How Are Brain Fog Symptoms Related to Diet, Sleep, Mood and Gastrointestinal Health? A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Questionnaire
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asadi-Pooya, A.A.; Akbari, A.; Emami, A.; Lotfi, M.; Rostamihosseinkhani, M.; Nemati, H.; Barzegar, Z.; Kabiri, M.; Zeraatpisheh, Z.; Farjoud-Kouhanjani, M.; et al. Long COVID syndrome-associated brain fog. J. Med. Virol. 2022, 94, 979–984. [Google Scholar] [CrossRef] [PubMed]
- Sykes, D.L.; Holdsworth, L.; Jawad, N.; Gunasekera, P.; Morice, A.H.; Crooks, M.G. Post-COVID-19 symptom burden: What is Long-COVID and how should we manage it? Lung 2021, 99, 113–119. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence (NICE). Royal College of General Practitioners. Healthcare Improvement Scotland SIGN. COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19. Available online: www.nice.org.uk/guidance/ng188 (accessed on 23 July 2023).
- Theoharides, T.C.; Cholevas, C.; Polyzoidis, K.; Politis, A. Long-COVID syndrome-associated brain fog and chemofog: Luteolin to the rescue. BioFactors 2021, 47, 232–241. [Google Scholar] [CrossRef]
- Theoharides, T.C.; Stewart, J.M.; Hatziagelaki, E.; Kolaitis, G. Brain “fog”, inflammation, and obesity: Key aspects of neuropsychiatric disorders improved by luteolin. Front. Neurosci. 2015, 9, 225. [Google Scholar] [CrossRef] [PubMed]
- Carod-Artal, F.J. Post-COVID-19 syndrome: Epidemiology, diagnostic criteria, and pathogenic mechanisms involved. Rev. Neurol. 2021, 72, 384–396. [Google Scholar] [CrossRef]
- Stumpf, F.; Keller, B.; Gressies, C.; Schuetz, P. Inflammation and Nutrition: Friend or Foe? Nutrients 2023, 15, 1159. [Google Scholar] [CrossRef]
- Cremonini, A.L.; Caffa, I.; Cea, M.; Nencioni, A.; Odetti, P.; Monacelli, F. Nutrients in the prevention of Alzheimer’s disease. Oxid. Med. Cell. Longev. 2019, 2019, 9874159. [Google Scholar] [CrossRef] [PubMed]
- Cena, H.; Calder, P.C. Defining a healthy diet: Evidence for the role of contemporary dietary patterns in health and disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef] [PubMed]
- Rasch, B.; Born, J. About sleep's role in memory. Physiol. Rev. 2013, 93, 681–766. [Google Scholar] [CrossRef] [PubMed]
- Gui, Z.; Wang, Y.Y.; Li, J.X.; Li, X.H.; Su, Z.; Cheung, T.; Lok, K.-I.; Ungvari, G.S.; Ng, C.H.; Zhang, Q.; et al. Prevalence of poor sleep quality in COVID-19 patients: A systematic review and meta-analysis. Front. Psychiatry 2024, 14, 1272812. [Google Scholar] [CrossRef]
- Batool-Anwar, S.; Fashanu, O.S.; Quan, S.F. Long-term Effects of COVID-19 on Sleep Patterns. Turk. Thorac. J. 2025, 26, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Tański, W.; Tomasiewicz, A.; Jankowska-Polańska, B. Sleep Disturbances as a Consequence of Long COVID-19: Insights from Actigraphy and Clinimetric Examinations-An Uncontrolled Prospective Observational Pilot Study. J. Clin. Med. 2024, 13, 839. [Google Scholar] [CrossRef] [PubMed]
