Multimodal Screening for Pulmonary Arterial Hypertension in Systemic Scleroderma: Current Methods and Future Directions
Abstract
:1. Introduction
- Group 1: Pulmonary arterial hypertension (PAH): a pulmonary vasculopathy;
- Group 2: PH caused by left heart disease;
- Group 3: PH caused by lung diseases;
- Group 4: PH caused by thromboembolic mechanisms;
- Group 5: PH of multifactorial/unclear causes [8].
2. Echocardiography
3. Biomarkers
3.1. N-Terminal pro Brain Natriuretic Peptide (NT-proBNP)
3.2. Uric Acid (UA)
3.3. Interleukine-32 (IL-32)
3.4. Interleukine-33 (IL-33) and Soluble Suppression of Tumorigenicity 2 (sST2)
3.5. Receptor for Advanced Glycation End Products (RAGE) and Its Soluble Form (sRAGE)
3.6. Red Blood Cell Distribution Width (RDW)
3.7. Complement Factor D
4. Pulmonary Function Tests (PFTs)
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef] [PubMed]
- Attanasio, U.; Cuomo, A.; Pirozzi, F.; Loffredo, S.; Abete, P.; Petretta, M.; Marone, G.; Bonaduce, D.; De Paulis, A.; Rossi, F.W.; et al. Pulmonary Hypertension Phenotypes in Systemic Sclerosis: The Right Diagnosis for the Right Treatment. Int. J. Mol. Sci. 2020, 21, 4430. [Google Scholar] [CrossRef] [PubMed]
- Hurdman, J.; Condliffe, R.; Elliot, C.A.; Davies, C.; Hill, C.; Wild, J.M.; Wort, S.J.; Kiely, D.G. ASPIRE registry: Assessing the Spectrum of Pulmonary Hypertension Identified at a Referral Centre. Eur. Respir. J. 2012, 39, 945–955. [Google Scholar] [CrossRef]
- Chin, K.M.; Kim, N.H.S.; Rubin, L.J. The right ventricle in pulmonary hypertension. Heart Fail. Rev. 2016, 21, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, S.M.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Humbert, M.; Vachiery, J.L.; Vonk Noordegraaf, A.; Beghetti, M.; Galiè, N.; et al. The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS) Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Heart J. 2016, 37, 67–119. [Google Scholar]
- Simonneau, G.; Montani, D.; Celermajer, D.S.; Denton, C.P.; Gatzoulis, M.A.; Krowka, M.; Williams, P.G.; Souza, R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 2019, 53, 1801913. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 2023, 61, 2200879. [Google Scholar] [CrossRef]
- Haque, A.; Kiely, D.G.; Kovacs, G.; Thompson, A.A.R.; Condliffe, R. Pulmonary hypertension phenotypes in patients with systemic sclerosis. Eur. Respir. Rev. 2021, 30, 210053. [Google Scholar] [CrossRef]
- Bourji, K.I.; Kelemen, B.W.; Mathai, S.C.; Damico, R.L.; Kolb, T.M.; Mercurio, V.; Cozzi, F.; Tedford, R.J.; Hassoun, P.M. Poor survival in patients with scleroderma and pulmonary hypertension due to heart failure with preserved ejection fraction. Pulm. Circ. 2017, 7, 409–420. [Google Scholar] [CrossRef]
- Fernández-Codina, A.; Simeón-Aznar, C.P.; Pinal-Fernandez, I.; Rodríguez-Palomares, J.; Pizzi, M.N.; Hidalgo, C.E.; Guillén-Del Castillo, A.; Prado-Galbarro, F.J.; Sarria-Santamera, A.; Fonollosa-Plà, V. Cardiac involvement in systemic sclerosis: Differences between clinical subsets and influence on survival. Rheumatol. Int. 2017, 37, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Launay, D.; Remy-Jardin, M.; Michon-Pasturel, U.; Mastora, I.; Hachulla, E.; Lambert, M.; Delannoy, V.; Queyrel, V.; Duhamel, A.; Matran, R.; et al. High Resolution Computed Tomography in Fibrosing Alveolitis Associated with Systemic Sclerosis. J. Rheumatol. 2006, 33, 1789–1801. [Google Scholar]
- Nihtyanova, S.I.; Schreiber, B.E.; Ong, V.H.; Rosenberg, D.; Moinzadeh, P.; Coghlan, J.G.; Wells, A.U.; Denton, C.P. Prediction of pulmonary complications and long-term survival in systemic sclerosis. Arthritis Rheumatol. 2014, 66, 1625–1635. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.; Wallenhorst, C.; Teal, S.; Cohen, A.T.; Peacock, A.J. Incidence and risk factors of chronic thromboembolic pulmonary hypertension following venous thromboembolism, a population-based cohort study in England. Pulm. Circ. 2018, 8, 2045894018791358. [Google Scholar] [CrossRef] [PubMed]
- Launay, D.; Sobanski, V.; Hachulla, E.; Humbert, M. Pulmonary hypertension in systemic sclerosis: Different phenotypes. Eur. Respir. Rev. 2017, 26, 170056. [Google Scholar] [CrossRef] [PubMed]
- Lefèvre, G.; Dauchet, L.; Hachulla, E.; Montani, D.; Sobanski, V.; Lambert, M.; Hatron, P.Y.; Humbert, M.; Launay, D. Survival and prognostic factors in systemic sclerosis-associated pulmonary hypertension: A systematic review and meta-analysis. Arthritis Rheum. 2013, 65, 2412–2423. [Google Scholar] [CrossRef]
- Chaisson, N.F.; Hassoun, P.M. Systemic Sclerosis-Associated Pulmonary Arterial Hypertension. Chest 2013, 144, 1346–1356. [Google Scholar] [CrossRef] [PubMed]
- Hachulla, E.; De Groote, P.; Gressin, V.; Sibilia, J.; Diot, E.; Carpentier, P.; Mouthon, L.; Hatron, P.Y.; Jego, P.; Allanore, Y.; et al. The three-year incidence of pulmonary arterial hypertension associated with systemic sclerosis in a multicenter nationwide longitudinal study in France. Arthritis Rheum. 2009, 60, 1831–1839. [Google Scholar] [CrossRef] [PubMed]
