Effects of Standard Physiotherapy with the Addition of Mechanical Traction on Pain, Physical Activity and Quality of Life in Patients with Knee Osteoarthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Outcome Measurements
2.3. Standard Physiotherapy
2.4. Mechanical Traction
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, D.; Shen, J.; Zhao, W.; Wang, T.; Han, L.; Hamilton, J.L.; Im, H.-J. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res. 2017, 5, 16044. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Xu, M.; Xo, R.; Mates, A.; Wilson, G.; Pearsall, A.; Grishko, V. Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes. Osteoarthr. Cartil. 2010, 18, 424–432. [Google Scholar] [CrossRef]
- Huey, D.J.; Hu, J.C.; Athanasiou, K.A. Unlike bone, cartilage regeneration remains elusive. Science 2012, 338, 917–921. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Olson-Kellogg, B.; Shamliyan, T.A.; Choi, J.-Y.; Ramakrishnan, R.; Kane, R.L. Physical therapy interventions for knee pain secondary to osteoarthritis: A systematic review. Ann. Intern. Med. 2012, 157, 632–644. [Google Scholar] [CrossRef]
- Goh, S.-L.; Persson, M.S.; Stocks, J.; Hou, Y.; Lin, J.; Hall, M.C.; Doherty, M.; Zhang, W. Efficacy and potential determinants of exercise therapy in knee and hip osteoarthritis: A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2019, 62, 356–365. [Google Scholar] [CrossRef]
- Anwer, S.; Alghadir, A.; Zafar, H.; Brismée, J.-M. Effects of orthopaedic manual therapy in knee osteoarthritis: A systematic review and meta-analysis. Physiotherapy 2018, 104, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Van der Woude, J.A.D.; Wiegant, K.; van Heerwaarden, R.J.; Spruijt, S.; Emans, P.J.; Mastbergen, S.C.; Lafeber, F.P.J.G. Knee joint distraction compared with total knee arthroplasty: A randomised controlled trial. Bone Joint J. 2017, 99-B, 51–58. [Google Scholar] [CrossRef]
- Jansen, M.P.; Besselink, N.J.; van Heerwaarden, R.J.; Custers, R.J.H.; Emans, P.J.; Spruijt, S.; Mastbergen, S.C.; Lafeber, F.P.J.G. Knee Joint Distraction Compared with High Tibial Osteotomy and Total Knee Arthroplasty: Two-Year Clinical, Radiographic, and Biochemical Marker Outcomes of Two Randomized Controlled Trials. Cartilage 2021, 12, 181–191. [Google Scholar] [CrossRef] [PubMed]
- IIntema, F.; Van Roermund, P.M.; A Marijnissen, A.C.; Cotofana, S.; Eckstein, F.; Castelein, R.M.; Bijlsma, J.W.J.; Mastbergen, S.C.; Lafeber, F.P.J.G. Tissue structure modification in knee osteoarthritis by use of joint distraction: An open 1-year pilot study. Ann. Rheum. Dis. 2011, 70, 1441–1446. [Google Scholar] [CrossRef]
- Watt, F.; Hamid, B.; Garriga, C.; Judge, A.; Hrusecka, R.; Custers, R.; Jansen, M.; Lafeber, F.; Mastbergen, S.; Vincent, T. The molecular profile of synovial fluid changes upon joint distraction and is associated with clinical response in knee osteoarthritis. Osteoarthr. Cartil. 2020, 28, 324–333. [Google Scholar] [CrossRef]
- Razak, H.R.B.A.; Campos, J.P.; Khakha, R.S.; Wilson, A.J.; van Heerwaarden, R.J. Role of joint distraction in osteoarthritis of the knee: Basic science, principles and outcomes. J. Clin. Orthop. Trauma 2021, 24, 101723. [Google Scholar] [CrossRef] [PubMed]
- Tegner, Y.; Lysholm, J. Rating systems in the evaluation of knee ligament injuries. Clin. Orthop. Relat. Res. 1985, 198, 42–49. [Google Scholar] [CrossRef]
- Alghadir, A.H.; Anwer, S.; Iqbal, A.; Iqbal, Z.A. Test-retest reliability, validity, and minimum detectable change of visual analog, numerical rating, and verbal rating scales for measurement of osteoarthritic knee pain. J. Pain Res. 2018, 11, 851–856. [Google Scholar] [CrossRef]