- Linh, T.T.D.; Ho, D.K.N.; Nguyen, N.N.; Hu, C.J.; Yang, C.H.; Wu, D. Global prevalence of post-COVID-19 sleep disturbances in adults at different follow-up time points: A systematic review and meta-analysis. Sleep Med. Rev. 2023, 71, 101833. [Google Scholar] [CrossRef] [PubMed]
- Tedjasukmana, R.; Budikayanti, A.; Islamiyah, W.R.; Witjaksono AM, A.L.; Hakim, M. Sleep disturbance in post COVID-19 conditions: Prevalence and quality of life. Front. Neurol. 2023, 13, 1095606. [Google Scholar] [CrossRef]
- Llana, T.; Mendez, M.; Garces-Arilla, S.; Hidalgo, V.; Mendez-Lopez, M.; Juan, M.C. Association between olfactory dysfunction and mood disturbances with objective and subjective cognitive deficits in long-COVID. Front. Psychol. 2023, 14, 1076743. [Google Scholar] [CrossRef]
- Iosifescu, D.V. The relation between mood, cognition and psychosocial functioning in psychiatric disorders. Eur. Neuropsychopharmacol. 2012, 22 (Suppl. S3), S499–S504. [Google Scholar] [CrossRef]
- Buttery, S.; Philip, K.E.J.; Williams, P.; Fallas, A.; West, B.; Cumella, A.; Cheung, C.; Walker, S.; Quint, J.K.; I Polkey, M.; et al. Patient symptoms and experience following COVID-19: Results from a UK-wide survey. BMJ Open Respir. Res. 2021, 8, e001075. [Google Scholar] [CrossRef] [PubMed]
- Almeria, M.; Cejudo, J.C.; Sotoca, J.; Deus, J.; Krupinski, J. Cognitive profile following COVID-19 infection: Clinical factors leading to neuropsychological impairment. Brain Behav. Immun.–Health 2020, 9, 100163. [Google Scholar] [CrossRef] [PubMed]
- Naik, S.; Haldar, S.N.; Soneja, M.; Mundadan, N.G.; Garg, P.; Mittal, A.; Desai, D.; Trilangi, P.K.; Chakraborty, S.; Begam, N.N.; et al. Post COVID-19 sequelae: A prospective observational study from Northern India. Drug Discov. Ther. 2021, 15, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Galván-Tejada, C.E.; Herrera-García, C.F.; Godina-González, S.; Villagrana-Bañuelos, K.E.; Amaro, J.D.D.L.; Herrera-García, K.; Rodríguez-Quiñones, C.; Zanella-Calzada, L.A.; Ramírez-Barranco, J.; de Avila, J.L.R.; et al. Persistence of COVID-19 symptoms after recovery in Mexican population. Int. J. Environ. Res. Public Health 2020, 17, 9367. [Google Scholar] [CrossRef] [PubMed]
- Romero-Duarte, Á.; Rivera-Izquierdo, M.; de Alba, I.G.; Pérez-Contreras, M.; Fernández-Martínez, N.F.; Ruiz-Montero, R.; Serrano-Ortiz, Á.; González-Serna, R.O.; Salcedo-Leal, I.; Jiménez-Mejías, E.; et al. Sequelae, persistent symptomatology and outcomes after COVID-19 hospitalization: The ANCOHVID multicentre 6-month follow-up study. BMC Med. 2021, 19, 129. [Google Scholar] [CrossRef] [PubMed]
- Zawilska, J.B.; Kuczyńska, K. Psychiatric and neurological complications of long COVID. J. Psychiatr. Res. 2022, 156, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, K.; Lin, Y.; Prewitt, K.M.; Potter, D.A. Multidisciplinary approach to brain fog and related persisting symptoms post COVID-19. J. Health Psychol. 2022, 48, 31–38. [Google Scholar] [CrossRef]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. Q. Publ. Hell. Soc. Gastroenterol. 2015, 28, 203. [Google Scholar]
