Effects of Ellagic Acid and Berberine on Hind Limb Ischemia Reperfusion Injury: Pathways of Apoptosis, Pyroptosis, and Oxidative Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Groups
2.2. Histopathologic Analysis
2.3. Western Blot
2.4. Enzyme-Linked Immunosorbent Assay (ELISA)
2.5. Oxidative Status Markers
2.6. Statistical Analysis
3. Results
3.1. Histopathologic Analysis
3.2. Western Blot
3.3. Enzyme-Linked Immunosorbent Assay (ELISA)
3.4. Oxidative Status Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ljungman, C.; Adami, H.O.; Bergqvist, D.; Sparen, P.; Bergström, R. Risk factors for early lower limb loss after embolectomy for acute arterial occlusion: A population-based case-control study. Br. J. Surg. 1991, 78, 1482–1485. [Google Scholar] [CrossRef] [PubMed]
- Björck, M.; Earnshaw, J.J.; Acosta, S.; Bastos Gonçalves, F.; Cochennec, F.; Debus, E.S.; Hinchliffe, R.; Jongkind, V.; Koelemay, M.J.W.; Menyhei, G.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2020 Clinical Practice Guidelines on the Management of Acute Limb Ischaemia. Eur. J. Vasc. Endovasc. Surg. 2020, 59, 173–218. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Xiong, X.; Wu, X.; Ye, Y.; Jian, Z.; Zhi, Z.; Gu, L. Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front. Mol. Neurosci. 2020, 13, 28. [Google Scholar] [CrossRef]
- Grilo, A.L.; Mantalaris, A. Apoptosis: A mammalian cell bioprocessing perspective. Biotechnol. Adv. 2019, 37, 459–475. [Google Scholar] [CrossRef]
- Al-Salam, S.; Hashmi, S. Myocardial ischemia-reperfusion injury: Apoptotic, inflammatory and oxidative stress role of Galectin-3. Cell Physiol. Biochem. 2018, 50, 1123–1139. [Google Scholar] [CrossRef]
- Asadi, M.; Taghizadeh, S.; Kaviani, E.; Vakili, O.; Taheri-Anganeh, M.; Tahamtan, M.; Savardashtaki, A. Caspase-3: Structure, function, and biotechnological aspects. Biotechnol. Appl. Biochem. 2022, 69, 1633–1645. [Google Scholar] [CrossRef]
- Edlich, F. BCL-2 proteins and apoptosis: Recent insights and unknowns. Biochem. Biophys. Res. Commun. 2018, 500, 26–34. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Zhang, D.; Yu, P.; Zhang, J.; Yu, S. Research progress on the role of pyroptosis in myocardial ischemia-reperfusion injury. Cells 2022, 11, 3271. [Google Scholar] [CrossRef]
- Del Re, D.P.; Amgalan, D.; Linkermann, A.; Liu, Q.; Kitsis, R.N. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol. Rev. 2019, 99, 1765–1817. [Google Scholar] [CrossRef]
- Bardallo, R.G.; Panisello-Roselló, A.; Sanchez-Nuno, S.; Alva, N.; Roselló-Catafau, J.; Carbonell, T. Nrf2 and oxidative stress in liver ischemia/reperfusion injury. FEBS J. 2022, 289, 5463–5479. [Google Scholar] [CrossRef] [PubMed]
- Derosa, G.; Maffioli, P.; Sahebkar, A. Ellagic acid and its role in chronic diseases. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2016; Volume 928, pp. 473–479. [Google Scholar]
- Durgun, C.; Aşir, F. Effect of ellagic acid on damage caused by hepatic ischemia reperfusion in rats. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 8209–8215. [Google Scholar]
- Liu, Q.; Liang, X.; Liang, M.; Qin, R.; Qin, F.; Wang, X. Ellagic acid ameliorates renal ischemic-reperfusion injury through NOX4/JAK/STAT signaling pathway. Inflammation 2020, 43, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Şekerci, Ç.A.; Aydın, H.R.; Livaoğlu, A. Protective effects of ellagic acid on testicular ischemia-reperfusion injury in rats. J. Urol. Surg. 2023, 10, 160–166. [Google Scholar] [CrossRef]
- Hassonizadeh Falahieh, K.; Sarkaki, A.; Edalatmanesh, M.; Gharib Naseri, M.K.; Farbood, Y. Ellagic acid attenuates post-cerebral ischemia and reperfusion behavioral deficits by decreasing brain tissue inflammation in rats. Iran. J. Basic Med. Sci. 2020, 23, 645–653. [Google Scholar]