- Clements, P.J.; Tan, M.; McLaughlin, V.V.; Oudiz, R.J.; Tapson, V.F.; Channick, R.N.; Rubin, L.J.; Langer, A. The pulmonary arterial hypertension quality enhancement research initiative: Comparison of patients with idiopathic PAH to patients with systemic sclerosis-associated PAH. Ann. Rheum. Dis. 2012, 71, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.R.; Mathai, S.C.; Champion, H.C.; Girgis, R.E.; Housten-Harris, T.; Hummers, L.; Krishnan, J.A.; Hassoun, P.M.; Wigley, F.M.; Archer, S.L. Clinical differences between idiopathic and scleroderma-related pulmonary hypertension. Arthritis Rheum. 2006, 54, 3043–3050. [Google Scholar] [CrossRef] [PubMed]
- Hsu, V.M.; Chung, L.; Hummers, L.K.; Wigley, F.; Simms, R.; Bolster, M.; Domsic, R.T.; Fischer, A.; Hinchcliff, M.; Khanna, D.; et al. Development of pulmonary hypertension in a high-risk population with systemic sclerosis in the Pulmonary Hypertension Assessment and Recognition of Outcomes in Scleroderma (PHAROS) cohort study. Semin. Arthritis Rheum. 2014, 44, 55–62. [Google Scholar] [CrossRef] [PubMed]
- The Australian Scleroderma Interest Group (ASIG); Morrisroe, K.; Huq, M.; Stevens, W.; Rabusa, C.; Proudman, S.M.; Nikpour, M. Risk factors for development of pulmonary arterial hypertension in Australian systemic sclerosis patients: Results from a large multicenter cohort study. BMC Pulm. Med. 2016, 16, 13. [Google Scholar] [CrossRef]
- Steen, V.; Medsger, T.A. Predictors of isolated pulmonary hypertension in patients with systemic sclerosis and limited cutaneous involvement. Arthritis Rheum. 2003, 48, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Brown, Z.R.; Nikpour, M. Screening for pulmonary arterial hypertension in systemic sclerosis: Now or never! Eur. J. Rheumatol. 2020, 7, 187–192. [Google Scholar] [CrossRef]
- The Australian Scleroderma Interest Group (ASIG); Morrisroe, K.; Stevens, W.; Huq, M.; Prior, D.; Sahhar, J.; Ngian, G.S.; Celermajer, D.S.; Zochling, J.; Proudman, S.; et al. Survival and quality of life in incident systemic sclerosis-related pulmonary arterial hypertension. Arthritis Res. Ther. 2017, 19, 122. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.; Gerry Coghlan, J.; Khanna, D. Early detection and management of pulmonary arterial hypertension. Eur. Respir. Rev. 2012, 21, 306–312. [Google Scholar] [CrossRef]
- Humbert, M.; Yaici, A.; De Groote, P.; Montani, D.; Sitbon, O.; Launay, D.; Gressin, V.; Guillevin, L.; Clerson, P.; Simonneau, G.; et al. Screening for pulmonary arterial hypertension in patients with systemic sclerosis: Clinical characteristics at diagnosis and long-term survival. Arthritis Rheum. 2011, 63, 3522–3530. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.E.; Ernande, L.; Garbi, M.; et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1301–1310. [Google Scholar]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Mercurio, V.; Balasubramanian, A.; Shah, A.A.; Hsu, S.; Simpson, C.E.; Damico, R.; Kolb, T.M.; Hassoun, P.M.; Mathai, S.C.; et al. Defining minimal detectable difference in echocardiographic measures of right ventricular function in systemic sclerosis. Arthritis Res. Ther. 2022, 24, 146. [Google Scholar] [CrossRef] [PubMed]
- Pigatto, E.; Peluso, D.; Zanatta, E.; Polito, P.; Miatton, P.; Bourji, K.; Badano, L.P.; Punzi, L.; Cozzi, F. Evaluation of right ventricular function performed by 3D-echocardiography in scleroderma patients. Reumatismo 2015, 66, 259–263. [Google Scholar] [CrossRef]
- Meune, C.; Khanna, D.; Aboulhosn, J.; Avouac, J.; Kahan, A.; Furst, D.E.; Allanore, Y. A right ventricular diastolic impairment is common in systemic sclerosis and is associated with other target-organ damage. Semin. Arthritis Rheum. 2016, 45, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Vonk Noordegraaf, A.; Westerhof, B.E.; Westerhof, N. The Relationship Between the Right Ventricle and its Load in Pulmonary Hypertension. J. Am. Coll. Cardiol. 2017, 69, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Tello, K.; Wan, J.; Dalmer, A.; Vanderpool, R.; Ghofrani, H.A.; Naeije, R.; Roller, F.; Mohajerani, E.; Seeger, W.; Herberg, U.; et al. Validation of the Tricuspid Annular Plane Systolic Excursion/Systolic Pulmonary Artery Pressure Ratio for the Assessment of Right Ventricular-Arterial Coupling in Severe Pulmonary Hypertension. Circ. Cardiovasc. Imaging 2019, 12, e009047. [Google Scholar] [CrossRef] [PubMed]
- Tello, K.; Axmann, J.; Ghofrani, H.A.; Naeije, R.; Narcin, N.; Rieth, A.; Seeger, W.; Gall, H.; Richter, M.J. Relevance of the TAPSE/PASP ratio in pulmonary arterial hypertension. Int. J. Cardiol. 2018, 266, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Bosch, L.; Lam, C.S.P.; Gong, L.; Chan, S.P.; Sim, D.; Yeo, D.; Jaufeerally, F.; Leong, K.T.G.; Ong, H.Y.; Ng, T.P.; et al. Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur. J. Heart Fail. 2017, 19, 1664–1671. [Google Scholar] [CrossRef] [PubMed]
