | 1.59 | 7 | OLFM4 | −3.61 |
8 | HIST1H3J | 1.53 | 8 | CRISP3 | −3.56 |
9 | SNORD74 | 1.50 | 9 | CEACAM6 | −3.46 |
10 | HIST2H2BF | 1.46 | 10 | AHSP | −3.45 |
11 | IGKC | 1.46 | 11 | BPI | −3.35 |
12 | SLC25A20 | 1.40 | 12 | CD177 | −3.06 |
13 | SNORA61 | 1.40 | 13 | CLC | −2.90 |
14 | MZB1 | 1.39 | 14 | ALAS2 | −2.78 |
15 | CAV1 | 1.36 | 15 | CTSG | −2.62 |
Gene | Log FC | p Value | Function |
---|---|---|---|
ALOX12 | 1.000 | 8.36 × 10−3 | Platelet activation and aggregation |
CLEC1B | 1.421 | 9.23 × 10−4 | Platelet activation and aggregation, thromboinflammation |
CLU | 1.286 | 1.12 × 10−3 | Platelet alpha granule content |
CMTM5 | 1.007 | 2.19 × 10−4 | Platelet reactivity, overexpression in platelets |
GP1BA | 1.164 | 3.33 × 10−3 | Platelet receptor for von Willebrand factor (VWF), platelet adhesion |
ITGA2B | 1.402 | 3.88 × 10−4 | Platelet receptor for fibrinogen (FI), platelet aggregation |
ITGB3 | 1.475 | 3.84 × 10−3 | Platelet receptor for fibrinogen (FI), platelet aggregation |
MIR223 | −1.045 | 1.17 × 10−2 | Platelet aggregation, secretion, and reactivity |
MMRN1 | 1.228 | 5.09 × 10−3 | Platelet adhesion, platelet-derived FV carrier |
MPL | 1.013 | 1.04 × 10−2 | Thrombopoietin receptor, platelet production |
P2RY12 | 1.030 | 1.52 × 10−2 | Platelet purinergic (ADP) receptor, platelet aggregation |
PDE5A | 1.072 | 5.65 × 10−2 | Agonist stimulated platelet adhesion, aggregation, and secretion |
PF4 | 1.265 | 1.89 × 10−2 | Platelet alpha granule content, platelet aggregation and secretion |
PF4V1 | 1.073 | 3.32 × 10−3 | Platelet factor 4 (PF4) homolog, chemokine |
PPBP | 1.428 | 2.98 × 10−3 | Platelet alpha granule content, growth factor (ECM synthesis), chemokine |
PROS1 | 1.154 | 5.81 × 10−4 | Platelet alpha granule content, platelet activation and aggregation |
PTGS1 | 1.182 | 8.49 × 10−3 | Platelet activation and aggregation, also known as COX1 |
SELP | 1.202 | 5.08 × 10−4 | Platelet alpha granule content, platelet activation and aggregation |
SPARC | 1.500 | 4.50 × 10−3 | Platelet alpha granule content, platelet aggregation, ECM organization |
THBS1 | 1.850 | 2.77 × 10−2 | Platelet alpha granule content, platelet aggregation, ECM organization |
TREML1 | 1.212 | 7.33 × 10−3 | Platelet alpha granule content, platelet activation and aggregation |
TUBB1 | 1.105 | 3.87 × 10−2 | Platelet production, platelet aggregation and reactivity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oguz, A.K.; Oygur, C.S.; Gur Dedeoglu, B.; Dogan Turacli, I.; Serin Kilicoglu, S.; Ergun, I. The Platelet-Specific Gene Signature in the Immunoglobulin G4-Related Disease Transcriptome. Medicina 2025, 61, 162. https://doi.org/10.3390/medicina61010162
Oguz AK, Oygur CS, Gur Dedeoglu B, Dogan Turacli I, Serin Kilicoglu S, Ergun I. The Platelet-Specific Gene Signature in the Immunoglobulin G4-Related Disease Transcriptome. Medicina. 2025; 61(1):162. https://doi.org/10.3390/medicina61010162
Chicago/Turabian StyleOguz, Ali Kemal, Cagdas Sahap Oygur, Bala Gur Dedeoglu, Irem Dogan Turacli, Sibel Serin Kilicoglu, and Ihsan Ergun. 2025. "The Platelet-Specific Gene Signature in the Immunoglobulin G4-Related Disease Transcriptome" Medicina 61, no. 1: 162. https://doi.org/10.3390/medicina61010162
APA StyleOguz, A. K., Oygur, C. S., Gur Dedeoglu, B., Dogan Turacli, I., Serin Kilicoglu, S., & Ergun, I. (2025). The Platelet-Specific Gene Signature in the Immunoglobulin G4-Related Disease Transcriptome. Medicina, 61(1), 162. https://doi.org/10.3390/medicina61010162