- Fekete, M.; Lehoczki, A.; Major, D.; Fazekas-Pongor, V.; Csípő, T.; Tarantini, S.; Csizmadia, Z.; Varga, J.T. Exploring the Influence of Gut–Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Nutrients 2024, 16, 789. [Google Scholar] [CrossRef] [PubMed]
- Loh, J.S.; Mak, W.Q.; Tan, L.K.S.; Ng, C.X.; Chan, H.H.; Yeow, S.H.; Foo, J.B.; Ong, Y.S.; How, C.W.; Khaw, K.Y. Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct. Target. Ther. 2024, 9, 37. [Google Scholar] [CrossRef]
- Choudhury, A.; Tariq, R.; Jena, A.; Vesely, E.K.; Singh, S.; Khanna, S.; Sharma, V. Gastrointestinal manifestations of long COVID: A systematic review and meta-analysis. Ther. Adv. Gastroenterol. 2022, 15, 17562848221118403. [Google Scholar] [CrossRef] [PubMed]
- King, L.R. Gastrointestinal manifestations of long COVID. Life Sci. 2024, 357, 123100. [Google Scholar] [CrossRef] [PubMed]
- Debowska, A.; Boduszek, D.; Ochman, M.; Hrapkowicz, T.; Gaweda, M.; Pondel, A.; Horeczy, B. Brain Fog Scale (BFS): Scale development and validation. Pers. Individ. Differ. 2024, 216, 112427. [Google Scholar] [CrossRef]
- Bas, M.; Kahriman, M.; Gencalp, C.; Koseoglu, S.K.; Hajhamidiasl, L. Adaptation and Validation of the Turkish Version of the Brain Fog Scale. Int. J. Environ. Res. Public Health 2024, 21, 774. [Google Scholar] [CrossRef]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Barnes, L.L.; Bennett, D.A.; Aggarwal, N.T. MIND diet slows cognitive decline with aging. Alzheimer’s Dement. 2015, 11, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Snyder, E.; Cai, B.; DeMuro, C.; Morrison, M.F.; Ball, W. A New Single-Item Sleep Quality Scale: Results of psychometric evaluation in patients with chronic primary insomnia and depression. JCSM 2018, 14, 1849–1857. [Google Scholar] [CrossRef]
- Mayer, J.D.; Gaschke, Y.N. The experience and meta-experience of mood. J. Pers. Soc. Psychol. 1988, 55, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Revicki, D.A.; Wood, M.; Wiklund, I.; Crawley, J. Reliability and validity of the Gastrointestinal Symptom Rating Scale in patients with gastroesophageal reflux disease. Qual. Life Res. 1998, 7, 75–83. [Google Scholar] [CrossRef]
- Turan, N.; Aşt, T.A.; Kaya, N. Reliability and Validity of the Turkish Version of the Gastrointestinal Symptom Rating Scale. Gastroenterol. Nurs. 2017, 40, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Callan, C.; Ladds, E.; Husain, L.; Pattinson, K.; Greenhalgh, T. ‘I can’t cope with multiple inputs’: A qualitative study of the lived experience of ‘brain fog’ after COVID-19. BMJ Open 2022, 12, 56366. [Google Scholar] [CrossRef] [PubMed]
- Kopańska, M.; Ochojska, D.; Muchacka, R.; Dejnowicz-Velitchkov, A.; Banaś-Ząbczyk, A.; Szczygielski, J. Comparison of QEEG Findings before and after Onset of Post-COVID-19 Brain Fog Symptoms. Sensors 2022, 22, 6606. [Google Scholar] [CrossRef] [PubMed]
