Pharmacological Monotherapy for Depressive Disorders: Current and Future—A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Current Available Antidepressants as Monotherapy
3.1.1. Monoamine-Based Antidepressants
Serotonin Reuptake Inhibitors and Related Medications
Serotonin Norepinephrine Reuptake Inhibitors
Dopamine Reuptake Inhibitor
Norepinephrine Reuptake Inhibitor
Serotonin, Norepinephrine, and Dopamine Reuptake Inhibitors
Atypical Antidepressants
Tricyclic Antidepressants
MAOI Antidepressants
Gepirone
3.1.2. Melatonergic Antidepressant
Agomelatine
3.1.3. Medicinal and Nutritional Supplemental Agents
St. John’s Wort
S-Adenosyl-L-Methionine and L-Methyl Folate
Omega-3 Fatty Acids
3.1.4. NMDA Receptor-Related Medications
Dextromethorphan and Bupropion Combination (AXS-05)
Intranasal Esketamine
Ketamine Infusion
3.1.5. Neurosteroid Antidepressants
Brexanolone in PPD
Zuranolone in PPD
Zuranolone for MDD
3.1.6. Opioid Receptor Antagonist
3.1.7. Anti-Inflammatory Drugs
3.2. Future Possible Monotherapy Antidepressants
3.2.1. Psychedelics
Psilocybin
Lysergic Acid Diethylamide (LSD)
5-Methoxy-N, N-dimethyltryptamine (5-MeO-DMT)
N, N-Dimethyltryptamine (DMT)
3,4-Methylenedioxymethamphetamine (MDMA)
3.2.2. Glutamate-Related Agents
NMDA Receptor Antagonists
AMPA Receptor Modulator
3.2.3. Opioid Receptor Antagonists
Aticaprant
3.2.4. Orexin Receptor Antagonist
Seltorexant
Filorexant and Suvorexant
3.2.5. Anti-Inflammatory Drugs
3.2.6. Biomarker-Based ANTIDEPRESSANT Therapy
ALTO-100
4. Discussion
4.1. Application of Currently Available Antidepressants
4.2. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-HT | 5-hydroxytryptamine |
5-MeO-DMT | 5-methoxy-N, N-dimethyltryptamine |
AEs | Adverse events |
AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
APA | American Psychological Association (2019) |
AXS-05 | Dextromethorphan and bupropion combination |
BDNF | Brain-derived neurotrophic factor |
CBT | Cognitive behavioral therapy |
CGI-I | Clinical Global Impressions Scale |
CANMAT | Canadian Network for Mood and Anxiety Treatments |
DHA | Docosahexaenoic acid |
DALYs | Disability-adjusted life years |
DMT | N, N-Dimethyltryptamine |
EPA | Eicosapentaenoic acid |
ER | Extended release |
GABA | Gamma-aminobutyric acid |
GAD | Generalized anxiety disorder |
HAM-A | Hamilton Anxiety Rating Scale |
HAMD-17 | Hamilton Depression Rating Scale—17 item |
HPA | Hypothalamus-pituitary-adrenal |
hs-CRP | High sensitivity C-reactive protein |
IDS-C | Inventory of Depressive Symptomatology—Clinician |
IL-1β | Interleukin-1β |
LSD | Lysergic Acid Diethylamide |
MADRS | Montgomery-Asberg Depression Rating Scale |
MAOIs | Monoamine oxidase inhibitors |
MAPS | Multidisciplinary Association for Psychedelic Studies |
MDD | Major depressive disorder |
MDE | Major depressive episode |
MDMA | Methylenedioxymethamphetamine |
NMDAR | N-methyl-D-aspartate receptor |
NTRMDD | Non-treatment-resistant major depressive disorder |
OR | Odds ratio |
PPD | Postpartum depression |
PHQ-9 | Patient Health Questionnaire-9 |
PTSD | Post-traumatic stress disorder |
rTMS | Repetitive transcranial magnetic stimulation |
REMS | Risk Evaluation and Mitigation Strategy |
SAT | Standard of care antidepressant therapy |
SAMe | S-Adenosyl-L-Methionine |
SGAs | Second-generation antidepressants |
SHAPS | Snaith–Hamilton Pleasure Scale |
SI | Suicidal ideation |
SMD | Standardized mean difference |
SNRIs | Serotonin–norepinephrine reuptake inhibitors |
SSRIs | Selective serotonin reuptake inhibitors |
STAR*D | Sequenced Treatment Alternatives to Relieve Depression |
TCAs | Tricyclic antidepressants |
T3 | Triiodothyronine |
TRD | Treatment-resistant depression |
US FDA | United States Food and Drug Administration |
VA/DOD | Veteran Administration/Department of Defense (2022) |
YLDs | Years lived with disability |
References
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, P.E.; Fournier, A.-A.; Sisitsky, T.; Pike, C.T.; Kessler, R.C. The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J. Clin. Psychiatry 2015, 76, 5356. [Google Scholar] [CrossRef]
- Greenberg, P.E.; Fournier, A.-A.; Sisitsky, T.; Simes, M.; Berman, R.; Koenigsberg, S.H.; Kessler, R.C. The economic burden of adults with major depressive disorder in the United States (2010 and 2018). Pharmacoeconomics 2021, 39, 653–665. [Google Scholar] [CrossRef]
- Gao, K. Mood Disorders. In Current Diagnosis & Treatment: Psychiatry, 4th ed.; Ebert, M.H., Martin, P.R., McVoy, M., Ronis, R.J., Weissman, S.H., Eds.; McGraw Hill: New York, NY, USA, 2024. [Google Scholar]
- Fava, M.; Rush, A.J.; Wisniewski, S.R.; Nierenberg, A.A.; Alpert, J.E.; McGrath, P.J.; Thase, M.E.; Warden, D.; Biggs, M.; Luther, J.F. A comparison of mirtazapine and nortriptyline following two consecutive failed medication treatments for depressed outpatients: A STAR* D report. Am. J. Psychiatry 2006, 163, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- McGrath, P.J.; Stewart, J.W.; Fava, M.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Thase, M.E.; Davis, L.; Biggs, M.M.; Shores-Wilson, K. Tranylcypromine versus venlafaxine plus mirtazapine following three failed antidepressant medication trials for depression: A STAR* D report. Am. J. Psychiatry 2006, 163, 1531–1541. [Google Scholar] [CrossRef]
- Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Stewart, J.W.; Nierenberg, A.A.; Thase, M.E.; Ritz, L.; Biggs, M.M.; Warden, D.; Luther, J.F.; et al. Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression. N. Engl. J. Med. 2006, 354, 1231–1242. [Google Scholar] [CrossRef]
- Trivedi, M.H.; Rush, A.J.; Wisniewski, S.R.; Nierenberg, A.A.; Warden, D.; Ritz, L.; Norquist, G.; Howland, R.H.; Lebowitz, B.; McGrath, P.J. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR* D: Implications for clinical practice. Am. J. Psychiatry 2006, 163, 28–40. [Google Scholar] [CrossRef]
- Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet 2018, 391, 1357–1366. [Google Scholar] [CrossRef]
- Gao, K. Lamotrigine. In The American Psychiatric Association Publishing Textbook of Psychopharmacology; APA Publishing: Washington, DC, USA, 2024. [Google Scholar]
- Gao, K. Lithium and Mood Stabilizers. In APA Textbook of Mood Disorders, 2nd ed.; APA Publishing: Washington, DC, USA, 2022. [Google Scholar]
- Zhou, S.; Li, P.; Lv, X.; Lai, X.; Liu, Z.; Zhou, J.; Liu, F.; Tao, Y.; Zhang, M.; Yu, X.; et al. Adverse effects of 21 antidepressants on sleep during acute-phase treatment in major depressive disorder: A systemic review and dose-effect network meta-analysis. Sleep 2023, 46, zsad177. [Google Scholar] [CrossRef]
