The Effect and Treatment of PIK3CA Mutations in Breast Cancer: Current Understanding and Future Directions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Public Platform
2.2. Literature Research
2.3. Search for Clinical Trial
2.4. Statistical Analysis
3. Results
3.1. The Effect of PIK3CA Mutations on the PI3K/AKT/mTOR Pathway
3.2. Clinical Trials of PI3K Inhibitors in Breast Cancer Patients with PIK3CA Mutations
3.3. Future Directions: Noncoding RNAs Targeting Gene Mutations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 524–541. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ding, J.; Meng, L.H. PI3K isoform-selective inhibitors: Next-generation targeted cancer therapies. Acta Pharmacol. Sin. 2015, 36, 1170–1176. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Wu, Y.; He, P.; Fan, Y.; Zhong, X.; Zheng, H.; Luo, T. PI3K/AKT/mTOR-targeted therapy for breast cancer. Cells 2022, 11, 2508. [Google Scholar] [CrossRef] [PubMed]
- Echeverria, I.; Liu, Y.; Gabelli, S.B.; Amzel, L.M. Oncogenic mutations weaken the interactions that stabilize the p110α-p85α heterodimer in phosphatidylinositol 3-kinase α. FEBS J. 2015, 282, 3528–3542. [Google Scholar] [CrossRef]
- Cho, Y.A.; Ko, S.Y.; Suh, Y.J.; Kim, S.; Park, J.H.; Park, H.R.; Kwon, M.J. PIK3CA mutation as potential poor prognostic marker in asian female breast cancer patients who received adjuvant chemotherapy. Curr. Oncol. 2022, 29, 2895–2908. [Google Scholar] [CrossRef]
- Kim, J.W.; Lim, A.R.; You, J.Y.; Lee, J.H.; Song, S.E.; Lee, N.K.; Jung, S.P.; Cho, K.R.; Kim, C.Y.; Park, K.H. PIK3CA Mutation is Associated with Poor Response to HER2-Targeted Therapy in Breast Cancer Patients. Cancer Res. Treat. 2023, 55, 531–541. [Google Scholar] [CrossRef]
- Fillbrunn, M.; Signorovitch, J.; André, F.; Wang, I.; Lorenzo, I.; Ridolfi, A.; Park, J.; Dua, A.; Rugo, H.S. PIK3CA mutation status, progression and survival in advanced HR+/HER2− breast cancer: A meta-analysis of published clinical trials. BMC Cancer 2022, 22, 1002. [Google Scholar] [CrossRef]
- Mosele, F.; Stefanovska, B.; Lusque, A.; Tran Dien, A.; Garberis, I.; Droin, N.; Le Tourneau, C.; Sablin, M.P.; Lacroix, L.; Enrico, D.; et al. Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer. Ann. Oncol. 2020, 31, 377–386. [Google Scholar] [CrossRef]
- Deng, L.; Zhu, X.; Sun, Y.; Wang, J.; Zhong, X.; Li, J.; Hu, M.; Zheng, H. Prevalence and Prognostic Role of PIK3CA/AKT1 Mutations in Chinese Breast Cancer Patients. Cancer Res. Treat. 2019, 51, 128–140. [Google Scholar] [CrossRef]
- Mlinarić, M.; Lučić, I.; Milković, L.; da Silva, I.V.; Tartaro Bujak, I.; Musani, V.; Čipak Gašparović, A. AQP3-dependent PI3K/Akt modulation in breast cancer cells. Int. J. Mol. Sci. 2023, 24, 8133. [Google Scholar] [CrossRef]
- Leroy, C.; Ramos, P.; Cornille, K.; Bonenfant, D.; Fritsch, C.; Voshol, H.; Bentires-Alj, M. Activation of IGF1R/p110β/AKT/mTOR confers resistance to α-specific PI3K inhibition. Breast Cancer Res. 2016, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- Glaviano, A.; Foo, A.S.; Lam, H.Y.; Yap, K.C.; Jacot, W.; Jones, R.H.; Kumar, A.P. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef] [PubMed]
- Omolekan, T.O.; Chamcheu, J.C.; Buerger, C.; Huang, S. PI3K/AKT/mTOR Signaling Network in Human Health and Diseases. Cells 2024, 13, 1500. [Google Scholar] [CrossRef]