- Kumar, A.; Ekavali; Chopra, K.; Mukherjee, M.; Pottabathini, R.; Dhull, D.K. Current knowledge and pharmacological profile of berberine: An update. Eur. J. Pharmacol. 2015, 761, 288–297. [Google Scholar] [CrossRef]
- Huang, Z.; Han, Z.; Ye, B.; Dai, Z.; Shan, P.; Lu, Z.; Dai, K.; Wang, C.; Huang, W. Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes. Eur. J. Pharmacol. 2015, 762, 1–10. [Google Scholar] [CrossRef]
- Zhao, G.L.; Yu, L.M.; Gao, W.L.; Duan, W.X.; Jiang, B.; Liu, X.D.; Zhang, B.; Liu, Z.H.; Zhai, M.E.; Jin, Z.X.; et al. Berberine protects rat heart from ischemia/reperfusion injury via activating JAK2/STAT3 signaling and attenuating endoplasmic reticulum stress. Acta Pharmacol. Sin. 2016, 37, 354–367. [Google Scholar] [CrossRef]
- Liu, H.; Ren, X.; Ma, C. Effect of berberine on angiogenesis and HIF-1α/VEGF signal transduction pathway in rats with cerebral ischemia-reperfusion injury. J. Coll. Phys. Surg. Pak. 2018, 28, 753–757. [Google Scholar]
- Zheng, H.; Lan, J.; Li, J.; Lv, L. Therapeutic effect of berberine on renal ischemia-reperfusion injury in rats and its effect on Bax and Bcl-2. Exp. Ther. Med. 2018, 16, 2008–2012. [Google Scholar] [CrossRef]
- Assaran, A.H.; Akbarian, M.; Amirahmadi, S.; Salmani, H.; Shirzad, S.; Hosseini, M.; Beheshti, F.; Rajabian, A. Ellagic Acid Prevents Oxidative Stress and Memory Deficits in a Rat Model of Scopolamine-induced Alzheimer’s Disease. Cent. Nerv. Syst. Agents Med. Chem. 2022, 22, 214–227. [Google Scholar] [PubMed]
- Saha, L.; Kumari, P.; Rawat, K.; Gautam, V.; Sandhu, A.; Singh, N.; Bhatia, A.; Bhattacharya, S.; Sinha, V.R.; Chakrabarti, A. Neuroprotective effect of Berberine Nanoparticles Against Seizures in Pentylenetetrazole Induced Kindling Model of Epileptogenesis: Role of Anti-Oxidative, Anti-Inflammatory, and Anti-Apoptotic Mechanisms. Neurochem. Res. 2023, 48, 3055–3072. [Google Scholar] [CrossRef] [PubMed]
- Lei, F.; Xing, D.M.; Xiang, L.; Zhao, Y.N.; Wang, W.; Zhang, L.J.; Du, L.J. Pharmacokinetic study of ellagic acid in rat after oral administration of pomegranate leaf extract. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 796, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wang, K.; Cao, S.; Ding, L.; Qiu, F. Pharmacokinetics and Excretion of Berberine and Its Nine Metabolites in Rats. Front. Pharmacol. 2021, 11, 594852. [Google Scholar] [CrossRef]
- Mahmood, T.; Yang, P.C. Western blot: Technique, theory, and troubleshooting. N. Am. J. Med. Sci. 2012, 4, 429–434. [Google Scholar]
- Casini, A.F.; Ferrali, M.; Pompella, A.; Maellaro, E.; Comporti, M. Lipid peroxidation and cellular damage in extrahepatic tissues of bromobenzene-intoxicated mice. Am. J. Pathol. 1986, 123, 520–531. [Google Scholar]
- Aykaç, G.; Uysal, M.; Yalçin, A.S.; Koçak-Toker, N.; Sivas, A.; Oz, H. The effect of chronic ethanol ingestion on hepatic lipid peroxide, glutathione, glutathione peroxidase, and glutathione transferase in rats. Toxicology 1985, 36, 71–76. [Google Scholar] [CrossRef]
- Aebi, H.; Suter, H.; Feinstein, R.N. Activity and stability of catalase in blood and tissues of normal and acatalasemic mice. Biochem. Genet. 1968, 2, 245–251. [Google Scholar] [CrossRef]
- Sun, Y.; Oberley, L.W.; Li, Y. A simple method for clinical assay of superoxide dismutase. Clin. Chem. 1988, 34, 497–500. [Google Scholar] [CrossRef]