- Zhou, S.; Li, P.; Lyu, X.; Lai, X.; Liu, Z.; Zhou, J.; Liu, F.; Tao, Y.; Zhang, M.; Yu, X.; et al. Efficacy and dose-response relationships of antidepressants in the acute treatment of major depressive disorders: A systematic review and network meta-analysis. Chin. Med. J. 2024. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Phillips, B.; O’Connor, C.; St. Onge, E. Gepirone: A New Extended-Release Oral Selective Serotonin Receptor Agonist for Major Depressive Disorder. J. Pharm. Technol. 2024, 40, 230–235. [Google Scholar] [CrossRef]
- DeBattista, C.; Schatzberg, A.F. The Black Book of Psychotropic Dosing and Monitoring. Psychopharmacol. Bull. 2024, 54, 8–59. [Google Scholar]
- Robinson, D.S.; Sitsen, J.A.; Gibertini, M. A review of the efficacy and tolerability of immediate-release and extended-release formulations of gepirone. Clin. Ther. 2003, 25, 1618–1633. [Google Scholar] [CrossRef]
- Wong, E.H.; Sonders, M.S.; Amara, S.G.; Tinholt, P.M.; Piercey, M.F.; Hoffmann, W.P.; Hyslop, D.K.; Franklin, S.; Porsolt, R.D.; Bonsignori, A.; et al. Reboxetine: A pharmacologically potent, selective, and specific norepinephrine reuptake inhibitor. Biol. Psychiatry 2000, 47, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Page, M.E. The promises and pitfalls of reboxetine. CNS Drug Rev. 2003, 9, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, W.; Sha, C.; Guo, W.; Li, C.; Zhao, F.; Wang, H.; Jiang, W.; Tian, J. Pharmacological Characterization of Toludesvenlafaxine as a Triple Reuptake Inhibitor. Front. Pharmacol. 2021, 12, 741794. [Google Scholar] [CrossRef]
- Mi, W.; Di, X.; Wang, Y.; Li, H.; Xu, X.; Li, L.; Wang, H.; Wang, G.; Zhang, K.; Tian, F.; et al. A phase 3, multicenter, double-blind, randomized, placebo-controlled clinical trial to verify the efficacy and safety of ansofaxine (LY03005) for major depressive disorder. Transl. Psychiatry 2023, 13, 163. [Google Scholar] [CrossRef]
- Mi, W.; Yang, F.; Li, H.; Xu, X.; Li, L.; Tan, Q.; Wang, G.; Zhang, K.; Tian, F.; Luo, J.; et al. Efficacy, Safety, and Tolerability of Ansofaxine (LY03005) Extended-Release Tablet for Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled, Dose-Finding, Phase 2 Clinical Trial. Int. J. Neuropsychopharmacol. 2022, 25, 252–260. [Google Scholar] [CrossRef]
- Aiken, C.; Malzberg, G. What You Need to Know About Gepirone (Exxua)|Benefits, Side Effects, and Review of Trials. Available online: https://www.thecarlatreport.com/blogs/1-the-carlat-psychiatry-blog/post/4831-what-you-need-to-know-about-gepirone-exxua-benefits-side-effects-and-review-of-trials (accessed on 2 February 2025).
- Naguy, A. Gepirone-the latest antidepressant on market state-of-the-art or run-of-the-mill? Asian J. Psychiatry 2024, 94, 103937. [Google Scholar] [CrossRef]
- Hengartner, M.P.; Plöderl, M. Estimates of the minimal important difference to evaluate the clinical significance of antidepressants in the acute treatment of moderate-to-severe depression. BMJ Evid. Based Med. 2022, 27, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Singh, V.; Kar, N. Efficacy of agomelatine in major depressive disorder: Meta-analysis and appraisal. Int. J. Neuropsychopharmacol. 2012, 15, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Koesters, M.; Guaiana, G.; Cipriani, A.; Becker, T.; Barbui, C. Agomelatine efficacy and acceptability revisited: Systematic review and meta-analysis of published and unpublished randomised trials. Br. J. Psychiatry J. Ment. Sci. 2013, 203, 179–187. [Google Scholar] [CrossRef]
- Huang, K.L.; Lu, W.C.; Wang, Y.Y.; Hu, G.C.; Lu, C.H.; Lee, W.Y.; Hsu, C.C. Comparison of agomelatine and selective serotonin reuptake inhibitors/serotonin-norepinephrine reuptake inhibitors in major depressive disorder: A meta-analysis of head-to-head randomized clinical trials. Aust. N. Z. J. Psychiatry 2014, 48, 663–671. [Google Scholar] [CrossRef]
- Pae, C.-U. Agomelatine: A new option for treatment of depression? Expert Opin. Pharmacother. 2014, 15, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Brown, W.A. Antidepressants versus placebo in major depression: An overview. World Psychiatry 2015, 14, 294–300. [Google Scholar] [CrossRef]
- Apaydin, E.A.; Maher, A.R.; Shanman, R.; Booth, M.S.; Miles, J.N.; Sorbero, M.E.; Hempel, S. A systematic review of St. John’s wort for major depressive disorder. Syst. Rev. 2016, 5, 148. [Google Scholar] [CrossRef]
- Ng, Q.X.; Venkatanarayanan, N.; Ho, C.Y. Clinical use of Hypericum perforatum (St John’s wort) in depression: A meta-analysis. J. Affect. Disord. 2017, 210, 211–221. [Google Scholar] [CrossRef]
- Papakostas, G.I.; Cassiello, C.F.; Iovieno, N. Folates and S-adenosylmethionine for major depressive disorder. Can. J. Psychiatry 2012, 57, 406–413. [Google Scholar] [CrossRef]
- Altaf, R.; Gonzalez, I.; Rubino, K.; Nemec, E.C., II. Folate as adjunct therapy to SSRI/SNRI for major depressive disorder: Systematic review & meta-analysis. Complement. Ther. Med. 2021, 61, 102770. [Google Scholar] [CrossRef]
- Cuomo, A.; Beccarini Crescenzi, B.; Bolognesi, S.; Goracci, A.; Koukouna, D.; Rossi, R.; Fagiolini, A. S-Adenosylmethionine (SAMe) in major depressive disorder (MDD): A clinician-oriented systematic review. Ann. Gen. Psychiatry 2020, 19, 50. [Google Scholar] [CrossRef]
- Galizia, I.; Oldani, L.; Macritchie, K.; Amari, E.; Dougall, D.; Jones, T.N.; Lam, R.W.; Massei, G.J.; Yatham, L.N.; Young, A.H. S-adenosyl methionine (SAMe) for depression in adults. Cochrane Database Syst. Rev. 2016, 10, CD011286. [Google Scholar] [CrossRef]
- Shelton, R.C.; Sloan Manning, J.; Barrentine, L.W.; Tipa, E.V. Assessing Effects of l-Methylfolate in Depression Management: Results of a Real-World Patient Experience Trial. Prim. Care Companion CNS Disord. 2013, 15, PCC.13m01520. [Google Scholar] [CrossRef]
- Appleton, K.M.; Voyias, P.D.; Sallis, H.M.; Dawson, S.; Ness, A.R.; Churchill, R.; Perry, R. Omega-3 fatty acids for depression in adults. Cochrane Database Syst. Rev. 2021, 11, Cd004692. [Google Scholar] [CrossRef]
- Liao, Y.; Xie, B.; Zhang, H.; He, Q.; Guo, L.; Subramanieapillai, M.; Fan, B.; Lu, C.; McIntyre, R.S. Efficacy of omega-3 PUFAs in depression: A meta-analysis. Transl. Psychiatry 2019, 9, 190. [Google Scholar] [CrossRef]
- Galeotti, N. Hypericum perforatum (St John’s wort) beyond depression: A therapeutic perspective for pain conditions. J. Ethnopharmacol. 2017, 200, 136–146. [Google Scholar] [CrossRef]
- Kholghi, G.; Arjmandi-Rad, S.; Zarrindast, M.-R.; Vaseghi, S. St. John’s wort (Hypericum perforatum) and depression: What happens to the neurotransmitter systems? Naunyn-Schmiedeberg’s Arch. Pharmacol. 2022, 395, 629–642. [Google Scholar] [CrossRef]