- Katan, M.; Cockcroft, S. Phosphatidylinositol(4,5)bisphosphate: Diverse functions at the plasma membrane. Essays Biochem. 2020, 64, 513–531. [Google Scholar]
- He, Y.; Sun, M.M.; Zhang, G.G. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021, 6, 425. [Google Scholar] [CrossRef]
- Levina, A.; Fleming, K.D.; Burke, J.E.; Leonard, T.A. Activation of the essential kinase PDK1 by phosphoinositide-driven trans-autophosphorylation. Nat. Commun. 2022, 13, 1874. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y.; Zhou, C.; Mei, W.; Zeng, C. PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway? Front. Oncol. 2022, 12, 819128. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Nourbakhsh, E.; Zia Hazara, A.; Mirzaei, A.; Shafieyari, S.; Salehi, A.; Hoseinzadeh, M.; Payandeh, Z.; Barati, G. PI3K/Akt/mTOR signaling pathway in cancer stem cells. Pathol. Res. Pract. 2022, 237, 154010. [Google Scholar]
- Tian, T.; Li, X.; Zhang, J. mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy. Int. J. Mol. Sci. 2019, 20, 755. [Google Scholar] [CrossRef]
- Yadollahi Farsani, M.; Amini Farsani, Z.; Moayedi, F.; Khazaei, N.; Yaghoobi, H. MiR-548k suppresses apoptosis in breast cancer cells by affecting PTEN/PI3K/AKT signaling pathway. IUBMB Life 2023, 75, 97–116. [Google Scholar] [CrossRef]
- Yari, K.; Hakimi, A.; Mohammadi, M.; Ammari-Allahyari, M.; Salari, N.; Ghasemi, H. The association of PTEN gene mutations with the breast cancer risk: A systematic review and meta-analysis. Biochem. Genet. 2024, 62, 1617–1635. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zhu, J.; Zhong, Y.; Geng, R.; Ji, Y.; Guan, Q.; Hong, C.; Wei, Y.; Min, N.; Qi, A.; et al. PIK3CA mutation confers resistance to chemotherapy in triple-negative breast cancer by inhibiting apoptosis and activating the PI3K/AKT/mTOR signaling pathway. Ann. Transl. Med. 2021, 5, 410. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, M.L.; Ranga-Prasad, H.; Parson, M.A.H.; Harris, N.J.; Rathinaswamy, M.K.; Burkeet, J.E. Oncogenic mutations of PIK3CA lead to increased membrane recruitment driven by reorientation of the ABD, p85 and C-terminus. Nat. Commun. 2023, 14, 181. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Zhang, G.; Chen, B.; Chen, X.; Wen, L.; Lai, J.; Li, X.; Li, M.; Liu, H.; Liu, J.; et al. Mutational Landscape of PI3K-AKT-mTOR Pathway in Breast Cancer: Implications for Targeted Therapeutics. J. Cancer 2021, 12, 4408–4417. [Google Scholar] [CrossRef]
- Baselga, J.; Dent, S.F.; Cortés, J.; Im, Y.H.; Diéras, V.; Harbeck, N. Phase III study of taselisib (GDC0032) + fulvestrant (FULV) v FULV in patients (pts) with estrogen receptor (ER)-positive, PIK3CA-mutant (MUT), locally advanced or metastatic breast cancer (MBC): Primary analysis from SANDPIPER. J. Clin. Oncol. 2018, 36, LBA1006. [Google Scholar] [CrossRef]
- Krop, I.E.; Mayer, I.A.; Ganju, V.; Dickler, M.; Johnston, S.; Morales, S.; Yardley, D.A.; Melichar, B.; Forero-Torres, A.; Lee, S.C.; et al. Pictilisib for oestrogen receptor-positive, aromatase inhibitor-resistant, advanced or metastatic breast cancer (FERGI): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2016, 17, 811–821. [Google Scholar] [CrossRef]