- Yadava, S.; Reddy, D.H.; Nakka, V.P.; Anusha, V.L.; Dumala, N.; Viswanadh, M.K.; Chakravarthi, G.; Nalluri, B.N.; Ramakrishna, K. Unravelling neuroregenerative and neuroprotective roles of Wnt/β-catenin pathway in ischemic stroke: Insights into molecular mechanisms. Neuroscience 2025, 565, 527–547. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, M.; Yuan, H.; Meng, C.; Zhang, B.; Wu, H. Ginsenoside Rb1 protects against spinal cord ischemia-reperfusion injury in rats by downregulating the Bax/Bcl-2 ratio and caspase-3 and p-Ask-1 levels. Exp. Mol. Pathol. 2018, 105, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Yaidikar, L.; Thakur, S. Punicalagin attenuated cerebral ischemia-reperfusion insult via inhibition of proinflammatory cytokines, up-regulation of Bcl-2, down-regulation of Bax, and caspase-3. Mol. Cell. Biochem. 2015, 402, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Yang, N.; Bi, W.; Zhang, J.; Li, X.; Shi, L.; Liu, Y.; Gao, X. Protective role of sulodexide on renal injury induced by limb ischemia-reperfusion. Evid. Based Complement. Altern. Med. 2021, 2021, 6629718. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cheng, C.; Deng, B.; Liu, M. Ellagic acid attenuates muscle atrophy in STZ-induced diabetic mice. Physiol. Res. 2022, 71, 631–641. [Google Scholar] [CrossRef]
- Sheng, M.; Zhou, Y.; Yu, W.; Weng, Y.; Xu, R.; Du, H. Protective effect of berberine pretreatment in hepatic ischemia/reperfusion injury of rat. Transplant. Proc. 2015, 47, 275–282. [Google Scholar] [CrossRef]
- Kumaş, M.; Eşrefoğlu, M.; Karataş, E.; Duymaç, N.; Kanbay, S.; Ergün, I.S.; Üyüklü, M.; Koçyiğit, A. Investigation of dose-dependent effects of berberine against renal ischemia/reperfusion injury in experimental diabetic rats. Nefrología 2019, 39, 411–423. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, X.; Chi, F.; Cong, N. Pyroptosis: A newly discovered therapeutic target for ischemia-reperfusion injury. Biomolecules 2022, 12, 1625. [Google Scholar] [CrossRef]
- Wang, H.; Miao, F.; Ning, D.; Shan, C. Ellagic acid alleviates hepatic ischemia-reperfusion injury in C57 mice via the Caspase-1-GSDMD pathway. BMC Vet. Res. 2022, 18, 229. [Google Scholar] [CrossRef]
- Zhong, C.; Xie, Y.; Wang, H.; Chen, W.; Yang, Z.; Zhang, L.; Deng, Q.; Cheng, T.; Li, M.; Ju, J.; et al. Berberine inhibits NLRP3 inflammasome activation by regulating mTOR/mtROS axis to alleviate diabetic cardiomyopathy. Eur. J. Pharmacol. 2024, 964, 176253. [Google Scholar] [CrossRef]
- Kalliolias, G.D.; Ivashkiv, L.B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol. 2016, 12, 49–62. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, X.; Xu, L.; Jia, M.; Zhang, L.; Li, P.; Yang, P. The role of Nrf2 in relieving cerebral ischemia-reperfusion injury. Curr. Neuropharmacol. 2023, 21, 1405–1420. [Google Scholar] [CrossRef] [PubMed]
- Aslan, A.; Gok, O.; Beyaz, S.; Ağca, C.A.; Erman, O.; Zerek, A. Ellagic acid prevents kidney injury and oxidative damage via regulation of Nrf-2/NF-κB signaling in carbon tetrachloride-induced rats. Mol. Biol. Rep. 2020, 47, 7959–7970. [Google Scholar] [CrossRef] [PubMed]
- Altamimi, J.Z.; Alfaris, N.A.; Alshammari, G.M.; Alagal, R.I.; Aljabryn, D.H.; Aldera, H.; Alkhateeb, M.A.; Yahya, M.A. Ellagic acid protects against diabetic cardiomyopathy in rats by stimulating cardiac silent information regulator 1 signaling. J. Physiol. Pharmacol. 2020, 71, 10-26402. [Google Scholar]
- Deng, Y.; Tang, K.; Chen, R.; Nie, H.; Liang, S.; Zhang, J.; Zhang, Y.; Yang, Q. Berberine attenuates hepatic oxidative stress in rats with non-alcoholic fatty liver disease via the Nrf2/ARE signaling pathway. Exp. Ther. Med. 2019, 17, 2091–2098. [Google Scholar]
- Wang, N.; Tian, Y.; Yan, F.; Zhao, F.; Wang, R.; Luo, Y.; Zheng, Y. Berberine protects against chronic cerebral hypoperfusion-induced cognitive impairment and hippocampal damage via regulation of the ERK/Nrf2 pathway. J. Chem. Neuroanat. 2022, 123, 102119. [Google Scholar] [CrossRef]