- Aghajani, R.; Naderi, N.; Sadeghi, N.; Ani, M.; Ani, S.; Nasr-Esfahani, M.H. Distribution of Plasma One-Carbon Metabolism Factors and Amino Acids Profile in Depression State Treated with Paroxetine: A Model Study. Cell J. 2023, 25, 165. [Google Scholar] [CrossRef]
- Zhou, L.; Xiong, J.-Y.; Chai, Y.-Q.; Huang, L.; Tang, Z.-Y.; Zhang, X.-F.; Liu, B.; Zhang, J.-T. Possible antidepressant mechanisms of omega-3 polyunsaturated fatty acids acting on the central nervous system. Front. Psychiatry 2022, 13, 933704. [Google Scholar] [CrossRef]
- Tabuteau, H.; Jones, A.; Anderson, A.; Jacobson, M.; Iosifescu, D.V. Effect of AXS-05 (Dextromethorphan-Bupropion) in Major Depressive Disorder: A Randomized Double-Blind Controlled Trial. Am. J. Psychiatry 2022, 179, 490–499. [Google Scholar] [CrossRef]
- Iosifescu, D.V.; Jones, A.; O’Gorman, C.; Streicher, C.; Feliz, S.; Fava, M.; Tabuteau, H. Efficacy and Safety of AXS-05 (Dextromethorphan-Bupropion) in Patients With Major Depressive Disorder: A Phase 3 Randomized Clinical Trial (GEMINI). J. Clin. Psychiatry 2022, 83, 21m14345. [Google Scholar] [CrossRef]
- Zheng, W.; Cai, D.B.; Xiang, Y.Q.; Zheng, W.; Jiang, W.L.; Sim, K.; Ungvari, G.S.; Huang, X.; Huang, X.X.; Ning, Y.P.; et al. Adjunctive intranasal esketamine for major depressive disorder: A systematic review of randomized double-blind controlled-placebo studies. J. Affect. Disord. 2020, 265, 63–70. [Google Scholar] [CrossRef]
- Oraee, S.; Alinejadfard, M.; Golsorkh, H.; Sadeghian, M.; Fanaei, M.; Centis, R.; D’Ambrosio, L.; Sotgiu, G.; Goudarzi, H.; Migliori, G.B.; et al. Intranasal esketamine for patients with major depressive disorder: A systematic review and meta-analysis. J. Psychiatr. Res. 2024, 180, 371–379. [Google Scholar] [CrossRef]
- Wang, S.M.; Kim, N.Y.; Na, H.R.; Lim, H.K.; Woo, Y.S.; Pae, C.U.; Bahk, W.M. Rapid Onset of Intranasal Esketamine in Patients with Treatment Resistant Depression and Major Depression with Suicide Ideation: A Meta-Analysis. Clin. Psychopharmacol. Neurosci. 2021, 19, 341–354. [Google Scholar] [CrossRef]
- Fountoulakis, K.N.; Saitis, A.; Schatzberg, A.F. Esketamine Treatment for Depression in Adults: A PRISMA Systematic Review and Meta-Analysis. Am. J. Psychiatry 2025, 182, 259–275. [Google Scholar] [CrossRef]
- Fedgchin, M.; Trivedi, M.; Daly, E.J.; Melkote, R.; Lane, R.; Lim, P.; Vitagliano, D.; Blier, P.; Fava, M.; Liebowitz, M.; et al. Efficacy and Safety of Fixed-Dose Esketamine Nasal Spray Combined With a New Oral Antidepressant in Treatment-Resistant Depression: Results of a Randomized, Double-Blind, Active-Controlled Study (TRANSFORM-1). Int. J. Neuropsychopharmacol. 2019, 22, 616–630. [Google Scholar] [CrossRef]
- Popova, V.; Daly, E.J.; Trivedi, M.; Cooper, K.; Lane, R.; Lim, P.; Mazzucco, C.; Hough, D.; Thase, M.E.; Shelton, R.C.; et al. Efficacy and Safety of Flexibly Dosed Esketamine Nasal Spray Combined With a Newly Initiated Oral Antidepressant in Treatment-Resistant Depression: A Randomized Double-Blind Active-Controlled Study. Am. J. Psychiatry 2019, 176, 428–438. [Google Scholar] [CrossRef]
- Ochs-Ross, R.; Daly, E.J.; Zhang, Y.; Lane, R.; Lim, P.; Morrison, R.L.; Hough, D.; Manji, H.; Drevets, W.C.; Sanacora, G.; et al. Efficacy and Safety of Esketamine Nasal Spray Plus an Oral Antidepressant in Elderly Patients With Treatment-Resistant Depression-TRANSFORM-3. Am. J. Geriatr. Psychiatry 2020, 28, 121–141. [Google Scholar] [CrossRef]
- Daly, E.J.; Trivedi, M.H.; Janik, A.; Li, H.; Zhang, Y.; Li, X.; Lane, R.; Lim, P.; Duca, A.R.; Hough, D. Efficacy of esketamine nasal spray plus oral antidepressant treatment for relapse prevention in patients with treatment-resistant depression: A randomized clinical trial. JAMA Psychiatry 2019, 76, 893–903. [Google Scholar] [CrossRef]
- Nct. A Study of Esketamine Nasal Spray, Administered as Monotherapy, in Adult Participants with Treatment-Resistant Depression. Available online: https://www.jnj.com/media-center/press-releases/spravato-esketamine-approved-in-the-u-s-as-the-first-and-only-monotherapy-for-adults-with-treatment-resistant-depression (accessed on 18 March 2025).
- Fu, D.J.; Ionescu, D.F.; Li, X.; Lane, R.; Lim, P.; Sanacora, G.; Hough, D.; Manji, H.; Drevets, W.C.; Canuso, C.M. Esketamine Nasal Spray for Rapid Reduction of Major Depressive Disorder Symptoms in Patients Who Have Active Suicidal Ideation with Intent: Double-Blind, Randomized Study (ASPIRE I). J. Clin. Psychiatry 2020, 81, 19m13191. [Google Scholar] [CrossRef]
- Ionescu, D.F.; Fu, D.J.; Qiu, X.; Lane, R.; Lim, P.; Kasper, S.; Hough, D.; Drevets, W.C.; Manji, H.; Canuso, C.M. Esketamine Nasal Spray for Rapid Reduction of Depressive Symptoms in Patients With Major Depressive Disorder Who Have Active Suicide Ideation With Intent: Results of a Phase 3, Double-Blind, Randomized Study (ASPIRE II). Int. J. Neuropsychopharmacol. 2021, 24, 22–31. [Google Scholar] [CrossRef]
- Zarate, C.A., Jr.; Singh, J.B.; Carlson, P.J.; Brutsche, N.E.; Ameli, R.; Luckenbaugh, D.A.; Charney, D.S.; Manji, H.K. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 2006, 63, 856–864. [Google Scholar] [CrossRef]
- Murrough, J.W.; Iosifescu, D.V.; Chang, L.C.; Al Jurdi, R.K.; Green, C.E.; Perez, A.M.; Iqbal, S.; Pillemer, S.; Foulkes, A.; Shah, A. Antidepressant efficacy of ketamine in treatment-resistant major depression: A two-site randomized controlled trial. Am. J. Psychiatry 2013, 170, 1134–1142. [Google Scholar] [CrossRef]
- Phillips, J.L.; Norris, S.; Talbot, J.; Birmingham, M.; Hatchard, T.; Ortiz, A.; Owoeye, O.; Batten, L.A.; Blier, P. Single, repeated, and maintenance ketamine infusions for treatment-resistant depression: A randomized controlled trial. Am. J. Psychiatry 2019, 176, 401–409. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Jain, R. Glutamatergic modulators for major depression from theory to clinical use. CNS Drugs 2024, 38, 869–890. [Google Scholar] [CrossRef]
- Stahl, S.M.; De Martin, S.; Mattarei, A.; Bettini, E.; Pani, L.; Guidetti, C.; Folli, F.; de Somer, M.; Traversa, S.; Inturrisi, C.E. Esmethadone (REL-1017) and other uncompetitive NMDAR channel blockers may improve mood disorders via modulation of synaptic kinase-mediated signaling. Int. J. Mol. Sci. 2022, 23, 12196. [Google Scholar] [CrossRef]
- Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 2000, 47, 351–354. [Google Scholar] [CrossRef]
- Harding, L. Regulating ketamine use in psychiatry. J. Am. Acad. Psychiatry Law 2023, 51, 320–325. [Google Scholar]