- Coghlan, J.G.; Denton, C.P.; Grünig, E.; Bonderman, D.; Distler, O.; Khanna, D.; Müller-Ladner, U.; Pope, J.E.; Vonk, M.C.; Doelberg, M.; et al. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: The DETECT study. Ann. Rheum. Dis. 2014, 73, 1340–1349. [Google Scholar] [CrossRef] [PubMed]
- Young, A.; Moles, V.M.; Jaafar, S.; Visovatti, S.; Huang, S.; Vummidi, D.; Champion, H.C.; Dweik, R.A.; Saggar, R.; Mathai, S.C.; et al. Performance of the DETECT Algorithm for Pulmonary Hypertension Screening in a Systemic Sclerosis Cohort. Arthritis Rheumatol. 2021, 73, 1731–1737. [Google Scholar] [CrossRef]
- Colalillo, A.; Grimaldi, M.C.; Vaiarello, V.; Pellicano, C.; Leodori, G.; Gigante, A.; Romaniello, A.; Rosato, E. In systemic sclerosis, the TAPSE/sPAP ratio can be used in addition to the DETECT algorithm for pulmonary arterial hypertension diagnosis. Rheumatology 2022, 61, 2450–2456. [Google Scholar] [CrossRef] [PubMed]
- Colalillo, A.; Hoffmann-Vold, A.M.; Pellicano, C.; Romaniello, A.; Gabrielli, A.; Hachulla, E.; Smith, V.; Simeón-Aznar, C.P.; Castellví, I.; Airò, P.; et al. The role of TAPSE/sPAP ratio in predicting pulmonary hypertension and mortality in the systemic sclerosis EUSTAR cohort. Autoimmun. Rev. 2023, 22, 103290. [Google Scholar] [CrossRef]
- Lai, J.; Zhao, J.; Li, K.; Qin, X.; Wang, H.; Tian, Z.; Wang, Q.; Li, M.; Guo, X.; Liu, Y.; et al. Right Ventricle to Pulmonary Artery Coupling Predicts the Risk Stratification in Patients With Systemic Sclerosis-Associated Pulmonary Arterial Hypertension. Front. Cardiovasc. Med. 2022, 9, 872795. [Google Scholar] [CrossRef]
- Colalillo, A.; Pellicano, C.; Ananyeva, L.P.; Hachulla, E.; Cuomo, G.; Györfi, A.; Smith, V.; Distler, O.; Matucci-Cerinic, M.; Valentini, G.; et al. Tricuspid Annular Plane Systolic Excursion/Systolic Pulmonary Artery Pressure Ratio and Cardiorenal Syndrome Type 2 in the Systemic Sclerosis EUSTAR Cohort. Arthritis Care Res. 2023, acr.25196. [Google Scholar] [CrossRef] [PubMed]
- Nagin, D.S.; Odgers, C.L. Group-Based Trajectory Modeling in Clinical Research. Annu. Rev. Clin. Psychol. 2010, 6, 109–138. [Google Scholar] [CrossRef] [PubMed]
- Lennon, H.; Kelly, S.; Sperrin, M.; Buchan, I.; Cross, A.J.; Leitzmann, M.; Cook, M.B.; Renehan, A.G. Framework to construct and interpret latent class trajectory modelling. BMJ Open 2018, 8, e020683. [Google Scholar] [CrossRef]
- Man, A.; Davidyock, T.; Ferguson, L.T.; Ieong, M.; Zhang, Y.; Simms, R.W. Changes in forced vital capacity over time in systemic sclerosis: Application of group-based trajectory modelling. Rheumatology 2015, 54, 1464–1471. [Google Scholar] [CrossRef]
- Shand, L.; Lunt, M.; Nihtyanova, S.; Hoseini, M.; Silman, A.; Black, C.M.; Denton, C.P. Relationship between change in skin score and disease outcome in diffuse cutaneous systemic sclerosis: Application of a latent linear trajectory model. Arthritis Rheum. 2007, 56, 2422–2431. [Google Scholar] [CrossRef] [PubMed]
- Kida, T.; Matsuzaki, K.; Yokota, I.; Kawase, N.; Kadoya, M.; Inoue, H.; Kukida, Y.; Kaneshita, S.; Inoue, T.; Wada, M.; et al. Latent trajectory modelling of pulmonary artery pressure in systemic sclerosis: A retrospective cohort study. RMD Open 2022, 8, e002673. [Google Scholar] [CrossRef] [PubMed]
- Levy, P.T.; Patel, M.D.; Groh, G.; Choudhry, S.; Murphy, J.; Holland, M.R.; Hamvas, A.; Grady, M.R.; Singh, G.K. Pulmonary Artery Acceleration Time Provides a Reliable Estimate of Invasive Pulmonary Hemodynamics in Children. J. Am. Soc. Echocardiogr. 2016, 29, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Huang, C.H.; Tu, Y.K. Pulmonary Hypertension and Pulmonary Artery Acceleration Time: A Systematic Review and Meta-Analysis. J. Am. Soc. Echocardiogr. 2018, 31, 201–210.e3. [Google Scholar] [CrossRef] [PubMed]
- Gargani, L.; Voilliot, D.; D'Alto, M.; Agoston, G.; Moreo, A.; Serra, W.; D'Andrea, A.; Ghio, S.; Matucci-Cerinic, M.; Bossone, E.; et al. Pulmonary Circulation on the Crossroads Between the Left and Right Heart in Systemic Sclerosis. Heart Fail. Clin. 2018, 14, 271–281. [Google Scholar] [CrossRef]
- Nagel, C.; Marra, A.M.; Benjamin, N.; Blank, N.; Cittadini, A.; Coghlan, G.; Distler, O.; Denton, C.P.; Egenlauf, B.; Fiehn, C.; et al. Reduced Right Ventricular Output Reserve in Patients With Systemic Sclerosis and Mildly Elevated Pulmonary Artery Pressure. Arthritis Rheumatol. 2019, 71, 805–816. [Google Scholar] [CrossRef]
- Tedford, R.J.; Mudd, J.O.; Girgis, R.E.; Mathai, S.C.; Zaiman, A.L.; Housten-Harris, T.; Boyce, D.; Kelemen, B.W.; Bacher, A.C.; Shah, A.A.; et al. Right Ventricular Dysfunction in Systemic Sclerosis–Associated Pulmonary Arterial Hypertension. Circ. Heart Fail. 2013, 6, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Writing Committee Members; McLaughlin, V.V.; Archer, S.L.; Badesch, D.B.; Barst, R.J.; Farber, H.W.; Lindner, J.R.; Mathier, M.A.; McGoon, M.D.; Park, M.H.; et al. ACCF/AHA 2009 Expert Consensus Document on Pulmonary Hypertension: A Report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: Developed in Collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation 2009, 119, 2250–2294. [Google Scholar] [PubMed]