- Tubach, F.; Ravaud, P.; Baron, G.; Falissard, B.; Logeart, I.; Bellamy, N.; Bombardier, C.; Felson, D.; Hochberg, M.; van der Heijde, D.; et al. Evaluation of clinically relevant changes in patient reported outcomes in knee and hip osteoarthritis: The minimal clinically important improvement. Ann. Rheum. Dis. 2005, 64, 29–33. [Google Scholar] [CrossRef]
- Hlebš, S.; Škrlec, S. Ocena uspešnosti fizioterapije z vprašalnikom o okvari kolena zaradi osteoartritisa. In Proceedings of the 14. Kongres Fizioterapevtov Slovenije: Z Dokazi Podprta Fizioterapija, Laško, Slovenia, 13–14 May 2011; Društvo Fizioterapevtov Slovenije—Strokovno Združenje: Ljubljana, Slovenia, 2011; pp. 16–23. [Google Scholar]
- Roos, E.M.; Lohmander, L.S. The Knee injury and Osteoarthritis Outcome Score (KOOS): From joint injury to osteoarthritis. Health Qual Life Outcomes 2003, 1, 64. [Google Scholar] [CrossRef] [PubMed]
- Collins, N.; Prinsen, C.; Christensen, R.; Bartels, E.; Terwee, C.; Roos, E. Knee Injury and Osteoarthritis Outcome Score (KOOS): Systematic review and meta-analysis of measurement properties. Osteoarthr. Cartil. 2016, 24, 1317–1329. [Google Scholar] [CrossRef]
- Cheng, A.S.K.; Chan, K.-C.; Chan, S.-Y.; Fan, M.-K.; Fung, M.-K.; Lee, O.-Y.; Kwok, C.T.T.; Wong, J.K.K. Cross-Cultural Adaptation and Validation of the Hong Kong Version of the Knee Injury and Osteoarthritis Outcome Score (HK-KOOS) for Patients with Knee Osteoarthritis. Occup. Ther. Int. 2019, 2019, 8270637. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist 2013, 53, 255–267. [Google Scholar] [CrossRef]
- Gill, S.; McBurney, H. Reliability of performance-based measures in people awaiting joint replacement surgery of the hip or knee. Physiother. Res. Int. 2008, 13, 141–152. [Google Scholar] [CrossRef]
- Wright, A.A.; Cook, C.E.; Baxter, G.D.; Dockerty, J.D.; Abbott, J.H. A comparison of 3 methodological approaches to defining major clinically important improvement of 4 performance measures in patients with hip osteoarthritis. J. Orthop. Sports Phys. Ther. 2011, 41, 319–327. [Google Scholar] [CrossRef]
- Palhais, N.S.; Guntern, D.; Kagel, A.; Wettstein, M.; Mouhsine, E.; Theumann, N. Direct magnetic resonance arthrography of the knee: Utility of axial traction. Eur. Radiol. 2009, 19, 2225–2231. [Google Scholar] [CrossRef] [PubMed]
- Alpayci, M.; Ozkan, Y.; Yazmalar, L.; Hiz, O.; Ediz, L. A randomized controlled trial on the efficacy of intermittent and continuous traction for patients with knee osteoarthritis. Clin. Rehabil. 2013, 27, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.S.; Lee, D.K. The effect of knee joint traction therapy on pain, physical function, and depression in patients with degenerative arthritis. J. Kor. Phys. Ther. 2019, 31, 317–321. [Google Scholar] [CrossRef]
- Abdel-Aal, N.M.; Ibrahim, A.H.; Kotb, M.M.; Hussein, A.A.; Hussein, H.M. Mechanical traction from different knee joint angles in patients with knee osteoarthritis: A randomized controlled trial. Clin. Rehabil. 2022, 36, 1083–1096. [Google Scholar] [CrossRef]
- Graham, G.G.; Scott, K.F. Mechanism of action of paracetamol. Am. J. Ther. 2005, 12, 46–55. [Google Scholar] [CrossRef]
- Khademi-Kalantari, K.; Aghdam, S.M.; Baghban, A.A.; Rezayi, M.; Rahimi, A.; Naimee, S. Effects of non-surgical joint distraction in the treatment of severe knee osteoarthritis. J. Bodyw. Mov. Ther. 2014, 18, 533–539. [Google Scholar] [CrossRef]