- Kanes, S.; Colquhoun, H.; Gunduz-Bruce, H.; Raines, S.; Arnold, R.; Schacterle, A.; Doherty, J.; Epperson, C.N.; Deligiannidis, K.M.; Riesenberg, R.; et al. Brexanolone (SAGE-547 injection) in post-partum depression: A randomised controlled trial. Lancet 2017, 390, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Meltzer-Brody, S.; Colquhoun, H.; Riesenberg, R.; Epperson, C.N.; Deligiannidis, K.M.; Rubinow, D.R.; Li, H.; Sankoh, A.J.; Clemson, C.; Schacterle, A.; et al. Brexanolone injection in post-partum depression: Two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet 2018, 392, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
- Deligiannidis, K.M.; Meltzer-Brody, S.; Gunduz-Bruce, H.; Doherty, J.; Jonas, J.; Li, S.; Sankoh, A.J.; Silber, C.; Campbell, A.D.; Werneburg, B.; et al. Effect of Zuranolone vs Placebo in Postpartum Depression: A Randomized Clinical Trial. JAMA Psychiatry 2021, 78, 951–959. [Google Scholar] [CrossRef]
- Deligiannidis, K.M.; Meltzer-Brody, S.; Maximos, B.; Peeper, E.Q.; Freeman, M.; Lasser, R.; Bullock, A.; Kotecha, M.; Li, S.; Forrestal, F.; et al. Zuranolone for the Treatment of Postpartum Depression. Am. J. Psychiatry 2023, 180, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Clayton, A.H.; Lasser, R.; Nandy, I.; Sankoh, A.J.; Jonas, J.; Kanes, S.J. Zuranolone in major depressive disorder: Results from MOUNTAIN—A phase 3, multicenter, double-blind, randomized, placebo-controlled trial. J. Clin. Psychiatry 2023, 84, 45750. [Google Scholar] [CrossRef] [PubMed]
- Clayton, A.H.; Lasser, R.; Parikh, S.V.; Iosifescu, D.V.; Jung, J.; Kotecha, M.; Forrestal, F.; Jonas, J.; Kanes, S.J.; Doherty, J. Zuranolone for the treatment of adults with major depressive disorder: A randomized, placebo-controlled phase 3 trial. Am. J. Psychiatry 2023, 180, 676–684. [Google Scholar] [CrossRef]
- Cutler, A.J.; Mattingly, G.W.; Kornstein, S.G.; Aaronson, S.T.; Lasser, R.; Zhang, H.; Rana, N.; Brown, C.; Levin, S.; Miller, C. Long-term safety and efficacy of initial and repeat treatment courses with zuranolone in adult patients with major depressive disorder: Interim results from the open-label, phase 3 SHORELINE study. J. Clin. Psychiatry 2023, 85, 50879. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.V.; Aaronson, S.T.; Mathew, S.J.; Alva, G.; DeBattista, C.; Kanes, S.; Lasser, R.; Bullock, A.; Kotecha, M.; Jung, J. Efficacy and safety of zuranolone co-initiated with an antidepressant in adults with major depressive disorder: Results from the phase 3 CORAL study. Neuropsychopharmacology 2024, 49, 467–475. [Google Scholar] [CrossRef]
- Gunduz-Bruce, H.; Takahashi, K.; Huang, M.Y. Development of neuroactive steroids for the treatment of postpartum depression. J. Neuroendocrinol. 2022, 34, e13019. [Google Scholar] [CrossRef]
- Gunduz-Bruce, H.; Silber, C.; Kaul, I.; Rothschild, A.J.; Riesenberg, R.; Sankoh, A.J.; Li, H.; Lasser, R.; Zorumski, C.F.; Rubinow, D.R.; et al. Trial of SAGE-217 in Patients with Major Depressive Disorder. N. Engl. J. Med. 2019, 381, 903–911. [Google Scholar] [CrossRef]
- Fava, M.; Memisoglu, A.; Thase, M.E.; Bodkin, J.A.; Trivedi, M.H.; Somer, M.d.; Du, Y.; Leigh-Pemberton, R.; DiPetrillo, L.; Silverman, B.; et al. Opioid Modulation With Buprenorphine/Samidorphan as Adjunctive Treatment for Inadequate Response to Antidepressants: A Randomized Double-Blind Placebo-Controlled Trial. Am. J. Psychiatry 2016, 173, 499–508. [Google Scholar] [CrossRef]
- Fava, M.; Thase, M.E.; Trivedi, M.H.; Ehrich, E.; Martin, W.F.; Memisoglu, A.; Nangia, N.; Stanford, A.D.; Yu, M.; Pathak, S. Opioid system modulation with buprenorphine/samidorphan combination for major depressive disorder: Two randomized controlled studies. Mol. Psychiatry 2020, 25, 1580–1591. [Google Scholar] [CrossRef]
- Zajecka, J.M.; Stanford, A.D.; Memisoglu, A.; Martin, W.F.; Pathak, S. Buprenorphine/samidorphan combination for the adjunctive treatment of major depressive disorder: Results of a phase III clinical trial (FORWARD-3). Neuropsychiatr. Dis. Treat. 2019, 15, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Jelen, L.A.; Stone, J.M.; Young, A.H.; Mehta, M.A. The opioid system in depression. Neurosci. Biobehav. Rev. 2022, 140, 104800. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Dou, Y.; Wang, M.; Wang, Y.; Yan, Y.; Fan, H.; Fan, N.; Yang, X.; Ma, X. Efficacy and acceptability of anti-inflammatory agents in major depressive disorder: A systematic review and meta-analysis. Front. Psychiatry 2024, 15, 1407529. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zou, Z.; Chen, B. Efficacy of Minocycline in Depression: A Systematic Review and Meta-analysis. Clin. Neuropharmacol. 2024, 48, 1–6. [Google Scholar] [CrossRef]
- Gędek, A.; Szular, Z.; Antosik, A.Z.; Mierzejewski, P.; Dominiak, M. Celecoxib for Mood Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2023, 12, 3497. [Google Scholar] [CrossRef]
- Hang, X.; Zhang, Y.; Li, J.; Li, Z.; Zhang, Y.; Ye, X.; Tang, Q.; Sun, W. Comparative efficacy and acceptability of anti-inflammatory agents on major depressive disorder: A network meta-analysis. Front. Pharmacol. 2021, 12, 691200. [Google Scholar] [CrossRef]
- Kouba, B.R.; de Araujo Borba, L.; Borges de Souza, P.; Gil-Mohapel, J.; Rodrigues, A.L.S. Role of inflammatory mechanisms in major depressive disorder: From etiology to potential pharmacological targets. Cells 2024, 13, 423. [Google Scholar] [CrossRef]
- Foley, É.M.; Parkinson, J.T.; Kappelmann, N.; Khandaker, G.M. Clinical phenotypes of depressed patients with evidence of inflammation and somatic symptoms. Compr. Psychoneuroendocrinology 2021, 8, 100079. [Google Scholar] [CrossRef]
- Kopschina Feltes, P.; Doorduin, J.; Klein, H.C.; Juárez-Orozco, L.E.; Dierckx, R.A.; Moriguchi-Jeckel, C.M.; de Vries, E.F. Anti-inflammatory treatment for major depressive disorder: Implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. J. Psychopharmacol. 2017, 31, 1149–1165. [Google Scholar] [CrossRef]
- Ansari, S.; Sanjari Moghaddam, H.; Basti, F.A.; Salehi, M.; Akhondzadeh, S. Efficacy and safety of celecoxib monotherapy for treatment of moderate depressive symptoms following COVID-19 infection: A randomized, double-blind, placebo-controlled trial. J. Psychosom. Res. 2023, 174, 111471. [Google Scholar] [CrossRef]
- Alamdarsaravi, M.; Ghajar, A.; Noorbala, A.A.; Arbabi, M.; Emami, A.; Shahei, F.; Mirzania, M.; Jafarinia, M.; Afarideh, M.; Akhondzadeh, S. Efficacy and safety of celecoxib monotherapy for mild to moderate depression in patients with colorectal cancer: A randomized double-blind, placebo controlled trial. Psychiatry Res. 2017, 255, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, H.; Yonezawa, K.; Tani, H.; Mimura, M.; Bauer, M.; Uchida, H. Novel antidepressants in the pipeline (phase II and III): A systematic review of the US clinical trials registry. Pharmacopsychiatry 2022, 55, 193–202. [Google Scholar] [CrossRef]