- Korompoki, E.; Gavriatopoulou, M.; Hicklen, R.S.; Ntanasis-Stathopoulos, I.; Kastritis, E.; Fotiou, D.; Stamatelopoulos, K.; Terpos, E.; Kotanidou, A.; Hagberg, C.A.; et al. Epidemiology and organ specific sequelae of post-acute COVID19: A narrative review. J. Infect. 2021, 83, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.; Ferrando, S.J.; Dornbush, R.; Shahar, S.; Smiley, A.; Klepacz, L. Screening for brain fog: Is the montreal cognitive assessment an effective screening tool for neurocognitive complaints post-COVID-19? Gen. Hosp. Psychiatry 2022, 78, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Taquet, M.; Dercon, Q.; Luciano, S.; Geddes, J.R.; Husain, M.; Harrison, P.J. Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLoS Med. 2021, 18, 1003773. [Google Scholar] [CrossRef] [PubMed]
- Chasco, E.E.; Dukes, K.; Jones, D.; Comellas, A.P.; Hoffman, R.M.; Garg, A. Brain fog and fatigue following covıd-19 ınfection: An exploratory study of patient experiences of long COVID. Int. J. Res. Public Health 2022, 19, 15499. [Google Scholar] [CrossRef] [PubMed]
- Azcue, N.; Gómez-Esteban, J.C.; Acera, M.; Tijero, B.; Fernandez, T.; Ayo-Mentxakatorre, N.; Pérez-Concha, T.; Murueta-Goyena, A.; Lafuente, J.V.; Prada, Á.; et al. Brain fog of post-COVID-19 condition and Chronic Fatigue Syndrome, same medical disorder? J. Transl. Med. 2022, 20, 569. [Google Scholar] [CrossRef] [PubMed]
- Altuna, M.; Sánchez-Saudinós, M.B.; Lleó, A. Cognitive symptoms after COVID-19. Neurol. Pers. 2021, 1, S16–S24. [Google Scholar] [CrossRef] [PubMed]
- Vyas, A.; Panwar, V.R.; Mathur, V.; Patel, P.; Mathur, S.; Sharma, A.; Panwar, R.B.; Gupta, R. Mild cognitive impairment in COVID-19 survivors: Measuring the brain fog. Int. J. Ment. Health 2022, 51, 142–151. [Google Scholar] [CrossRef]
- Jennings, G.; Monaghan, A.; Xue, F.; Duggan, E.; Romero-Ortuño, R. Comprehensive clinical characterization of brain fog in adults reporting long-COVID symptoms. J. Clin. Med. 2022, 11, 3440. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.H.; Greenfield, M.J.; Lokken, K.; Shah, U.V.; Agnihotri, S.P.; Wheeler, P.F.; E Vance, D.; Kennedy, R.; Gerstenecker, A.; Lazar, R.M.; et al. A-153 characteristics of patients seeking treatment for “brain fog” secondary to Post-Acute Sequelae of COVID-19 (PASC) in the Deep South. Arch. Clin. Neuropsychol. 2022, 37, 1307. [Google Scholar] [CrossRef]
- Bai, F.; Tomasoni, D.; Falcinella, C.; Barbanotti, D.; Castoldi, R.; Mulè, G.; Augello, M.; Mondatore, D.; Allegrini, M.; Cona, A.; et al. Female gender is associated with long COVID syndrome: A prospective cohort study. Clin. Microbiol. Infect. 2022, 28, 611. [Google Scholar] [CrossRef] [PubMed]
- Castro-Aldrete, L.; Moser, M.V.; Putignano, G.; Ferretti, M.T.; Schumacher Dimech, A.; Santuccione Chadha, A. Sex and gender differences in the neurological and neuropsychiatric symptoms of long COVID: A narrative review. Ital. J. Gend. -Specif. Med. 2022, 8, 18–28. [Google Scholar] [CrossRef]
- Michelutti, M.; Furlanis, G.; Buoite Stella, A.; Bellavita, G.; Frezza, N.; Torresin, G.; Ajčević, M.; Manganotti, P. Sex-dependent characteristics of Neuro-Long-COVID: Data from a dedicated neurology ambulatory service. J. Neurol. Sci. 2022, 441, 120355. [Google Scholar] [CrossRef] [PubMed]