- Serra, W.; Chetta, A. sPAP/PAAT Ratio as a New Index of Pulmonary Vascular Load: A Study in Normal Subjects and Ssc Patients with and without PH. Pathophysiology 2022, 29, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Allanore, Y.; Meune, C. N-terminal pro brain natriuretic peptide: The new cornerstone of cardiovascular assessment in systemic sclerosis. Clin. Exp. Rheumatol. 2009, 27, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Cavagna, L.; Caporali, R.; Klersy, C.; Ghio, S.; Albertini, R.; Scelsi, L.; Moratti, R.; Bonino, C.; Montecucco, C. Comparison of Brain Natriuretic Peptide (BNP) and NT-proBNP in Screening for Pulmonary Arterial Hypertension in Patients with Systemic Sclerosis. J. Rheumatol. 2010, 37, 2064–2070. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qin, D.; Qin, L.; Yang, X.; Luo, Q.; Wang, H. Diagnostic value of cardiac natriuretic peptide on pulmonary hypertension in systemic sclerosis: A systematic review and meta-analysis. Jt. Bone Spine 2022, 89, 105287. [Google Scholar] [CrossRef] [PubMed]
- Chung, L.; Fairchild, R.M.; Furst, D.E.; Li, S.; Alkassab, F.; Bolster, M.B.; Csuka, M.E.; Derk, C.T.; Domsic, R.T.; Fischer, A.; et al. Utility of B-type natriuretic peptides in the assessment of patients with systemic sclerosis-associated pulmonary hypertension in the PHAROS registry. Clin. Exp. Rheumatol. 2017, 35, 106–113. [Google Scholar] [PubMed]
- Jha, M.; Wang, M.; Steele, R.; Baron, M.; Fritzler, M.J.; Canadian Scleroderma Research Group. NT-proBNP, hs-cTnT, and CRP predict the risk of cardiopulmonary outcomes in systemic sclerosis: Findings from the Canadian Scleroderma Research Group. J. Scleroderma Relat. Disord. 2022, 7, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Allanore, Y.; Komocsi, A.; Vettori, S.; Hachulla, E.; Hunzelmann, N.; Distler, J.; Avouac, J.; Gobeaux, C.; Launay, D.; Kahan, A. N-terminal pro-brain natriuretic peptide is a strong predictor of mortality in systemic sclerosis. Int. J. Cardiol. 2016, 223, 385–389. [Google Scholar] [CrossRef]
- Zharikov, S.; Krotova, K.; Hu, H.; Baylis, C.; Johnson, R.J.; Block, E.R. Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am. J. Physiol.-Cell Physiol. 2008, 295, C1183–C1190. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Li, X.; Huang, Y.; Sun, X.; Wang, Q. Serum uric acid is associated with disease severity and may predict clinical outcome in patients of pulmonary arterial hypertension secondary to connective tissue disease in Chinese: A single-center retrospective study. BMC Pulm. Med. 2020, 20, 272. [Google Scholar] [CrossRef] [PubMed]
- Cerik, I.B.; Dindas, F.; Koyun, E.; Dereli, S.; Sahin, A.; Turgut, O.O.; Gul, I. New prognostic markers in pulmonary arterial hypertension: CRP to albumin ratio and uric acid. Clin. Biochem. 2022, 100, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Simpson, C.E.; Damico, R.L.; Hummers, L.; Khair, R.M.; Kolb, T.M.; Hassoun, P.M. Serum uric acid as a marker of disease risk, severity, and survival in systemic sclerosis-related pulmonary arterial hypertension. Pulm. Circ. 2019, 9, 2045894019859477. [Google Scholar] [CrossRef] [PubMed]
- Uk Kang, T.; Park, K.Y.; Kim, H.J.; Ahn, H.S.; Yim, S.Y.; Jun, J.B. Association of hyperuricemia and pulmonary hypertension: A systematic review and meta-analysis. Mod. Rheumatol. 2019, 29, 1031–1041. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, P.; Di Benedetto, P.; Ruscitti, P.; Campese, A.F.; Liakouli, V.; Carubbi, F.; Pantano, I.; Berardicurt, O.; Screpanti, I.; Giacomelli, R. Impaired Endothelium-Mesenchymal Stem Cells Cross-talk in Systemic Sclerosis: A Link Between Vascular and Fibrotic Features. Arthritis Res. Ther. 2014, 16, 442. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A.; Kim, S.H. IL-32, a novel cytokine with a possible role in disease. Ann. Rheum. Dis. 2006, 65 (Suppl. S3), iii61–iii64. [Google Scholar] [CrossRef]
- Nold-Petry, C.A.; Rudloff, I.; Baumer, Y.; Ruvo, M.; Marasco, D.; Botti, P.; Farkas, L.; Cho, S.X.; Zepp, J.A.; Azam, T.; et al. Interleukin 32 promotes angiogenesis. J. Immunol. 2014, 192, 589–602. [Google Scholar] [CrossRef]
- Nold-Petry, C.A.; Nold, M.F.; Zepp, J.A.; Kim, S.H.; Voelkel, N.F.; Dinarello, C.A. IL-32–dependent effects of IL-1 on endothelial cell functions. Proc. Natl. Acad. Sci. USA 2009, 106, 3883–3888. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.J.; Park, J.S.; Kang, M.I.; Lee, S.K.; Park, Y.B.; Lee, S.W. Increased serum interleukin-32 levels in patients with Behçet’s disease. Int. J. Rheum. Dis. 2018, 21, 2167–2174. [Google Scholar] [CrossRef]
- Kwon, O.C.; Ghang, B.; Lee, E.; Hong, S.; Lee, C.; Yoo, B. Interleukin-32γ: Possible association with the activity and development of nephritis in patients with systemic lupus erythematosus. Int. J. Rheum. Dis. 2019, 22, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Di Benedetto, P.; Guggino, G.; Manzi, G.; Ruscitti, P.; Berardicurti, O.; Panzera, N. Interleukin-32 in systemic sclerosis, a potential new biomarker for pulmonary arterial hypertension. Arthritis Res. Ther. 2020, 22, 127. [Google Scholar] [CrossRef]