- Reiff, C.M.; Richman, E.E.; Nemeroff, C.B.; Carpenter, L.L.; Widge, A.S.; Rodriguez, C.I.; Kalin, N.H.; McDonald, W.M. Psychedelics and Psychedelic-Assisted Psychotherapy. Am. J. Psychiatry 2020, 177, 391–410. [Google Scholar] [CrossRef]
- Fonzo, G.A.; Wolfgang, A.S.; Barksdale, B.R.; Krystal, J.H.; Carpenter, L.L.; Kraguljac, N.V.; Grzenda, A.; McDonald, W.M.; Widge, A.S.; Rodriguez, C.I. Psilocybin: From psychiatric pariah to perceived panacea. Am. J. Psychiatry 2025, 182, 54–78. [Google Scholar] [CrossRef] [PubMed]
- Carhart-Harris, R.; Giribaldi, B.; Watts, R.; Baker-Jones, M.; Murphy-Beiner, A.; Murphy, R.; Martell, J.; Blemings, A.; Erritzoe, D.; Nutt, D.J. Trial of psilocybin versus escitalopram for depression. N. Engl. J. Med. 2021, 384, 1402–1411. [Google Scholar] [CrossRef]
- Goodwin, G.M.; Aaronson, S.T.; Alvarez, O.; Arden, P.C.; Baker, A.; Bennett, J.C.; Bird, C.; Blom, R.E.; Brennan, C.; Brusch, D.; et al. Single-Dose Psilocybin for a Treatment-Resistant Episode of Major Depression. N. Engl. J. Med. 2022, 387, 1637–1648. [Google Scholar] [CrossRef]
- von Rotz, R.; Schindowski, E.M.; Jungwirth, J.; Schuldt, A.; Rieser, N.M.; Zahoranszky, K.; Seifritz, E.; Nowak, A.; Nowak, P.; Jäncke, L.; et al. Single-dose psilocybin-assisted therapy in major depressive disorder: A placebo-controlled, double-blind, randomised clinical trial. EClinicalMedicine 2023, 56, 101809. [Google Scholar] [CrossRef]
- Back, A.L.; Freeman-Young, T.K.; Morgan, L.; Sethi, T.; Baker, K.K.; Myers, S.; McGregor, B.A.; Harvey, K.; Tai, M.; Kollefrath, A. Psilocybin therapy for clinicians with symptoms of depression from frontline care during the COVID-19 pandemic: A randomized clinical trial. JAMA Netw. Open 2024, 7, e2449026. [Google Scholar] [CrossRef] [PubMed]
- Metaxa, A.-M.; Clarke, M. Efficacy of psilocybin for treating symptoms of depression: Systematic review and meta-analysis. BMJ (Clin. Res. Ed.) 2024, 385, e078084. [Google Scholar] [CrossRef]
- Perez, N.; Langlest, F.; Mallet, L.; De Pieri, M.; Sentissi, O.; Thorens, G.; Seragnoli, F.; Zullino, D.; Kirschner, M.; Kaiser, S. Psilocybin-assisted therapy for depression: A systematic review and dose-response meta-analysis of human studies. Eur. Neuropsychopharmacol. 2023, 76, 61–76. [Google Scholar] [CrossRef]
- Haikazian, S.; Chen-Li, D.C.; Johnson, D.E.; Fancy, F.; Levinta, A.; Husain, M.I.; Mansur, R.B.; McIntyre, R.S.; Rosenblat, J.D. Psilocybin-assisted therapy for depression: A systematic review and meta-analysis. Psychiatry Res. 2023, 329, 115531. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Yang, X.; Zhang, W. Efficacy and acceptability of psilocybin for primary or secondary depression: A systematic review and meta-analysis of randomized controlled trials. Front. Psychiatry 2024, 15, 1359088. [Google Scholar] [CrossRef] [PubMed]
- Aaronson, S.T.; Vaart, A.v.d.; Miller, T.; LaPratt, J.; Swartz, K.; Shoultz, A.; Lauterbach, M.; Suppes, T.; Sackeim, H.A. Single-Dose Psilocybin for Depression With Severe Treatment Resistance: An Open-Label Trial. Am. J. Psychiatry 2025, 182, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Donegan, C.J.; Daldegan-Bueno, D.; Sumner, R.; Menkes, D.; Evans, W.; Hoeh, N.; Sundram, F.; Reynolds, L.; Ponton, R.; Cavadino, A. An open-label pilot trial assessing tolerability and feasibility of LSD microdosing in patients with major depressive disorder (LSDDEP1). Pilot Feasibility Stud. 2023, 9, 169. [Google Scholar] [CrossRef]
- Fuentes, J.J.; Fonseca, F.; Elices, M.; Farré, M.; Torrens, M. Therapeutic use of LSD in psychiatry: A systematic review of randomized-controlled clinical trials. Front. Psychiatry 2020, 10, 943. [Google Scholar] [CrossRef]
- van der Meer, P.B.; Fuentes, J.J.; Kaptein, A.A.; Schoones, J.W.; de Waal, M.M.; Goudriaan, A.E.; Kramers, K.; Schellekens, A.; Somers, M.; Bossong, M.G.; et al. Therapeutic effect of psilocybin in addiction: A systematic review. Front. Psychiatry 2023, 14, 1134454. [Google Scholar] [CrossRef]
- Hippensteele, A. LSD D-Tartrate Receives Breakthrough Therapy Designation from FDA for Generalized Anxiety Disorder. Available online: https://www.pharmacytimes.com/view/lsd-d-tartrate-receives-breakthrough-therapy-designation-from-fda-for-generalized-anxiety-disorder (accessed on 28 December 2024).
- Wells, A.; Muthukumaraswamy, A.P.S.; Morunga, E.; Evans, W.; Cavadino, A.; Bansal, M.; Lawrence, N.J.; Ashley, A.; Hoeh, N.R.; Sundram, F.; et al. PAM trial protocol: A randomised feasibility study of psychedelic microdosing-assisted meaning-centred psychotherapy in advanced stage cancer patients. Pilot Feasibility Stud. 2024, 10, 29. [Google Scholar] [CrossRef]
- Daldegan-Bueno, D.; Donegan, C.J.; Forsyth, A.; Sumner, R.L.; Murphy, R.J.; Menkes, D.B.; Evans, W.; Hoeh, N.; Sundram, F.; Reynolds, L.M.; et al. LSDDEP2: Study protocol for a randomised, double-dummy, triple-blind, active placebo-controlled, parallel groups trial of LSD microdosing in patients with major depressive disorder. Trials 2024, 25, 560. [Google Scholar] [CrossRef]
- Reckweg, J.T.; Uthaug, M.V.; Szabo, A.; Davis, A.K.; Lancelotta, R.; Mason, N.L.; Ramaekers, J.G. The clinical pharmacology and potential therapeutic applications of 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT). J. Neurochem. 2022, 162, 128–146. [Google Scholar] [CrossRef]
- Ramaekers, J.G.; Reckweg, J.T.; Mason, N.L. Benefits and challenges of ultra-fast, short-acting psychedelics in the treatment of depression. Am. J. Psychiatry 2025, 182, 33–46. [Google Scholar] [CrossRef]
- Davis, A.K.; So, S.; Lancelotta, R.; Barsuglia, J.P.; Griffiths, R.R. 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) used in a naturalistic group setting is associated with unintended improvements in depression and anxiety. Am. J. Drug Alcohol. Abus. 2019, 45, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Reckweg, J.T.; van Leeuwen, C.J.; Henquet, C.; van Amelsvoort, T.; Theunissen, E.L.; Mason, N.L.; Paci, R.; Terwey, T.H.; Ramaekers, J.G. A phase 1/2 trial to assess safety and efficacy of a vaporized 5-methoxy-N,N-dimethyltryptamine formulation (GH001) in patients with treatment-resistant depression. Front. Psychiatry 2023, 14, 1133414. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Phase 2 Clinical Trial of GH001 in Postpartum Depression. Available online: https://clinicaltrials.gov/study/NCT05804708 (accessed on 28 December 2024).
- Duerr, H.A. Positive Results in Phase 2b Trial of Psychedelic Agent GH001 for Treatment-Resistant Depression. Available online: https://www.psychiatrictimes.com/view/positive-results-in-phase-2b-trial-of-psychedelic-agent-gh001-for-treatment-resistant-depression (accessed on 28 December 2024).