- Pelà, G.; Goldoni, M.; Solinas, E.; Cavalli, C.; Tagliaferri, S.; Ranzieri, S.; Frizzelli, A.; Marchi, L.; Mori, P.A.; Majori, M.; et al. Sex-related differences in Long-COVID-19 syndrome. J. Women’s Health 2022, 31, 620–630. [Google Scholar] [CrossRef]
- Orfei, M.D.; Porcari, D.E.; D’Arcangelo, S.; Maggi, F.; Russignaga, D.; Ricciardi, E. A new look on Long-COVID Effects: The functional brain fog syndrome. J. Clin. Med. 2022, 11, 5529. [Google Scholar] [CrossRef] [PubMed]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and predictors of long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Bienvenu, L.A.; Noonan, J.; Wang, X.; Peter, K. Higher mortality of COVID-19 in males: Sex differences in immune response and cardiovascular comorbidities. Cardiovasc. Res. 2020, 116, 2197–2206. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Tokuyama, M.; et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020, 588, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Bucciarelli, V.; Nasi, M.; Bianco, F.; Seferovic, J.; Ivkovic, V.; Gallina, S.; Mattioli, A.V. Depression pandemic and cardiovascular risk in the COVID-19 era and long COVID syndrome: Gender makes a difference. Trends Cardiovasc. Med. 2022, 32, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Höhn, A.; Gampe, J.; Lindahl-Jacobsen, R.; Christensen, K.; Oksuyzan, A. Do men avoid seeking medical advice? A register-based analysis of gender-specific changes in primary healthcare use after first hospitalisation at ages 60+ in Denmark. J. Epidemiol. Community Health 2020, 74, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Socała, K.; Doboszewska, U.; Szopa, A.; Serefko, A.; Włodarczyk, M.; Zielińska, A.; Poleszak, E.; Fichna, J.; Wlaź, P. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol. Res. 2021, 172, 105840. [Google Scholar] [CrossRef] [PubMed]
- Agirman, G.; Yu, K.B.; Hsiao, E.Y. Signaling inflammation across the gut-brain axis. Science 2021, 374, 1087–1092. [Google Scholar] [CrossRef]
- Łoniewski, I.; Skonieczna-Żydecka, K.; Sołek-Pastuszka, J.; Marlicz, W. Probiotics in the Management of Mental and Gastrointestinal Post-COVID Symptomes. J. Clin. Med. 2022, 11, 5155. [Google Scholar] [CrossRef] [PubMed]
- Alenazy, M.F.; Aljohar, H.I.; Alruwaili, A.R.; Daghestani, M.H.; Alonazi, M.A.; Labban, R.S.; El-Ansary, A.K.; Balto, H.A. Gut Microbiota Dynamics in Relation to Long-COVID-19 Syndrome: Role of Probiotics to Combat Psychiatric Complications. Metabolites 2022, 12, 912. [Google Scholar] [CrossRef]
- Yelland, G.W. Gluten-induced cognitive impairment (“brain fog”) in coeliac disease. J. Gastroenterol. Hepatol. 2017, 32, 90–93. [Google Scholar] [CrossRef] [PubMed]
- van Langenberg, D.R.; Yelland, G.W.; Robinson, S.R.; Gibson, P.R. Cognitive impairment in Crohn’s disease is associated with systemic inflammation, symptom burden and sleep disturbance. United Eur. Gastroenterol. J. 2017, 5, 579–587. [Google Scholar] [CrossRef]