- Marvie, P.; Lisbonne, M.; L’Helgoualc’h, A.; Rauch, M.; Turlin, B.; Preisser, L.; Bourd-Boittin, K.; Théret, N.; Gascan, H.; Piquet-Pellorce, C.; et al. Interleukin-33 overexpression is associated with liver fibrosis in mice and humans. J. Cell. Mol. Med. 2010, 14, 1726–1739. [Google Scholar] [CrossRef]
- Sanada, S.; Hakuno, D.; Higgins, L.J.; Schreiter, E.R.; McKenzie, A.N.J.; Lee, R.T. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Investig. 2007, 117, 1538–1549. [Google Scholar] [CrossRef] [PubMed]
- Bayes-Genis, A.; Zhang, Y.; Ky, B. ST2 and Patient Prognosis in Chronic Heart Failure. Am. J. Cardiol. 2015, 115, 64B–69B. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.; Köhm, M.; Nordin, A.; Svenungsson, E.; Pfeilschifter, J.M.; Radeke, H.H. Increased Serum Levels of the IL-33 Neutralizing sST 2 in Limited Cutaneous Systemic Sclerosis. Scand. J. Immunol. 2015, 82, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Günther, F.; Straub, R.; Hartung, W.; Luchner, A.; Fleck, M.; Ehrenstein, B. Increased Serum Levels of soluble ST2 as a Predictor of Disease Progression in Systemic Sclerosis. Scand. J. Rheumatol. 2022, 51, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Iannazzo, F.; Pellicano, C.; Colalillo, A.; Ramaccini, C.; Romaniello, A.; Gigante, A.; Rosato, E. Interleukin-33 and soluble suppression of tumorigenicity 2 in scleroderma cardiac involvement. Clin. Exp. Med. 2023, 23, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Griesenauer, B.; Paczesny, S. The ST2/IL-33 Axis in Immune Cells during Inflammatory Diseases. Front. Immunol. 2017, 8, 475. [Google Scholar] [CrossRef]
- Indralingam, C.S.; Gutierrez-Gonzalez, A.K.; Johns, S.C.; Tsui, T.; Cannon, D.T.; Fuster, M.M. IL-33/ST2 receptor-dependent signaling in the development of pulmonary hypertension in Sugen/hypoxia mice. Physiol. Rep. 2022, 10, e15185. Available online: https://onlinelibrary.wiley.com/doi/10.14814/phy2.15185 (accessed on 4 April 2024). [CrossRef] [PubMed]
- Carlomagno, G.; Messalli, G.; Melillo, R.M.; Stanziola, A.A.; Visciano, C.; Mercurio, V. Serum soluble ST2 and interleukin-33 levels in patients with pulmonary arterial hypertension. Int. J. Cardiol. 2013, 168, 1545–1547. [Google Scholar] [CrossRef]
- Luk, K.S.; Ip, C.; Gong, Q.; Wong, S.H.; Wu, W.K.; Dong, M. A meta-analysis of soluble suppression of tumorigenicity 2 (sST2) and clinical outcomes in pulmonary hypertension. J. Geriatr. Cardiol. 2017, 14, 766. [Google Scholar] [PubMed]
- Pratama, R.S.; Hartopo, A.B.; Anggrahini, D.W.; Dewanto, V.C.; Dinarti, L.K. Serum soluble suppression of tumorigenicity-2 level associates with severity of pulmonary hypertension associated with uncorrected atrial septal defect. Pulm. Circ. 2020, 10, 2045894020915832. [Google Scholar] [CrossRef] [PubMed]
- Geenen, L.W.; Baggen, V.J.; Kauling, R.M.; Koudstaal, T.; Boomars, K.A.; Boersma, E.; Roos-Hesselink, J.W.; van den Bosch, A.E. The Prognostic Value of Soluble ST2 in Adults with Pulmonary Hypertension. J. Clin. Med. 2019, 8, 1517. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Wu, Q.; Zhang, N.; Shi, J.; Zhang, H.; Wang, Q.; Li, Y.; Chen, X.; Zhao, L.; Liu, M.; et al. The prognostic value of sST2 in connective tissue disease patients with pulmonary hypertension. Rheumatology 2022, 61, 3989–3996. [Google Scholar] [CrossRef]
- Basta, G. Receptor for advanced glycation endproducts and atherosclerosis: From basic mechanisms to clinical implications. Atherosclerosis 2008, 196, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.M.; Yan, S.D.; Wautier, J.L.; Stern, D. Activation of Receptor for Advanced Glycation End Products: A Mechanism for Chronic Vascular Dysfunction in Diabetic Vasculopathy and Atherosclerosis. Circ. Res. 1999, 84, 489–497. [Google Scholar] [CrossRef]
- Herold, K.; Moser, B.; Chen, Y.; Zeng, S.; Yan, S.F.; Ramasamy, R.; Emond, J.; Clynes, R.; Schmidt, A.M. Receptor for advanced glycation end products (RAGE) in a dash to the rescue: Inflammatory signals gone awry in the primal response to stress. J. Leukoc. Biol. 2007, 82, 204–212. [Google Scholar] [CrossRef]
- Schmidt, A.; Clynes, R.; Moser, B.; Yan, S.; Ramasamy, R.; Herold, K. Receptor for AGE (RAGE): Weaving Tangled Webs Within the Inflammatory Response. Curr. Mol. Med. 2007, 7, 743–751. [Google Scholar] [CrossRef]
- Abdul-Salam, V.B.; Wharton, J.; Cupitt, J.; Berryman, M.; Edwards, R.J.; Wilkins, M.R. Proteomic Analysis of Lung Tissues From Patients With Pulmonary Arterial Hypertension. Circulation 2010, 122, 2058–2067. [Google Scholar] [CrossRef] [PubMed]
- Meloche, J.; Courchesne, A.; Barrier, M.; Carter, S.; Bisserier, M.; Paulin, R.; Breuils-Bonnet, S.; Tremblay, E.; Biardel, S.; Bourgeois, A.; et al. Critical Role for the Advanced Glycation End-Products Receptor in Pulmonary Arterial Hypertension Etiology. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2013, 2, e005157. [Google Scholar] [CrossRef]