- Ma, C.X.; Luo, J.; Naughton, M.; Ademuyiwa, F.; Suresh, R.; Griffith, M.; Griffith, O.L.; Skidmore, Z.L.; Spies, N.C.; Ramu, A.; et al. A phase I trial of BKM120 (Buparlisib) in combination with fulvestrant in postmenopausal women with estrogen receptor–positive metastatic breast cancer. Clin. Cancer Res. 2016, 22, 1583–1591. [Google Scholar] [CrossRef]
- Juric, D.; Janku, F.; Rodón, J.; Burris, H.A.; Mayer, I.A.; Schuler, M.; Seggewiss-Bernhardt, R.; Gil-Martin, M.; Middleton, M.R.; Baselga, J.; et al. Alpelisib Plus Fulvestrant in PIK3CA-Altered and PIK3CA-Wild-Type Estrogen Receptor-Positive Advanced Breast Cancer: A Phase 1b Clinical Trial. JAMA Oncol. 2019, 5, e184475. [Google Scholar] [CrossRef]
- Sharma, P.; Abramson, V.G.; O’Dea, A.; Nye, L.; Mayer, I.; Pathak, H.B.; Hoffmann, M.; Stecklein, S.R.; Elia, M.; Lewis, S.; et al. Clinical and Biomarker Results from Phase I/II Study of PI3K Inhibitor Alpelisib plus Nab-paclitaxel in HER2-Negative Metastatic Breast Cancer. Clin. Cancer Res. 2021, 27, 3896–3904. [Google Scholar] [CrossRef]
- Rugo, H.S.; Lerebours, F.; Ciruelos, E.; Drullinsky, P.; Ruiz-Borrego, M.; Neven, P.; Park, Y.H.; Prat, A.; Bachelot, T.; Juric, D.; et al. Alpelisib plus fulvestrant in PIK3CA-mutated, hormone receptor-positive advanced breast cancer after a CDK4/6 inhibitor (BYLieve): One cohort of a phase 2, multicentre, open-label, non-comparative study. Lancet Oncol. 2021, 4, 489–498. [Google Scholar] [CrossRef]
- André, F.; Ciruelos, E.M.; Juric, D.; Loibl, S.; Campone, M.; Mayer, I.A.; Rubovszky, G.; Yamashita, T.; Kaufman, B.; Lu, Y.S.; et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative ad-vanced breast cancer: Final overall survival results from SOLAR-1. Ann. Oncol. 2021, 32, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Piccart, M.M.; Ruiz Borrego, H.T.; Arkenau, S.I.; Escrivá-de-Romaní, S.J.; Howell, A.; Hennequin, B.; Jimenez-Rodriguez, B. 266P MEN1611, a PI3K inhibitor, combined with trastuzumab (T)±fulvestrant (F) for HER2+/PIK3CA mutant advanced or metastatic breast cancer: Safety and efficacy results from the ongoing phase Ib study (B-PRECISE-01). Ann. Oncol. 2021, 32, S478–S479. [Google Scholar] [CrossRef]
- Hong, D.S.; Kathleen, N.M.; Johanna, C.B.; Daniel, D.K.; Judy, S.W.; Susanna, V.U.; Suzanne, J. Preclinical evaluation and phase Ib study of prexasertib, a CHK1 inhibitor, and samotolisib (LY3023414), a dual PI3K/mTOR inhibitor. Clin. Cancer Res. 2021, 27, 1864–1874. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.C.; Im, S.A.; Saura, C.; Juric, D.; Loibl, S.; Kalinsky, K.; Schmid, P.; Loi, S.; Sunpaweravong, P.; Musolino, A.; et al. Inavolisib-Based Therapy in PIK3CA-Mutated Advanced Breast Cancer. N. Engl. J. Med. 2024, 391, 1584–1596. [Google Scholar] [CrossRef]
- Turner, N.C.; Oliveira, M.; Howell, S.J.; Dalenc, F.; Cortes, J.; Gomez Moreno, H.L.; Hu, X.; Jhaveri, K.; Krivorotko, P.; Loibl, S.; et al. Capivasertib in Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2023, 388, 2058–2070. [Google Scholar] [CrossRef]
- Abu-Alghayth, M.H.; Khan, F.R.; Belali, T.M.; Abalkhail, A.; Alshaghdali, K.; Nassar, S.A.; Binshaya, A.S. The emerging role of noncoding RNAs in the PI3K/AKT/mTOR signalling pathway in breast cancer. Pathol. Res. Pract. 2024, 255, 155180. [Google Scholar] [CrossRef]
- Liu, Y.; Leng, P.; Guo, J.; Zhou, H. Crosstalk between Methylation and ncRNAs in breast cancer: Therapeutic and diagnostic implications. Int. J. Mol. Sci. 2022, 23, 15759. [Google Scholar] [CrossRef]