- Anderson, B.; Pitsinger, A. Improvement in chronic muscle fasciculations with dietary change: A suspected case of gluten neuropathy. J. Chiropr. Med. 2014, 13, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Kverno, K. Brain fog: A bit of clarity regarding etiology, prognosis, and treatment. J. Psychosoc. Nurs. Ment. Health Serv. 2021, 59, 9–13. [Google Scholar] [CrossRef] [PubMed]
Female (n = 172) | Male (n = 128) | |||
---|---|---|---|---|
n | % | n | % | |
Age (years) | ||||
Min–Max | 19–62 | 21–62 | ||
mean ± SD | 31.84 ± 10.85 | 36.25 ± 10.22 | ||
Education | ||||
Primary–high school | 25 | 14.5 | 24 | 18.75 |
University | 109 | 63.3 | 69 | 53.9 |
Master’s/PhD | 38 | 22 | 35 | 27.3 |
Occupation | ||||
Worker | 2 | 1.1 | 25 | 19.5 |
Health sector | 60 | 34.9 | 14 | 10.9 |
Education and research sectors | 57 | 33.1 | 28 | 21.8 |
Civil servant/desk-based employee | 31 | 18 | 48 | 37.5 |
Housewife/not working/retired | 22 | 12.8 | 13 | 10.1 |
Working year | ||||
Min–Max | 1–37 | 1–42 | ||
mean ± SD | 10.27 ± 10.11 | 12.91 ± 9.98 | ||
Smoking | ||||
Yes | 30 | 17.4 | 44 | 34.3 |
No | 142 | 83.55 | 84 | 65.7 |
Alcohol | ||||
Yes | 25 | 14.5 | 39 | 30.4 |
No | 147 | 85.5 | 89 | 69.6 |
Physical activity an hour three times a week | ||||
Yes | 61 | 35.4 | 68 | 53.1 |
No | 111 | 64.6 | 60 | 46.9 |
Infected with COVID-19 | ||||
Yes | 118 | 68.6 | 66 | 51.6 |
No | 54 | 31.4 | 62 | 48.4 |
Infected with COVID-19 more than once | ||||
Yes | 30 | 17.4 | 19 | 14.6 |
No | 142 | 82.6 | 109 | 85.4 |
BMI category | ||||
Underweight | 14 | 8.1 | 1 | 0.8 |
Normal weight | 93 | 54.0 | 50 | 39 |
Overweight | 43 | 25 | 58 | 45.3 |
Obese | 22 | 12.8 | 19 | 14.8 |
BMI (kg/m2) | ||||
Min–Max | 15.57–37.65 | 15.57–37.65 | ||
mean ± SD | 24.02 ± 4.74 | 26.18 ± 3.76 |
BFS | BFSS | MIND Diet Score | TOTAL | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Female | Male | Female | Male | Female | Male | BFS | BFSS | MIND Diet Score | ||
X ± S.D. | X ± S.D. | X ± S.D. | X ± S.D. | X ± S.D. | X ± S.D. | X ± s.s. | X ± s.s. | X ± s.s. | ||
Infected with COVID-19 | Yes | 58.43 ± 21.899 | 46.94 ± 20.744 | 5.41 ± 2.549 | 3.96 ± 2.888 | 6.35 ± 1.671 | 5.74 ± 1.615 | 54.27 ± 22.135 | 4.88 ± 2.761 | 6.13 ± 1.673 |
No | 51.93 ± 17.694 | 46.47 ± 17.221 | 4.83 ± 2.601 | 4.13 ± 2.607 | 6.83 ± 1.546 | 5.92 ± 2.035 | 49.13 ± 17.595 | 4.48 ± 2.616 | 6.36 ± 1.863 | |
p = 0.035 | p = 0.888 | p = 0.161 | p = 0.587 | p = 0.0717 | p = 0.717 | p = 0.024 | p = 0.212 | p = 0.266 | ||
Having COVID-19 more than once | Yes | 66.33 ± 22.093 | 45.74 ± 17.026 | 6.10 ± 2.203 | 4.11 ± 2.807 | 6.22 ± 1.541 | 5.66 ± 1.434 | 58.35 ± 22.503 | 5.33 ± 2.617 | 6.00 ± 1.510 |
No | 54.26 ± 19.983 | 46.88 ± 19.467 | 5.03 ± 2.613 | 4.03 ± 2.754 | 6.57 ± 1.661 | 5.85 ± 1.883 | 51.11 ± 20.063 | 4.61 ± 2.715 | 6.26 ± 1.791 | |
p = 0.003 | p = 0.853 | p = 0.038 | p = 0.884 | p = 0.287 | p = 0.532 | p = 0.024 | p = 0.088 | p = 0.334 | ||