- Suzuki, S.; Nakazato, K.; Sugimoto, K.; Yoshihisa, A.; Yamaki, T.; Kunii, H.; Abe, Y.; Saito, T.; Ohwada, T.; Suzuki, H.; et al. Plasma Levels of Receptor for Advanced Glycation End-Products and High-Mobility Group Box 1 in Patients With Pulmonary Hypertension. Int. Heart J. 2016, 57, 234–240. [Google Scholar] [CrossRef]
- Nakamura, K.; Akagi, S.; Ogawa, A.; Kusano, K.F.; Matsubara, H.; Miura, D.; Fuke, S.; Nishii, N.; Nagase, S.; Kohno, K.; et al. Pro-apoptotic effects of imatinib on PDGF-stimulated pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Int. J. Cardiol. 2012, 159, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Sakaguchi, M.; Matsubara, H.; Akagi, S.; Sarashina, T.; Ejiri, K.; Akazawa, K.; Kondo, M.; Nakagawa, K.; Yoshida, M.; et al. Crucial role of RAGE in inappropriate increase of smooth muscle cells from patients with pulmonary arterial hypertension. PLoS ONE 2018, 13, e0203046. [Google Scholar] [CrossRef]
- Bauer, Y.; de Bernard, S.; Hickey, P.; Ballard, K.; Cruz, J.; Cornelisse, P.; Chadha-Boreham, H.; Distler, O.; Rosenberg, D.; Doelberg, M.; et al. Identifying early pulmonary arterial hypertension biomarkers in systemic sclerosis: Machine learning on proteomics from the DETECT cohort. Eur. Respir. J. 2021, 57, 2002591. [Google Scholar] [CrossRef] [PubMed]
- Atzeni, I.M.; Al-Adwi, Y.; Doornbos-van der Meer, B.; Roozendaal, C.; Stel, A.; van Goor, H.; Gan, C.T.; Dickinson, M.; Timens, W.; Smit, A.J.; et al. The soluble receptor for advanced glycation end products is potentially predictive of pulmonary arterial hypertension in systemic sclerosis. Front. Immunol. 2023, 14, 1189257. [Google Scholar] [CrossRef]
- Seyhan, E.C.; Özgül, M.A.; Tutar, N.; Ömür, I.; Uysal, A.; Altın, S. Red Blood Cell Distribution and Survival in Patients with Chronic Obstructive Pulmonary Disease. COPD J. Chronic Obstr. Pulm. Dis. 2013, 10, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Subhashree, A.R. The Red Cell Distribution Width as a Sensitive Biomarker for Assessing the Pulmonary Function in Automobile Welders-A Cross Sectional Study. J. Clin. Diagn. Res. 2013, 7, 89–92. [Google Scholar] [CrossRef]
- Ujszaszi, A.; Molnar, M.Z.; Czira, M.E.; Novak, M.; Mucsi, I. Renal function is independently associated with red cell distribution width in kidney transplant recipients: A potential new auxiliary parameter for the clinical evaluation of patients with chronic kidney disease. Br. J. Haematol. 2013, 161, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Montagnana, M.; Danese, E. Red cell distribution width and cancer. Ann. Transl. Med. 2016, 4, 399. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Sacks, F.; Arnold, M.; Moye, L.; Davis, B.; Pfeffer, M. Relation Between Red Blood Cell Distribution Width and Cardiovascular Event Rate in People With Coronary Disease. Circulation 2008, 117, 163–168. [Google Scholar] [CrossRef]
- Felker, G.M.; Allen, L.A.; Pocock, S.J.; Shaw, L.K.; McMurray, J.J.V.; Pfeffer, M.A.; Swedberg, K.; Wang, D.; Yusuf, S.; Michelson, E.L.; et al. Red Cell Distribution Width as a Novel Prognostic Marker in Heart Failure. J. Am. Coll. Cardiol. 2007, 50, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Montagnana, M.; Cervellin, G.; Meschi, T.; Lippi, G. The role of red blood cell distribution width in cardiovascular and thrombotic disorders. Clin. Chem. Lab. Med. 2012, 50, 635–641. [Google Scholar] [CrossRef]
- Hampole, C.V.; Mehrotra, A.K.; Thenappan, T.; Gomberg-Maitland, M.; Shah, S.J. Usefulness of Red Cell Distribution Width as a Prognostic Marker in Pulmonary Hypertension. Am. J. Cardiol. 2009, 104, 868–872. [Google Scholar] [CrossRef]
- Rhodes, C.J.; Wharton, J.; Howard, L.S.; Gibbs, J.S.R.; Wilkins, M.R. Red cell distribution width outperforms other potential circulating biomarkers in predicting survival in idiopathic pulmonary arterial hypertension. Heart 2011, 97, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Targher, G.; Montagnana, M.; Salvagno, G.L.; Zoppini, G.; Guidi, G.C. Relation Between Red Blood Cell Distribution Width and Inflammatory Biomarkers in a Large Cohort of Unselected Outpatients. Arch. Pathol. Lab. Med. 2009, 133, 628–632. [Google Scholar] [CrossRef] [PubMed]
- Rezende, S.M.; Lijfering, W.M.; Rosendaal, F.R.; Cannegieter, S.C. Hematologic variables and venous thrombosis: Red cell distribution width and blood monocyte count are associated with an increased risk. Haematologica 2014, 99, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Solak, Y.; Yilmaz, M.I.; Saglam, M.; Caglar, K.; Verim, S.; Unal, H.U.; Gok, M.; Demirkaya, E.; Gaipov, A.; Kayrak, M.; et al. Red Cell Distribution Width Is Independently Related to Endothelial Dysfunction in Patients With Chronic Kidney Disease. Am. J. Med. Sci. 2014, 347, 118–124. [Google Scholar] [CrossRef]
- Fatini, C.; Mannini, L.; Sticchi, E.; Rogai, V.; Guiducci, S.; Conforti, M.L.; Rizzitelli, A.; Falcini, F.; Abbate, R.; Gensini, G.F.; et al. Hemorheologic profile in systemic sclerosis: Role of NOS3 −786T>C and 894G>T polymorphisms in modulating both the hemorheologic parameters and the susceptibility to the disease. Arthritis Rheum. 2006, 54, 2263–2270. [Google Scholar] [CrossRef]