- Lakshmi, S.; Hughes, T.A.; Priya, S. Exosomes and exosomal RNAs in breast cancer: A status update. Eur. J. Cancer 2021, 144, 252–268. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Y.; Liang, G.; Ling, Y.; Tan, W.; Tan, L.; Andrews, R.; Zhong, W.; Zhang, X.; Song, E.; et al. Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell Death Dis. 2019, 10, 55. [Google Scholar] [CrossRef]
- Yang, H.; Li, Z.; Wang, Z.; Zhang, X.; Dai, X.; Zhou, G.; Ding, Q. Histocompatibility Minor 13 (HM13), targeted by miR-760, exerts oncogenic role in breast cancer by suppressing autophagy and activating PI3K-AKT-mTOR pathway. Cell Death Dis. 2022, 13, 728. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Cui, X.; Wang, Y. microRNA-944 inhibits breast cancer cell proliferation and promotes cell apoptosis by reducing SPP1 through inactivating the PI3K/Akt pathway. Apoptosis 2023, 28, 1546–1563. [Google Scholar] [CrossRef] [PubMed]
- Entezari, M.; Soltani, B.M.; Sadeghizadeh, M. MicroRNA-203a inhibits breast cancer progression through the PI3K/Akt and Wnt pathways. Sci Rep. 2024, 14, 4715. [Google Scholar] [CrossRef]
- Mehrtabar, E.; Khalaji, A.; Pandeh, M.; Farhoudian, A.; Shafiee, N.; Shafiee, A.; Soleymani-Goloujeh, M. Impact of microRNA variants on PI3K/AKT signaling in triple-negative breast cancer: Comprehensive review. Med. Oncol. 2024, 41, 222. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.H.; Zhao, J.X.; Jiang, M.Y.; Yang, L.P.; Sun, M.L.; Wang, H.W. MiR193 promotes cell proliferation and invasion by ING5/PI3K/AKT pathway of triple-negative breast cancer. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 3122–3129. [Google Scholar] [PubMed]
- Zhao, Q.Y.; Ju, F.; Wang, Z.H.; Ma, X.Z.; Zhao, H. ING5 inhibits epithelial-mesenchymal transition in breast cancer by suppressing PI3K/Akt pathway. Int. J. Clin. Exp. Med. 2015, 8, 15498–15505. [Google Scholar]
- Xiao, Y.; Humphries, B.; Yang, C.; Wang, Z. MiR-205 Dysregulations in Breast Cancer: The Complexity and Opportunities. Noncoding RNA 2019, 5, 53. [Google Scholar] [CrossRef]
- De Cola, A.; Volpe, S.; Budani, M.; Ferracin, M.; Lattanzio, R.; Turdo, A.; Agostino, D.D.; Capone, E.; Stassi, G.; Todaro, M.; et al. miR-205-5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance. Cell Death Dis. 2015, 6, e1823. [Google Scholar] [CrossRef]
- Schwarzenbacher, D.; Klec, C.; Pasculli, B.; Cerk, S.; Rinner, B.; Karbiener, M.; Pichler, M. MiR-1287-5p inhibits triple negative breast cancer growth by interaction with phosphoinositide 3-kinase CB, thereby sensitizing cells for PI3Kinase inhibitors. Breast Cancer Res. 2019, 21, 20. [Google Scholar] [CrossRef]
- Maharati, A.; Moghbeli, M. Long non-coding RNAs as the critical regulators of PI3K/AKT, TGF-β, and MAPK signaling pathways during breast tumor progression. J. Transl. Med. 2023, 21, 556. [Google Scholar] [CrossRef]
- Filippova, E.A.; Fridman, M.V.; Burdennyy, A.M.; Loginov, V.I.; Pronina, I.V.; Lukina, S.S.; Dmitriev, A.A.; Braga, E.A. Long Noncoding RNA GAS5 in Breast Cancer: Epigenetic Mechanisms and Biological Functions. Int. J. Mol. Sci. 2021, 22, 6810. [Google Scholar] [CrossRef]