- Carbonaro, T.M.; Gatch, M.B. Neuropharmacology of N,N-dimethyltryptamine. Brain Res. Bull. 2016, 126, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Falchi-Carvalho, M.; Barros, H.; Bolcont, R.; Laborde, S.; Wießner, I.; Silva, S.R.B.; Montanini, D.; Barbosa, D.C.; Teixeira, E.; Florence-Vilela, R.; et al. The antidepressant effects of vaporized N,N-Dimethyltryptamine: A preliminary report in treatment-resistant depression. medRxiv 2024. [Google Scholar] [CrossRef]
- D’Souza, D.C.; Syed, S.A.; Flynn, L.T.; Safi-Aghdam, H.; Cozzi, N.V.; Ranganathan, M. Exploratory study of the dose-related safety, tolerability, and efficacy of dimethyltryptamine (DMT) in healthy volunteers and major depressive disorder. Neuropsychopharmacology 2022, 47, 1854–1862. [Google Scholar] [CrossRef]
- James, E.; Erritzoe, D.; Benway, T.; Joel, Z.; Timmermann, C.; Good, M.; Agnorelli, C.; Weiss, B.M.; Barba, T.; Campbell, G.; et al. Safety, tolerability, pharmacodynamic and wellbeing effects of SPL026 (dimethyltryptamine fumarate) in healthy participants: A randomized, placebo-controlled phase 1 trial. Front. Psychiatry 2023, 14, 1305796. [Google Scholar] [CrossRef] [PubMed]
- Eckford, C. Major Study on DMT Shows Promise for Depression. Available online: https://www.europeanpharmaceuticalreview.com/news/178880/major-study-on-dmt-shows-promise-for-depression (accessed on 28 December 2024).
- Isrctn. Safety, Tolerability, Pharmacokinetics, Pharmacodynamics and Exploratory Efficacy of Intravenous dosing of SPL026 Drug Product (N, N-Dimethyltryptamine Fumarate; DMT Fumarate [A Serotonergic Psychedelic]) Alone or in Combination with Selective Serotonin Reuptake Inhibitors in Patients with Major Depressive Disorder; ISRCTN Registry: London, UK, 2023. [Google Scholar] [CrossRef]
- Siegel, A.N.; Meshkat, S.; Benitah, K.; Lipsitz, O.; Gill, H.; Lui, L.M.W.; Teopiz, K.M.; McIntyre, R.S.; Rosenblat, J.D. Registered clinical studies investigating psychedelic drugs for psychiatric disorders. J. Psychiatr. Res. 2021, 139, 71–81. [Google Scholar] [CrossRef]
- Feduccia, A.A.; Jerome, L.; Yazar-Klosinski, B.; Emerson, A.; Mithoefer, M.C.; Doblin, R. Breakthrough for Trauma Treatment: Safety and Efficacy of MDMA-Assisted Psychotherapy Compared to Paroxetine and Sertraline. Front. Psychiatry 2019, 10, 650. [Google Scholar] [CrossRef]
- Mitchell, J.M.; Ot’alora, G.M.; van der Kolk, B.; Shannon, S.; Bogenschutz, M.; Gelfand, Y.; Paleos, C.; Nicholas, C.R.; Quevedo, S.; Balliett, B.; et al. MDMA-assisted therapy for moderate to severe PTSD: A randomized, placebo-controlled phase 3 trial. Nat. Med. 2023, 29, 2473–2480. [Google Scholar] [CrossRef]
- Wolfgang, A.S.; Fonzo, G.A.; Gray, J.C.; Krystal, J.H.; Grzenda, A.; Widge, A.S.; Kraguljac, N.V.; McDonald, W.M.; Rodriguez, C.I.; Nemeroff, C.B. MDMA and MDMA-assisted therapy. Am. J. Psychiatry 2025, 182, 79–103. [Google Scholar] [CrossRef]
- Fava, M.; Stahl, S.M.; De Martin, S.; Mattarei, A.; Bettini, E.; Comai, S.; Alimonti, A.; Bifari, F.; Pani, L.; Folli, F.; et al. Esmethadone-HCl (REL-1017): A promising rapid antidepressant. Eur. Arch. Psychiatry Clin. Neurosci. 2023, 273, 1463–1476. [Google Scholar] [CrossRef]
- Fava, M.; Stahl, S.; Pani, L.; Martin, S.D.; Pappagallo, M.; Guidetti, C.; Alimonti, A.; Bettini, E.; Mangano, R.M.; Wessel, T.; et al. REL-1017 (Esmethadone) as Adjunctive Treatment in Patients With Major Depressive Disorder: A Phase 2a Randomized Double-Blind Trial. Am. J. Psychiatry 2022, 179, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Fava, M.; Stahl, S.M.; Pani, L.; De Martin, S.; Cutler, A.J.; Maletic, V.; Gorodetzky, C.W.; Vocci, F.J.; Sapienza, F.L.; Kosten, T.R.; et al. Efficacy and Safety of Esmethadone (REL-1017) in Patients With Major Depressive Disorder and Inadequate Response to Standard Antidepressants: A Phase 3 Randomized Controlled Trial. J. Clin. Psychiatry 2024, 85, 55623. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, N.; Yang, C.; Li, X.M.; Zhou, Z.Q.; Yang, J.J. Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur. Psychiatry J. Assoc. Eur. Psychiatr. 2014, 29, 419–423. [Google Scholar] [CrossRef]
- Aleksandrova, L.R.; Phillips, A.G.; Wang, Y.T. Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism. J. Psychiatry Neurosci. 2017, 42, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Kunugi, A.; Tajima, Y.; Suzuki, N.; Suzuki, M.; Toyofuku, M.; Kuno, H.; Sogabe, S.; Kosugi, Y.; Awasaki, Y. Strictly regulated agonist-dependent activation of AMPA-R is the key characteristic of TAK-653 for robust synaptic responses and cognitive improvement. Sci. Rep. 2021, 11, 14532. [Google Scholar] [CrossRef]
- Hara, H.; Suzuki, A.; Kunugi, A.; Tajima, Y.; Yamada, R.; Kimura, H. TAK-653, an AMPA receptor potentiator with minimal agonistic activity, produces an antidepressant-like effect with a favorable safety profile in rats. Pharmacol. Biochem. Behav. 2021, 211, 173289. [Google Scholar] [CrossRef] [PubMed]
- Kutz, L. Positive Phase 2 Data for NBI-1065845 in Adults With Major Depressive Disorder. Available online: https://www.psychiatrictimes.com/view/positive-phase-2-data-for-nbi-1065845-in-adults-with-major-depressive-disorder (accessed on 29 December 2024).
- ClinicalTrials.gov. Study to Assess the Efficacy and Safety of NBI-1065845 as an Adjunctive Treatment in Participants with Major Depressive Disorder (MDD). 2024. Available online: https://ctv.veeva.com/study/study-to-assess-the-efficacy-and-safety-of-nbi-1065845-as-an-adjunctive-treatment-in-participants-wi (accessed on 29 December 2024).
- Krystal, A.D.; Pizzagalli, D.A.; Smoski, M.; Mathew, S.J.; Nurnberger, J., Jr.; Lisanby, S.H.; Iosifescu, D.; Murrough, J.W.; Yang, H.; Weiner, R.D.; et al. A randomized proof-of-mechanism trial applying the ’fast-fail’ approach to evaluating κ-opioid antagonism as a treatment for anhedonia. Nat. Med. 2020, 26, 760–768. [Google Scholar] [CrossRef]
- Schmidt, M.E.; Kezic, I.; Popova, V.; Melkote, R.; Van Der Ark, P.; Pemberton, D.J.; Mareels, G.; Canuso, C.M.; Fava, M.; Drevets, W.C. Efficacy and safety of aticaprant, a kappa receptor antagonist, adjunctive to oral SSRI/SNRI antidepressant in major depressive disorder: Results of a phase 2 randomized, double-blind, placebo-controlled study. Neuropsychopharmacology 2024, 49, 1437–1447. [Google Scholar] [CrossRef]
- Wong, S.; Le, G.H.; Vasudeva, S.; Teopiz, K.M.; Phan, L.; Meshkat, S.; Kwan, A.T.H.; Rhee, T.G.; Ho, R.; Choi, H.; et al. Preclinical and clinical efficacy of kappa opioid receptor antagonists for depression: A systematic review. J. Affect. Disord. 2024, 362, 816–827. [Google Scholar] [CrossRef]
- Mathew, S.; Cutler, A.J.; Visitacion, N.C.; Gold, M.; Yuan, J.; Aurora, B. Navacaprant (NMRA-140), A Novel and Highly Selective Kappa Opioid Receptor Antagonist, in Patients With Major Depressive Disorder: A Randomized Placebo-Controlled Phase 2 Trial. In Proceedings of the 62nd Annual Meeting of the American College of Neuropsychopharmacology, Tampa, FL, USA, 3–6 December 2023; pp. 204–205. [Google Scholar]
- Kuntz, L. Navacaprant for Major Depressive Disorder Fails in Late-Stage Study. Available online: https://www.psychiatrictimes.com/view/navacaprant-for-major-depressive-disorder-fails-in-late-stage-study (accessed on 29 December 2024).