- Farkas, N.; Szabó, A.; Lóránd, V.; Sarlós, D.P.; Minier, T.; Prohászka, Z.; Czirják, L.; Varjú, C. Clinical usefulness of measuring red blood cell distribution width in patients with systemic sclerosis. Rheumatology 2014, 53, 1439–1445. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Mo, H.; Guo, X.; Wang, Q.; Xu, D.; Hou, Y.; Tian, Z.; Liu, Y.; Wang, H.; Lai, J.; et al. Red blood cell distribution width as a related factor of pulmonary arterial hypertension in patients with systemic sclerosis. Clin. Rheumatol. 2018, 37, 979–985. [Google Scholar] [CrossRef]
- Hui, M.; Zhao, J.; Tian, Z.; Wang, J.; Qian, J.; Yang, X.; Wang, Q.; Li, M.; Zhao, Y.; Zeng, X. Red blood cell distribution width as a potential predictor of survival of pulmonary arterial hypertension associated with primary Sjögren’s syndrome: A retrospective cohort study. Clin. Rheumatol. 2019, 38, 477–485. [Google Scholar] [CrossRef]
- Bellan, M.; Giubertoni, A.; Piccinino, C.; Dimagli, A.; Grimoldi, F.; Sguazzotti, M.; Burlone, M.E.; Smirne, C.; Sola, D.; Marino, P.; et al. Red Cell Distribution Width and Platelet Count as Biomarkers of Pulmonary Arterial Hypertension in Patients with Connective Tissue Disorders. Dis. Markers 2019, 2019, 4981982. [Google Scholar] [CrossRef]
- Petrauskas, L.A.; Saketkoo, L.A.; Kazecki, T.; Saito, S.; Jaligam, V.; deBoisblanc, B.P.; Lammi, M.R. Use of red cell distribution width in a population at high risk for pulmonary hypertension. Respir. Med. 2019, 150, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Launay, D.; Montani, D.; Hassoun, P.M.; Cottin, V.; Le Pavec, J.; Clerson, P.; Sitbon, O.; Jaïs, X.; Savale, L.; Weatherald, J.; et al. Clinical phenotypes and survival of pre-capillary pulmonary hypertension in systemic sclerosis. PLoS ONE 2018, 13, e0197112. [Google Scholar] [CrossRef]
- Jing, Z.C.; Xu, X.Q.; Badesch, D.B.; Jiang, X.; Wu, Y.; Liu, J.M.; Wang, Y.; Pan, L.; Li, H.P.; Pu, J.L.; et al. Pulmonary function testing in patients with pulmonary arterial hypertension. Respir. Med. 2009, 103, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
- Low, A.; George, S.; Howard, L.; Bell, N.; Millar, A.; Tulloh, R.M.R. Lung Function, Inflammation, and Endothelin-1 in Congenital Heart Disease–Associated Pulmonary Arterial Hypertension. J. Am. Heart Assoc. 2018, 7, e007249. [Google Scholar] [CrossRef] [PubMed]
- Diamanti, E.; Karava, V.; Yerly, P.; Aubert, J.D. Carbon Monoxide Diffusion Capacity as a Severity Marker in Pulmonary Hypertension. J. Clin. Med. 2021, 11, 132. [Google Scholar] [CrossRef] [PubMed]
- Bournia, V.K.; Kallianos, A.; Panopoulos, S.; Gialafos, E.; Velentza, L.; Vlachoyiannopoulos, P.G.; Sfikakis, P.P.; Trakada, G. Cardiopulmonary exercise testing and prognosis in patients with systemic sclerosis without baseline pulmonary hypertension: A prospective cohort study. Rheumatol. Int. 2022, 42, 303–309. [Google Scholar] [CrossRef]
- Mukerjee, D. Echocardiography and pulmonary function as screening tests for pulmonary arterial hypertension in systemic sclerosis. Rheumatology 2004, 43, 461–466. [Google Scholar] [CrossRef]
- Shi, H.; Gao, P.; Liu, H.; Su, J.; He, X. Diagnostic value of combined FVC%/DLCO% and echocardiography in connective tissue disorder-associated pulmonary hypertension. Med. Int. 2024, 4, 8. [Google Scholar] [CrossRef]
- Xiong, J.; Li, J.; Huang, Y.; Yang, F.; Wu, R. The Role of Pulmonary Function Test for Pulmonary Arterial Hypertension in Patients with Connective Tissue Disease. Dis. Markers 2022, 2022, 6066291. [Google Scholar] [CrossRef] [PubMed]
- Stadler, S.; Mergenthaler, N.; Lange, T.J. The prognostic value of DLCO and pulmonary blood flow in patients with pulmonary hypertension. Pulm. Circ. 2019, 9, 2045894019894531. [Google Scholar] [CrossRef] [PubMed]
- Roughton, F.J.W.; Forster, R.E. Relative Importance of Diffusion and Chemical Reaction Rates in Determining Rate of Exchange of Gases in the Human Lung, With Special Reference to True Diffusing Capacity of Pulmonary Membrane and Volume of Blood in the Lung Capillaries. J. Appl. Physiol. 1957, 11, 290–302. [Google Scholar] [CrossRef]
- Degano, B.; Mittaine, M.; Guénard, H.; Rami, J.; Garcia, G.; Kamar, N.; Bureau, C.; Péron, J.M.; Rostaing, L.; Rivière, D. Nitric oxide and carbon monoxide lung transfer in patients with advanced liver cirrhosis. J. Appl. Physiol. 2009, 107, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Pernot, J.; Puzenat, E.; Magy-Bertrand, N.; Manzoni, P.; Gondouin, A.; Bourdin, H.; Simon-Rigaud, M.L.; Regnard, J.; Degano, B. Detection of Interstitial Lung Disease in Systemic Sclerosis through Partitioning of Lung Transfer for Carbon Monoxide. Respiration 2012, 84, 461–468. [Google Scholar] [CrossRef]
- Sivova, N.; Launay, D.; Wémeau-Stervinou, L.; De Groote, P.; Remy-Jardin, M.; Denis, G.; Sobanski, V.; Hachulla, E.; Hatron, P.Y.; Lambert, M.; et al. Relevance of Partitioning DLCO to Detect Pulmonary Hypertension in Systemic Sclerosis. Kuwana M, editor. PLoS ONE 2013, 8, e78001. [Google Scholar] [CrossRef]