- Wang, J.; Sun, J.; Yang, F. The role of long non-coding RNA H19 in breast cancer. Oncol. Lett. 2020, 19, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Abolghasemi, M.; Tehrani, S.S.; Yousefi, T.; Karimian, A.; Mahmoodpoor, A.; Ghamari, A.; Rameshknia, V. Critical roles of long noncoding RNAs in breast cancer. J. Cell Physiol. 2020, 235, 5059–5071. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Li, S.; Fan, Y.; Hua, L.; Pan, Q.; Li, Y.; Long, Z.; Yang, R. LncRNA DUXAP8 induces breast cancer radioresistance by modulating the PI3K/AKT/mTOR pathway and the EZH2-E-cadherin/RHOB pathway. Cancer Biol. Ther. 2022, 23, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.X.; Chen, L.L. Circular RNAs: Characterization, cellular roles, and applications. Cell 2022, 185, 2016–2034. [Google Scholar] [CrossRef]
- Tao, X.; Na, L.; Hu, E.X.; Wang, J.; Wu, L.G.; Zhang, X.; Wang, L.B. Clinical diagnostic value of circ-ARHGER28 for breast cancer and its effect on MCF-7 cell proliferation and apoptosis. Anticancer Res. 2024, 44, 2877–2886. [Google Scholar] [CrossRef]
- Pan, G.; Mao, A.; Liu, J. Circular RNA hsa_circ_0061825 (circ-TFF1) contributes to breast cancer progression through targeting miR-326/TFF1 signalling. Cell Prolif. 2020, 53, e12720. [Google Scholar] [CrossRef]
- Rybinski, B.; Yun, K. Addressing intra-tumoral heterogeneity and therapy resistance. Oncotarget 2016, 7, 72322. [Google Scholar] [CrossRef]
- Li, Q.; Li, Z.; Luo, T.; Shi, H. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. Mol. Biomed. 2022, 3, 47. [Google Scholar] [CrossRef]
- Wong, M.H.; Xue, A.; Baxter, R.C.; Pavlakis, N.; Smith, R.C. Upstream and downstream co-inhibition of mitogen-activated protein kinase and PI3K/Akt/mTOR pathways in pancreatic ductal adenocarcinoma. Neoplasia 2016, 18, 425–435. [Google Scholar] [CrossRef]
- Heavey, S.; Cuffe, S.; Finn, S.; Young, V.; Ryan, R.; Nicholson, S.; Gately, K. In pursuit of synergy: An investigation of the PI3K/mTOR/MEK co-targeted inhibition strategy in NSCLC. Oncotarget 2016, 7, 79526. [Google Scholar] [CrossRef]
- Tierno, D.; Grassi, G.; Scomersi, S.; Bortul, M.; Generali, D.; Zanconati, F.; Scaggiante, B. Next-generation sequencing and triple-negative breast cancer: Insights and applications. Int. J. Mol. Sci. 2023, 24, 9688. [Google Scholar] [CrossRef] [PubMed]
- Zardavas, D.; Irrthum, A.; Swanton, C.; Piccart, M. Clinical management of breast cancer heterogeneity. Nat. Rev. Clin. Oncol. 2015, 12, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Vasan, N.; Razavi, P.; Johnson, J.L.; Shao, H.; Shah, H.; Antoine, A.; Ladewig, E.; Gorelick, A.; Lin, T.Y.; Toska, E.; et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science 2019, 366, 714–723. [Google Scholar] [CrossRef]
- Hanker, A.B.; Kaklamani, V.; Arteaga, C.L. Challenges for the Clinical Development of PI3K Inhibitors: Strategies to Improve Their Impact in Solid Tumors. Cancer Discov. 2019, 9, 482–491. [Google Scholar] [CrossRef]
NCT (Phase) | Patient Population | Treatment | Clinical Outcomes | Adverse Effects | Reference |
---|---|---|---|---|---|
NCT02340221 (III) | ER+/HER2− ABC or mBC with PIK3CA-mutant | taselisib + fulvestrant / placebo + fulvestrant | Taselisib group vs. placebo group PFS: 7.4 vs. 5.4; HR 0.70, p = 0.0037 ORR: 28.0% vs. 11.9%, 95% CI 8.4–23.8 | diarrhea, hyperglycemia, nausea, fatigue, and rash | [25] |