- Khurshid, K.A. Comorbid Insomnia and Psychiatric Disorders: An Update. Innov. Clin. Neurosci. 2018, 15, 28–32. [Google Scholar] [PubMed]
- Shariq, A.S.; Rosenblat, J.D.; Alageel, A.; Mansur, R.B.; Rong, C.; Ho, R.C.; Ragguett, R.M.; Pan, Z.; Brietzke, E.; McIntyre, R.S. Evaluating the role of orexins in the pathophysiology and treatment of depression: A comprehensive review. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 92, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xue, T.; Chen, Z.; Wang, Z.; Chen, G. Orexin receptor antagonists and insomnia. Curr. Psychiatry Rep. 2022, 24, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.; Jacobs, G.E.; de Boer, P.; Kent, J.M.; Van Nueten, L.; van Amerongen, G.; Zuiker, R.; Kezic, I.; Luthringer, R.; van der Ark, P.; et al. The selective orexin-2 receptor antagonist seltorexant improves sleep: An exploratory double-blind, placebo controlled, crossover study in antidepressant-treated major depressive disorder patients with persistent insomnia. J. Psychopharmacol. 2019, 33, 202–209. [Google Scholar] [CrossRef]
- Recourt, K.; de Boer, P.; Zuiker, R.; Luthringer, R.; Kent, J.; van der Ark, P.; Van Hove, I.; van Gerven, J.; Jacobs, G.; van Nueten, L. The selective orexin-2 antagonist seltorexant (JNJ-42847922/MIN-202) shows antidepressant and sleep-promoting effects in patients with major depressive disorder. Transl. Psychiatry 2019, 9, 216. [Google Scholar] [CrossRef] [PubMed]
- Mesens, S.; Kezic, I.; Van Der Ark, P.; Etropolski, M.; Pandina, G.; Benes, H.; Savitz, A.; Drevets, W.C. Treatment effect and safety of seltorexant as monotherapy for patients with major depressive disorder: A randomized, placebo-controlled clinical trial. Mol. Psychiatry 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Savitz, A.; Wajs, E.; Zhang, Y.; Xu, H.; Etropolski, M.; Thase, M.E.; Drevets, W.C. Efficacy and Safety of Seltorexant as Adjunctive Therapy in Major Depressive Disorder: A Phase 2b, Randomized, Placebo-Controlled, Adaptive Dose-Finding Study. Int. J. Neuropsychopharmacol. 2021, 24, 965–976. [Google Scholar] [CrossRef]
- Thase, M.E.; Krystal, A.D.; Wajs, E.; Trombello, J.M.; Kelly, R.; Zhang, Y.; Xu, H.; Thipphawong, J.; Ruschel, S.; Flossbach, Y.; et al. Seltorexant, adjunctive to antidepressants, in adults with MDD with insomnia symptoms: Results of a double-blind, randomized, placebo-controlled study. In Proceedings of the Psych Congress, Boston, MA, USA, 29 October–2 November 2024. [Google Scholar]
- Drill, M.; Jones, N.C.; Hunn, M.; O’Brien, T.J.; Monif, M. Antagonism of the ATP-gated P2X7 receptor: A potential therapeutic strategy for cancer. Purinergic Signal. 2021, 17, 215–227. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Lord, B.; Grigoleit, J.S.; He, Y.; Fraser, I.; Campbell, S.N.; Taylor, N.; Aluisio, L.; O’Connor, J.C.; Papp, M.; et al. Neuropsychopharmacology of JNJ-55308942: Evaluation of a clinical candidate targeting P2X7 ion channels in animal models of neuroinflammation and anhedonia. Neuropsychopharmacology 2018, 43, 2586–2596. [Google Scholar] [CrossRef]
- Nct. An Open-label Study of ALTO-100 in Adults with Major Depressive Disorder and/or Post-Traumatic Stress Disorder. Available online: https://www.altoneuroscience.com (accessed on 29 December 2024).
- Nct. A Randomized, Double-Blind, Placebo-Controlled Study of ALTO-100 with an Open-Label Extension in Adults with Major Depressive Disorder. Available online: https://clinicaltrials.gov/study/NCT05712187 (accessed on 29 December 2024).
- Kuntz, L. ALTO-203 for Major Depressive Disorder and Anhedonia: Phase 2 Study Initiated. Available online: https://www.psychiatrictimes.com/view/alto-203-for-major-depressive-disorder-and-anhedonia-phase-2-study-initiated (accessed on 29 December 2024).
- Ektin, A. Alto Neuroscience Presents Key Data, Study Findings on ALTO-300. Available online: https://www.psychiatrictimes.com/view/alto-neuroscience-presents-key-data-study-findings-on-alto-300 (accessed on 10 January 2025).
- Rush, A.J.; Warden, D.; Wisniewski, S.R.; Fava, M.; Trivedi, M.H.; Gaynes, B.N.; Nierenberg, A.A. STAR*D: Revising conventional wisdom. CNS Drugs 2009, 23, 627–647. [Google Scholar] [CrossRef]
- Blackburn, T.P. Depressive disorders: Treatment failures and poor prognosis over the last 50 years. Pharmacol. Res. Perspect. 2019, 7, e00472. [Google Scholar] [CrossRef] [PubMed]
- American Psychological Association. Clinical Practice Guideline for the Treatment of Depression Across Three Age Cohorts; American Psychological Association: Washington, DC, USA, 2019. [Google Scholar]
- McQuaid, J.R.; Buelt, A.; Capaldi, V.; Fuller, M.; Issa, F.; Lang, A.E.; Hoge, C.; Oslin, D.W.; Sall, J.; Wiechers, I.R.; et al. The Management of Major Depressive Disorder: Synopsis of the 2022 U.S. Department of Veterans Affairs and U.S. Department of Defense Clinical Practice Guideline. Ann. Intern. Med. 2022, 175, 1440–1451. [Google Scholar] [CrossRef]
- Lam, R.W.; Kennedy, S.H.; Adams, C.; Bahji, A.; Beaulieu, S.; Bhat, V.; Blier, P.; Blumberger, D.M.; Brietzke, E.; Chakrabarty, T. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2023 Update on Clinical Guidelines for Management of Major Depressive Disorder in Adults: Réseau canadien pour les traitements de l’humeur et de l’anxiété (CANMAT) 2023: Mise à jour des lignes directrices cliniques pour la prise en charge du trouble dépressif majeur chez les adultes. Can. J. Psychiatry 2024, 69, 641–687. [Google Scholar] [CrossRef]
- Pladevall-Vila, M.; Pottegård, A.; Schink, T.; Reutfors, J.; Morros, R.; Poblador-Plou, B.; Timmer, A.; Forns, J.; Hellfritzsch, M.; Reinders, T.; et al. Risk of Acute Liver Injury in Agomelatine and Other Antidepressant Users in Four European Countries: A Cohort and Nested Case-Control Study Using Automated Health Data Sources. CNS Drugs 2019, 33, 383–395. [Google Scholar] [CrossRef]
- Shin, C.; Kim, Y.-K. Ketamine in major depressive disorder: Mechanisms and future perspectives. Psychiatry Investig. 2020, 17, 181. [Google Scholar] [CrossRef]
- Li, Z.; Wu, Q.; Peng, P.; Wu, M.; Liu, S.; Liu, T. Efficacy and safety of zuranolone for the treatment of depression: A systematic review and meta-analysis. Psychiatry Res. 2024, 331, 115640. [Google Scholar] [CrossRef] [PubMed]