- Schreiber, B.E.; Valerio, C.J.; Keir, G.J.; Handler, C.; Wells, A.U.; Denton, C.P.; Coghlan, J.G. Improving the detection of pulmonary hypertension in systemic sclerosis using pulmonary function tests. Arthritis Rheum. 2011, 63, 3531–3539. [Google Scholar] [CrossRef] [PubMed]
Marker | Sensitivity | Specificity | Cutoff | Advantages | Disadvantages | Clinical Relevance |
---|---|---|---|---|---|---|
sPAP | 90% | 70% | >35 mmHg | Easy to measure, high sensitivity | Low specificity, may overestimate PAH | Useful for initial PAH screening |
TAPSE/sPAP | 85% | 75% | <0.55 mm/mmHg | Correlates well with invasive measurements | Requires accurate measurements, operator-dependent | Reflects RV-PA coupling, robust for precision |
TRV | 88% | 68% | >2.8 m/s | Highly sensitive, straightforward to obtain | Low specificity, prone to overestimation | Useful when combined with other markers |
PAAT/sPAP | 80% | 78% | >0.4 | Reflects RV workload and pulmonary pressure | Variability across studies | Supplementary for pulmonary pressure evaluation |
Study Author | Year | Study Population | Key Findings | Biomarker Levels | Statistical Significance | Prognostic Value |
---|---|---|---|---|---|---|
Cerik et al. [62] | 2022 | Patients with PAH | Higher UA in PAH vs. control; higher in deceased patients | PAH: 0.33 mmol/L, Control: 0.3 mmol/L | p = 0.03; p < 0.001 for survival | AUC: 0.69, UA threshold: 5.85 mg/dL |
Wang et al. [61] | 2020 | PAH with CTD | Higher UA correlated with worse hemodynamic measures; higher survival risk in hyperuricemia | Hyperuricemia: ≥357 μmol/L (women), ≥420 μmol/L (men) | p = 0.041 for survival | Lower survival in the hyperuricemia group |
Simpson et al. [63] | 2019 | SSc patients assessed for PAH | Higher UA in PAH patients; UA predicts PAH with high accuracy | PAH: 6.9 mg/dL, Non-PAH: 5.2 mg/dL | p < 0.001 | UA > 6.3 mg/dL associated with higher mortality |
Zhang et al. [56] | 2022 | Patients with SSc-PAH | Sensitivity of 0.84, specificity of 0.68 | NT-proBNP: >125 ng/mL | p < 0.001 | NT-proBNP is a robust prognostic indicator for 3-year mortality |
Chung et al. [57] | 2017 | Patients with SSc-PH | Higher NT-proBNP values in patients with SSc-PH compared to those at risk | NT-proBNP: >503 pg/mL | p < 0.001 | NT-proBNP confirms value for PH detection, not predictive of mortality |
Jha et al. [58] | 2022 | Patients with SSc | 16% with abnormal NT-proBNP levels | NT-proBNP: >125 ng/mL | p < 0.001 | NT-proBNP has prognostic value for PH |
Allanore et al. [59] | 2016 | Patients with SSc | Mean level of 203 ng/mL NT-proBNP in deceased vs. 88 ng/mL in survivors | NT-proBNP: >125 ng/mL | p < 0.001 | NT-proBNP is an independent prognostic indicator for 3-year mortality |
Biomarker | Sensitivity | Specificity | Main Findings | Advantages | Disadvantages | Clinical Relevance |
---|---|---|---|---|---|---|
sST2 | High (80–90%) | Moderate (70–80%) | Correlated with RV function, mortality, and clinical worsening | Strong predictive value, non-invasive | Influenced by inflammation; lacks standard cutoff | Screening for PAH and prognosis in PH |
IL-33 | Moderate (~70%) | Moderate (~70%) | Elevated in SSc; negatively correlated with TAPSE/PAPs | Promising as a marker of RV dysfunction | Limited studies; thresholds not standardized | Early identification of RV impairment in SSc |
RDW | Moderate (78.6%) | Moderate (69–88%) | Elevated levels associated with PAH; higher values predict disease progression | Widely available, inexpensive | Non-specific; influenced by other conditions | Screening and stratification in SSc and PH |
Factor D | Moderate (75%) | High (79–89%) | Elevated in SSc-PAH; strong correlation with RA pressure and loop diuretic | High specificity for SSc-PAH, potential predictive value | Requires validation in larger cohorts | Screening and diagnosis of SSc-PAH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragoi, I.T.; Rezus, C.; Burlui, A.M.; Bratoiu, I.; Rezus, E. Multimodal Screening for Pulmonary Arterial Hypertension in Systemic Scleroderma: Current Methods and Future Directions. Medicina 2025, 61, 19. https://doi.org/10.3390/medicina61010019
Dragoi IT, Rezus C, Burlui AM, Bratoiu I, Rezus E. Multimodal Screening for Pulmonary Arterial Hypertension in Systemic Scleroderma: Current Methods and Future Directions. Medicina. 2025; 61(1):19. https://doi.org/10.3390/medicina61010019
Chicago/Turabian StyleDragoi, Ioan Teodor, Ciprian Rezus, Alexandra Maria Burlui, Ioana Bratoiu, and Elena Rezus. 2025. "Multimodal Screening for Pulmonary Arterial Hypertension in Systemic Scleroderma: Current Methods and Future Directions" Medicina 61, no. 1: 19. https://doi.org/10.3390/medicina61010019
APA StyleDragoi, I. T., Rezus, C., Burlui, A. M., Bratoiu, I., & Rezus, E. (2025). Multimodal Screening for Pulmonary Arterial Hypertension in Systemic Scleroderma: Current Methods and Future Directions. Medicina, 61(1), 19. https://doi.org/10.3390/medicina61010019