Disease process | 1. At home, I got through it with mild symptoms. | 55.93 ± 21.432 | 45.85 ± 20.542 | 4.97 ± 2.380 | 3.98 ± 2.886 | 6.50 ± 1.777 | 5.84 ± 1.753 | 51.48 ± 21.550 | 4.53 ± 2.650 | 6.21 ± 1.790 |
2. At home, I had severe symptoms. | 62.54 ± 22.306 | 50.21 ± 20.622 | 6.06 ± 2.637 | 4.14 ± 3.035 | 6.20 ± 1.519 | 5.68 ± 1.395 | 59.92 ± 22.388 | 5.64 ± 2.819 | 6.09 ± 1.498 | |
3. At the hospital, I was under observation in the ward. | 51.00 ± 31.113 | 69.50 ± 2.121 | 4.50 ± 3.536 | 8.50 ± 2.121 | 5.50 ± 1.414 | 6.25 ± 1.061 | 60.25 ± 20.934 | 6.50 ± 3.317 | 5.88 ± 1.109 | |
p = 0.257 | p = 0.191 | p = 0.062 | p = 0.159 | p = 0.472 | p = 0.807 | KW = 5.811 | KW = 7.805 | KW = 0.280 | ||
p = 0.055 | p = 0.020 | p = 0.869 | ||||||||
- | 2 > 1 | - |
Variable | Total (Mean ± SD) | C+ (Mean ± SD) | C− (Mean ± SD) | p- (Gender) | p- (C+ vs. C−) |
---|---|---|---|---|---|
BFS | 52.26 ± 20.60 | 54.27 ± 22.14 | 49.13 ± 17.60 | 0.001 | 0.024 |
(Cohen’s d = 0.28) | (Cohen’s d = 0.26) | ||||
Female | 56.28 ± 20.78 | 58.43 ± 21.90 | 51.93 ± 17.69 | ||
Male | 46.72 ± 19.07 | 46.94 ± 20.74 | 46.47 ± 17.22 | ||
BFSS | 4.72 ± 2.71 | 4.88 ± 2.76 | 4.48 ± 2.62 | 0.000 | 0.212 |
(Cohen’s d = 0.44) | |||||
Female | 5.21 ± 2.57 | 5.41 ± 2.55 | 4.83 ± 2.60 | ||
Male | 4.04 ± 2.75 | 3.96 ± 2.89 | 4.13 ± 2.61 | ||
SQS | 6.01 ± 2.27 | 5.94 ± 2.18 | 6.11 ± 2.40 | 0.300 | 0.527 |
Female | 5.89 ± 2.21 | 5.78 ± 2.16 | 6.12 ± 2.32 | ||
Male | 6.17 ± 2.34 | 6.23 ± 2.20 | 6.10 ± 2.49 | ||
MIND Diet Score | 6.22 ± 1.75 | 6.13 ± 1.67 | 6.36 ± 1.86 | 0.001 | 0.266 |
(Cohen’s d = 0.39) | |||||
Female | 6.51 ± 1.64 | 6.35 ± 1.67 | 6.83 ± 1.55 | ||
Male | 5.83 ± 1.82 | 5.74 ± 1.62 | 5.92 ± 2.04 | ||
GSRS | 38.22 ± 18.98 | 39.81 ± 19.17 | 35.77 ± 18.50 | 0.05 | 0.069 |
(Cohen’s d = 0.21) | |||||
Female | 40.80 ± 18.68 | 40.92 ± 18.91 | 40.56 ± 18.37 | ||
Male | 34.64 ± 18.89 | 37.84 ± 19.62 | 31.13 ± 17.56 | ||
BMIS Pleasant–Unpleasant | 40.39 ± 5.27 | 40.55 ± 4.91 | 40.12 ± 5.79 | 0.021 | 0.485 |
(Cohen’s d = 0.28) | |||||
Female | 41.01 ± 4.38 | 40.76 ± 4.28 | 41.51 ± 4.55 | ||
Male | 39.53 ± 6.21 | 40.19 ± 5.88 | 38.81 ± 6.52 | ||
BMIS Arousal–Calm | 30.40 ± 4.15 | 30.40 ± 3.97 | 30.39 ± 4.43 | 0.295 | 0.975 |
Female | 30.62 ± 3.51 | 30.36 ± 3.47 | 31.15 ± 3.54 | ||
Male | 30.09 ± 4.90 | 30.49 ± 4.75 | 29.66 ± 5.05 | ||
BMIS Positive–Tired | 17.76 ± 2.60 | 17.81 ± 2.46 | 17.69 ± 2.82 | 0.414 | 0.674 |
Female | 17.87 ± 2.28 | 17.71 ± 2.21 | 18.20 ± 2.40 | ||
Male | 17.62 ± 2.99 | 18.00 ± 2.85 | 17.19 ± 3.10 | ||
BMIS Negative–Relaxed | 14.91 ± 2.24 | 14.95 ± 2.22 | 14.86 ± 2.27 | 0.077 | 0.738 |
Female | 15.11 ± 1.99 | 15.03 ± 2.04 | 15.29 ± 1.88 | ||
Male | 14.64 ± 2.53 | 14.81 ± 2.52 | 14.45 ± 2.55 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1-BFS | 1 | ||||||||||||||
2-BFSS | 0.611 ** | 1 | |||||||||||||
3-SQS | −0.314 ** | −0.237 ** | 1 | ||||||||||||
4-MIND Diet Score | 0.007 | −0.078 | 0.070 | 1 | |||||||||||
5-Abdominal Pain | 0.360 ** | 0.341 ** | −0.225 ** | −0.072 | 1 | ||||||||||