NCT01437566 (II) | ER+/HER2− BC | pictilisib + fulvestrant / placebo + fulvestrant | Pictilisib group vs. placebo group mPFS: 6.6 vs. 5.1; HR = 0.74, p = 0.096 mPFS of PIK3CA mutation: 6.5 vs. 5.1; HR = 0.73, p = 0.268 mPFS of PIK3CA WT: 5.8 vs. 3.6; HR = 0.72, p = 0.23 ORR: 7.3% vs. 5%; p = 0.73 CBR: 19.5% vs. 35%; p = 0.19 | hyperglycemia, pneumonitis, diarrhea, and rash | [26] |
NCT01339442 (I) | ER+ mBC | buparlisib + fulvestrant | No significant response or duration of treatment in PIK3CA mutant group | fatigue, hyperglycemia, and rash | [27] |
NCT01219699 (Ib) | ER+ BC | alpelisib + fulvestrant | PIK3CA-altered vs. PIK3CA wild-type ORR: 29% vs. 0% mPFS: 9.1 [95% CI 6.6–14.6] vs. 4.7 [95% CI 1.9–5.6] | diarrhea, nausea, hyperglycemia, and rash | [28] |
NCT02379247 (I/II) | HER2− mBC | alpelisib + nab-paclitaxel | PIK3CA-altered vs. PIK3CA wild-type PFS: 11.9 vs. 7.5; HR = 0.44, p = 0.027 CBR: 100% vs. 68%; OR = 1.47, p = 0.013 mOS: 26.7 vs. 14.9; HR =0.59, p = 0.19 | hyperglycemia, neutropenia, diarrhea, and rash | [29] |
NCT03056755 (II) | HR+/HER2- ABC with PIK3CA-mutant | alpelisib + fulvestrant | In the primary endpoint, 6-month PFS: 54%, 95% CI 44–63 PFS: 7.3 months, 95% CI 5.6–8.3 mOS: 17.3 months, 95% CI 17.2–20.7 ORR: 17%; 95% CI 11–25 CBR: 45%, 95% CI 36–55 | rash, hyperglycemia, and diarrhea | [30] |
NCT02437318 (III) | HR+/HER2- ABC with PIK3CA-mutant | alpelisib + fulvestrant / placebo+ fulvestrant | Alpelisib group vs. placebo group mOS: 39.3 vs. 31.4; HR = 0.86, p = 0.15 Disease progression: 65.7% vs. 80.2% | rash, hyperglycemia | [31] |
NCT03767335 (Ib) | HER2+ ABC With PIK3CA-mutant | MEN1611 + trastuzumab / MEN1611 + trastuzumab + fulvestrant | MEN1611 + trastuzumab vs. MEN1611 + Trastuzumab + Fulvestrant PR: 36% vs. 28% Stable disease: 55% vs. 56% | diarrhea, nausea, asthenia, anemia, and hyperglycemia | [32] |
NCT02124148 (Ib) | mTNBC | samotolisib + prexasertib | In advanced or metastatic cancer with hotspot PIK3CA mutation, lobular breast carcinoma showed ORR of 13.3%. | vomiting, rash | [33] |
NCT04191499 (III) | HR+/HER2− mBC With PIK3CA-mutant | inavolisib + palbociclib + fulvestrant / placebo + palbociclib+ fulvestrant | Inavolisib group vs. placebo group PFS: 15 vs. 7.3 ORR: 58.4% vs. 25.0% Disease progression or death: HR = 0.43, p < 0.001 | neutropenia, hyperglycemia, rash, and diarrhea | [34] |
NCT04305496 (III) | HR+/HER2− mBC | capivasertib + fulvestrant / placebo + fulvestrant | Capivasertib group vs. placebo group PFS: 7.3 vs. 3.1; HR = 0.5, p < 0.001 Time to deterioration: 24.0 vs. 12.0; HR = 0.7, 95% CI 0.53–0.92 | rash, diarrhea, nausea, and hyperglycemia | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.-B.; Park, K.-S. The Effect and Treatment of PIK3CA Mutations in Breast Cancer: Current Understanding and Future Directions. Medicina 2025, 61, 518. https://doi.org/10.3390/medicina61030518
Cho Y-B, Park K-S. The Effect and Treatment of PIK3CA Mutations in Breast Cancer: Current Understanding and Future Directions. Medicina. 2025; 61(3):518. https://doi.org/10.3390/medicina61030518
Chicago/Turabian StyleCho, Young-Bin, and Kyoung-Sik Park. 2025. "The Effect and Treatment of PIK3CA Mutations in Breast Cancer: Current Understanding and Future Directions" Medicina 61, no. 3: 518. https://doi.org/10.3390/medicina61030518
APA StyleCho, Y.-B., & Park, K.-S. (2025). The Effect and Treatment of PIK3CA Mutations in Breast Cancer: Current Understanding and Future Directions. Medicina, 61(3), 518. https://doi.org/10.3390/medicina61030518