- Liu, Z.; Qu, M.; Yu, L.; Song, P.; Chang, Y. Artesunate inhibits renal ischemia-reperfusion-mediated remote lung inflammation through attenuating ROS-induced activation of NLRP3 inflammasome. Inflammation 2018, 41, 1546–1556. [Google Scholar] [CrossRef]
- Gao, S.; Zhan, L.; Yang, Z.; Shi, R.; Li, H.; Xia, Z.; Yuan, S.; Wu, Q.P.; Wang, T.; Yao, S. Remote Limb Ischaemic Postconditioning Protects Against Myocardial Ischaemia/Reperfusion Injury in Mice: Activation of JAK/STAT3-Mediated Nrf2-Antioxidant Signalling. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2017, 43, 1140–1151. [Google Scholar] [CrossRef]
- Zuo, L.; Zhou, T.; Pannell, B.K.; Ziegler, A.C.; Best, T.M. Biological and physiological role of reactive oxygen species—The good, the bad and the ugly. Acta Physiol. 2015, 214, 329–348. [Google Scholar] [CrossRef]
- Gürsul, C.; Ekinci Akdemir, F.N.; Akkoyun, T.; Can, İ.; Gül, M.; Gülçin, İ. Protective effect of naringin on experimental hindlimb ischemia/reperfusion injury in rats. J. Enzym. Inhib. Med. Chem. 2016, 31 (Suppl. S1), 56–61. [Google Scholar] [CrossRef]
- Ashrafzadeh Takhtfooladi, M.; Ashrafzadeh Takhtfooladi, H.; Sedaghatfar, H.; Shabani, S. Effect of low-level laser therapy on lung injury induced by hindlimb ischemia/reperfusion in rats. Lasers Med. Sci. 2015, 30, 1757–1762. [Google Scholar] [CrossRef]
- Apaydin Yildirim, B.; Annour Adoum, B. The investigation of the preventive effects of Coenzyme Q10 and Berberine for tourniquet induced ischemia-reperfusion injury on skeletal muscle in rat hindlimb. GSC Biol. Pharm. Sci. 2019, 9, 127–133. [Google Scholar] [CrossRef]
Sham (n = 7) | I/R (n = 7) | EA+I/R (n = 7) | BER+I/R (n = 7) | EA/BER+I/R (n = 7) | p ** | |
---|---|---|---|---|---|---|
Muscle atrophy–hypertrophy | 0.00 (0–1) | 1.50 (1–2) & | 1.00 (0–1) # | 0.50 (0–1) # | 0.50 (0–1) # | 0.010 |
Muscle degeneration–congestion | 0.00 (0–1) | 1.00 (1–2) & | 0.00 (0–1) # | 0.00 (0–1) # | 0.00 (0–1) # | 0.009 |
Internalization of muscle nucleus–oval-central nucleus | 0.00 (0–1) | 1.00 (0–1) & | 0.00 (0–1) # | 0.00 (0–1) # | 0.00 (0–1) # | 0.007 |
Fragmentation–hyalinization | 0.00 (0–1) | 1.50(0–1) & | 1.00 (0–1) # | 0.50 (0–1) # | 0.00 (0–1) # | 0.019 |
Leukocyte cell infiltration | 0.00 (0–1) | 1.50 (1–2) & | 1.00 (0–1) # | 0.50 (0–1) # | 0.00 (0–1) # | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tekin, E.; Kaya, A.K.; Küçük, A.; Arslan, M.; Özer, A.; Demirtaş, H.; Sezen, Ş.C.; Kip, G. Effects of Ellagic Acid and Berberine on Hind Limb Ischemia Reperfusion Injury: Pathways of Apoptosis, Pyroptosis, and Oxidative Stress. Medicina 2025, 61, 451. https://doi.org/10.3390/medicina61030451
Tekin E, Kaya AK, Küçük A, Arslan M, Özer A, Demirtaş H, Sezen ŞC, Kip G. Effects of Ellagic Acid and Berberine on Hind Limb Ischemia Reperfusion Injury: Pathways of Apoptosis, Pyroptosis, and Oxidative Stress. Medicina. 2025; 61(3):451. https://doi.org/10.3390/medicina61030451
Chicago/Turabian StyleTekin, Esra, Ali Koray Kaya, Ayşegül Küçük, Mustafa Arslan, Abdullah Özer, Hüseyin Demirtaş, Şaban Cem Sezen, and Gülay Kip. 2025. "Effects of Ellagic Acid and Berberine on Hind Limb Ischemia Reperfusion Injury: Pathways of Apoptosis, Pyroptosis, and Oxidative Stress" Medicina 61, no. 3: 451. https://doi.org/10.3390/medicina61030451
APA StyleTekin, E., Kaya, A. K., Küçük, A., Arslan, M., Özer, A., Demirtaş, H., Sezen, Ş. C., & Kip, G. (2025). Effects of Ellagic Acid and Berberine on Hind Limb Ischemia Reperfusion Injury: Pathways of Apoptosis, Pyroptosis, and Oxidative Stress. Medicina, 61(3), 451. https://doi.org/10.3390/medicina61030451