- Riddle, D.L.; A Perera, R. The WOMAC pain scale and crosstalk from co-occurring pain sites in people with knee pain: A causal modeling study. Phys. Ther. 2020, 100, 1872–1881. [Google Scholar] [CrossRef]
- Roos, E.M.; Toksvig-Larsen, S. Knee injury and Osteoarthritis Outcome Score (KOOS)—Validation and comparison to the WOMAC in total knee replacement. Health Qual. Life Outcomes 2003, 1, 17. [Google Scholar] [CrossRef]
Variable | |
---|---|
Affected knee side (right/left) | 9 (39.1%)/14 (60.9%) |
Sex (M/F) | 10 (43.5%)/13 (56.5%) |
Menstruation/menopause | 1 (7.7%)/12 (92.3%) |
Age (years) | 65.9 ± 9.5 |
M/F | 59.7 ± 7.6/70.6 ± 8.7 |
Height (cm) | 168.2 ± 9.5 |
M/F | 176.8 ± 5.7/161.5 ± 5.6 |
Body mass (kg) | 84.9 ± 15.3 |
M/F | 88.6 ± 16.7/82.1 ± 14.2 |
Tegner | |
Level 1 | 1 (4.3%) (1 F) |
Level 2 | 10 (43.5%) (7 F; 3 M) |
Level 3 | 6 (26.1%) (5 F; 1 M) |
Level 4 | 4 (17.4%) (4 M) |
Level 5 | 2 (8.7%) (2 M) |
Injury to the affected knee (M/F) | 4/3—trauma and dislocations |
Surgery to the affected knee (M/F) | 4/2—arthroscopic surgery; post-trauma surgery |
Surgery to both lower limbs (M/F) | 0/5—collateral knee or ankle surgery |
Variable | ± SD | diff. ± SD | Shapiro–Wilk | Paired Student’s t | Hedges g | ES |
---|---|---|---|---|---|---|
VAS-Rbefore (cm) | 5.2 ± 2.8 | −2.2 ± 2.7 | 0.95 (p = 0.29) † | 3.95 ** [1.05–3.36] | 0.8 | 0.96 |
VAS-Rafter (cm) | 3 ± 2.4 | |||||
VAS-Mbefore (cm) | 6.2 ± 2.3 | −2.4 ± 2.6 | 0.93 (p = 0.12) † | 4.37 ** [1.25–3.51] | 0.8 | 0.96 |
VAS-Mafter (cm) | 3.9 ± 2.3 | |||||
KOOS-Pbefor (points) | 49.6 ± 13.3 | 8.2 ± 15.4 | 0.93 (p = 0.12) † | −2.55 * [(−14.85)–(−1.52)] | 0.63 | 0.82 |
KOOS-Pafter (points) | 57.8 ± 11.9 | |||||
KOOS-QoLbefore (points) | 38.9 ± 14.4 | 3.3 ± 15.3 | 0.96 (p = 0.52) † | −1.02 NS [(−9.87)–3.37] | 0.23 | 0.19 |
KOOS-QoLafter (points) | 42.1 ± 12.4 | |||||
STS30before (num.) | 9.5 ± 3 | 2 ± 1.1 | 0.89 (p = 0.01) | 0 ** | 0.59 | 0.77 |
STS30after (num.) | 11.4 ± 3.3 |
Estimate | SE | t Value | p-Value | |
---|---|---|---|---|
Intercept | −9.64335 | 3.23752 | −2.979 | 0.00742 * |
Sex | 1.08106 | 1.07188 | 1.009 | 0.32523 |
Body mass | 0.08040 | 0.03544 | 2.268 | 0.03454 * |
With interaction [sex x body mass] | ||||
Intercept | −12.98063 | 4.45440 | −2.914 | 0.0089 * |
Sex | 7.61621 | 6.11448 | 1.246 | 0.2281 |
Body mass | 0.11807 | 0.04949 | 2.386 | 0.0276 * |
Sex x body mass | −0.07662 | 0.07059 | −1.085 | 0.2913 |
Without interaction [sex x body mass] and body mass | ||||
Intercept | −8.37977 | 2.98650 | −2.806 | 0.0106 * |
Body mass | 0.07272 | 0.03463 | 2.100 | 0.0480 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florjančič, K.; Vauhnik, R. Effects of Standard Physiotherapy with the Addition of Mechanical Traction on Pain, Physical Activity and Quality of Life in Patients with Knee Osteoarthritis. Medicina 2025, 61, 507. https://doi.org/10.3390/medicina61030507
Florjančič K, Vauhnik R. Effects of Standard Physiotherapy with the Addition of Mechanical Traction on Pain, Physical Activity and Quality of Life in Patients with Knee Osteoarthritis. Medicina. 2025; 61(3):507. https://doi.org/10.3390/medicina61030507
Chicago/Turabian StyleFlorjančič, Kati, and Renata Vauhnik. 2025. "Effects of Standard Physiotherapy with the Addition of Mechanical Traction on Pain, Physical Activity and Quality of Life in Patients with Knee Osteoarthritis" Medicina 61, no. 3: 507. https://doi.org/10.3390/medicina61030507
APA StyleFlorjančič, K., & Vauhnik, R. (2025). Effects of Standard Physiotherapy with the Addition of Mechanical Traction on Pain, Physical Activity and Quality of Life in Patients with Knee Osteoarthritis. Medicina, 61(3), 507. https://doi.org/10.3390/medicina61030507