6-Reflux | 0.282 ** | 0.264 ** | −0.156 ** | −0.103 | 0.757 ** | 1 | |||||||||
7-Diarrhea | 0.273 ** | 0.296 ** | −0.124 * | −0.058 | 0.565 ** | 0.519 ** | 1 | ||||||||
8-Indigestion | 0.294 ** | 0.273 ** | −0.173 ** | −0.057 | 0.712 ** | 0.657 ** | 0.614 ** | 1 | |||||||
9-Constipation | 0.278 ** | 0.299 ** | −0.178 ** | −0.022 | 0.508 ** | 0.432 ** | 0.482 ** | 0.584 ** | 1 | 0.754 ** | |||||
10-GSRS | 0.352 ** | 0.355 ** | −0.201 ** | −0.071 | 0.849 ** | 0.795 ** | 0.773 ** | 0.897 ** | 0.754 ** | 1 | |||||
11–Pleasant–unpleasant | 0.176 ** | 0.043 | −0.107 | 0.075 | 0.036 | 0.012 | −0.104 | −0.016 | −0.040 | −0.032 | 1 | ||||
12–Arousal–calm | 0.016 | −0.067 | 0.013 | 0.087 | −0.078 | −0.071 | −0.165 ** | −0.100 | −0.132 * | −0.134 * | 0.946 ** | 1 | |||
13–Positive–tired | 0.032 | −0.089 | 0.022 | 0.066 | −0.023 | −0.029 | −0.130 * | −0.057 | −0.113 * | −0.092 | 0.885 ** | 0.897 ** | 1 | ||
14–Negative–relaxed | 0.126 * | 0.060 | −0.093 | 0.078 | −0.014 | −0.018 | −0.102 | −0.044 | −0.048 | −0.054 | 0.874 ** | 0.885 ** | 0.636 ** | 1 | |
15-Age | −0.189 ** | −0.065 | 0.157 ** | −0.045 | −0.224 ** | −0.065 | −0.190 ** | −0.034 | −0.021 | −0.109 | −0.155 ** | −0.079 | −0.065 | −0.105 | 1 |
16-BMI | −0.075 | −0.034 | 0.016 | −0.173 ** | 0.022 | 0.092 | 0.020 | 0.077 | 0.022 | 0.068 | −0.139 * | −0.127 * | −0.094 | −0.125 * | 0.506 ** |
Variable | B | Standard Error | Beta | T | p |
---|---|---|---|---|---|
Constant | 35.073 | 14.563 | 2.408 | 0.017 | |
Age | 0.031 | 0.260 | 0.016 | 0.121 | 0.904 |
Gender | −3.372 | 2.292 | −0.085 | −1.471 | 0.143 |
BMI | −0.358 | 0.286 | −0.079 | −1.253 | 0.211 |
Working Year | −0.068 | 0.251 | −0.035 | −0.270 | 0.787 |
SQS | −0.460 | 0.509 | −0.052 | −0.905 | 0.367 |
MIND Diet Score | 0.011 | 0.608 | 0.001 | 0.018 | 0.986 |
GSRS | 0.221 | 0.063 | 0.208 | 3.482 | 0.001 |
BMIS Pleasant–unpleasant | 3.944 | 0.995 | 1.041 | 3.964 | 0.000 |
BMIS Arousal–calm | −7.654 | 1.705 | −1.597 | −4.490 | 0.000 |
BMIS Positive–tired | 2.627 | 2.143 | 0.349 | 1.226 | 0.221 |
BMIS Negative–relaxed | 3.453 | 2.303 | 0.385 | 1.499 | 0.135 |
R = 0.599 | R2 = 0.358 | ||||
F(11.226) = 11.467 p = 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altinsoy, C.; Dikmen, D. How Are Brain Fog Symptoms Related to Diet, Sleep, Mood and Gastrointestinal Health? A Cross-Sectional Study. Medicina 2025, 61, 344. https://doi.org/10.3390/medicina61020344
Altinsoy C, Dikmen D. How Are Brain Fog Symptoms Related to Diet, Sleep, Mood and Gastrointestinal Health? A Cross-Sectional Study. Medicina. 2025; 61(2):344. https://doi.org/10.3390/medicina61020344
Chicago/Turabian StyleAltinsoy, Canan, and Derya Dikmen. 2025. "How Are Brain Fog Symptoms Related to Diet, Sleep, Mood and Gastrointestinal Health? A Cross-Sectional Study" Medicina 61, no. 2: 344. https://doi.org/10.3390/medicina61020344
APA StyleAltinsoy, C., & Dikmen, D. (2025). How Are Brain Fog Symptoms Related to Diet, Sleep, Mood and Gastrointestinal Health? A Cross-Sectional Study. Medicina, 61(2), 344. https://doi.org/10.3390/medicina61020344