- Raja, A.; Ahmed, S.; Basit Ali Siddiqui, M.; Lamiya Mir, S.; Kumar, R.; Ahmed, M.; Raja, S.; Bin Amin, S.; Alim Ur Rahman, H.; Deepak, F. Evaluating the safety and efficacy of zuranolone in the management of major depressive disorder and postpartum depression, with or without concurrent insomnia: A rigorous systematic review and meta-analysis. Front. Psychiatry 2024, 15, 1425295. [Google Scholar] [CrossRef] [PubMed]
- Winslow, M.; White, E.; Rose, S.J.; Salzer, E.; Nemec, E.C., 2nd. The efficacy of zuranolone versus placebo in postpartum depression and major depressive disorder: A systematic review and meta-analysis. Int. J. Clin. Pharm. 2024, 46, 590–601. [Google Scholar] [CrossRef]
- Frieder, A.; Fersh, M.; Hainline, R.; Deligiannidis, K.M. Pharmacotherapy of Postpartum Depression: Current Approaches and Novel Drug Development. CNS Drugs 2019, 33, 265–282. [Google Scholar] [CrossRef]
- Sharma, V.; Khan, M.; Baczynski, C.; Boate, I. Predictors of response to antidepressants in women with postpartum depression: A systematic review. Arch. Women’s Ment. Health 2020, 23, 613–623. [Google Scholar] [CrossRef]
- Fonzo, G.A.; Nemeroff, C.B.; Kalin, N. Psychedelics in Psychiatry: Oh, What A Trip! Am. J. Psychiatry 2025, 182, 1–5. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, R.S.; Kwan, A.T.; Mansur, R.B.; Oliveira-Maia, A.J.; Teopiz, K.M.; Maletic, V.; Suppes, T.; Stahl, S.M.; Rosenblat, J.D. Psychedelics for the treatment of psychiatric disorders: Interpreting and translating available evidence and guidance for future research. Am. J. Psychiatry 2025, 182, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Scala, M.; Fanelli, G.; De Ronchi, D.; Serretti, A.; Fabbri, C. Clinical specificity profile for novel rapid acting antidepressant drugs. Int. Clin. Psychopharmacol. 2023, 38, 297–328. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Sweet, J.; Su, M.; Calabrese, J.R. Depression severity and quality of life of qualified and unqualified patients with a mood disorder for a research study targeting anhedonia in a clinical sample. Asian J. Psychiatry 2017, 27, 40–47. [Google Scholar] [CrossRef]
Name | Dose (mg/day) | Mechanism |
---|---|---|
Selective serotonin reuptake inhibitor and its related medications | ||
Citalopram | 10–40 | 5-HT↑ via inhibition of SERT |
Escitalopram | 5–20 | |
Fluvoxamine | 25–300 | |
Fluoxetine | 10–80 | 5-HT↑ via inhibition of SERT, NE↑ via inhibition of NET |
Paroxetine | 20–50 | |
Sertraline | 25–200 | 5-HT↑ via inhibition of SERT, DA↑ via inhibition of DAT |
Vilazodone | 10–40 | 5-HT↑ via inhibition of SERT, 5-HT1A partial agonist, 5-HT3 antagonist (for vortioxetine) |
Vortioxetine | 5–20 | |
Gepirone | 18.2–72.6 | 5-HT1A partial agonist and 5-HT2A antagonist |
Serotonin–norepinephrine reuptake inhibitors | ||
Venlafaxine | 37.5–225 | 5-HT↑ and NE↑ via SERT and NET; SERT:NET = 30:1 for venlafaxine, SERT:NET = 14:1 for desvenlafaxine, SERT:NET = 10:1 for duloxetine, SERT:NET = 1:2 for levominacipran |
Desvenlafaxine | 50–100 | |
Duloxetine | 30–120 | |
Levominacipran | 40–120 | |
Dopamine reuptake inhibitor | ||
Bupropion | 150–450 | DA↑ via inhibition of DAT, NE↑ via inhibition of NET, antagonist of nicotinic acetylcholinergic receptor (nAChR) |
Norepinephrine reuptake inhibitor | ||
Reboxetine | 8–12 | NE↑ via inhibition of NET |
Serotonin, norepinephrine, dopamine reuptake inhibitor | ||
Toludesvenlafaxine | 80–160 | 5-HT↑ via inhibition of SERT, NE↑ via inhibition of NET, DA↑ via inhibition of DAT |
Atypical antidepressants | ||
Mirtazapine | 15–60 | 5-HT↑ and NE↑ via pre-synaptic inhibition of α2 receptor, 5-HT1A transmission↑ via antagonism of 5-HT2 and 5-HT3, Hypnotic: H1 receptor antagonism |
Nefazodone | 200–600 | 5-HT↑ and NE↑ via weak SERT and NET, 5-HT2 antagonist, a weak α1 adrenergic receptor antagonist |
Trazodone | 300–600 | Simultaneous inhibition of serotonin transporters, 5-HT2A, and 5-HT2C receptors. Hypnotic: antagonism of 5-HT2A receptor, H1 receptor, and α-adrenergic receptors |
Tricyclic antidepressants | ||
Amitriptyline | 150–300 | 5-HT↑ via SERT > 5-HT2 antagonist > NE↑ with NET |
Clomipramine | 150–300 | |
Imipramine | 150–300 | 5-HT↑ via SERT > NE↑ with NET > 5-HT2 antagonist |
Doxepin | 150–300 | 5-HT2 antagonist > NE↑ with NET > 5-HT↑ via SERT |
Amoxapine | 150–300 | |
Trimipramine | 50–300 | 5-HT2 antagonist > 5-HT↑ via SERT > NE↑ with NET |
Desipramine | 75–300 | NE↑ with NET > 5-HT↑ via SERT > 5-HT2 antagonist NE↑ with NET > 5-HT↑ via SERT > 5-HT2 antagonist |
Nortriptyline | 50–150 | |
Protriptyline | 15–60 | |
Maprotiline | 100–225 | NE↑ with NET > 5-HT2 antagonist > 5-HT↑ via SERT |
Monoamine oxidase inhibitors | ||
Phenelzine | 30–90 | Selective for MAO-B (lower doses) non-selective (higher doses), not reversible |
Tranylcypromine | 10–60 | |
Isocarboxazid | 10–60 | |
Selegiline oral | 1.25–10 | Selective for MAO-A, not reversible |
Selegiline transdermal | 6–16 | |
Moclobemide | 300–600 | Selective for MAO-A, reversible |
NMDA receptors antagonists | ||
Ketamine intravenous infusion | 0.5–1 mg/kg, 40–60 min | Blocking pre-synaptic GABAergic NMDA receptors to increase release of glutamate and subsequently increase synthesis of BDNF and produce neuroplasticity. |
Intranasal esketamine | 56–84 | |
Dextromethorphan+ bupropion | 45/105 | Dextromethorphan: NMDA receptor antagonism + sigma-1 and mu opioid receptor agonism + inhibition of NET, and nAChR antagonism. Bupropion: inhibition of DAT and nAChR. |
Neurosteroids | ||
Brexanolone Intravenous infusion | 30, 60, 90, 60, 30 mcg/kg/h in 60 h | Positive allosteric modulation of GABAA receptors to restore neuronal excitability and mood regulation |
Zuranolone | 50–40 | |
Melatonergic agents | ||
Agomelatine | 25–50 | Melatonergic agonism for sleep and 5-HT2c antagonism to increase NE and DA. |
Medicinal and nutritional agents | ||
SAMe | 400–600 | Involved in the one-carbon metabolic cycle |
St. John’s Wort | 500–1800 | Reuptake inhibition of 5-HT, NE and DA |
Omega-3 fatty acids | 1000–2000 | Anti-neuroinflammatory; anti-oxidative stress; modulation of HPA axis; anti-neurodegeneration; neuroplasticity and synaptic plasticity; and modulation of neurotransmitter systems |
Psychedelics | |
---|---|
Psilocybin | 5-HT2A receptor partial agonist and binding to 5-HT2C > 5-HT1A > 5-HT1B receptors; 5-HT↑ via inhibition of SERT. |
Lysergic Acid Diethylamide (LSD) | 5-HT2A receptor partial agonist and binding to 5-HT1A > 5-HT2C > 5-HT1B receptors; binding to D2 receptors; increase in glutamate release in frontal cortex; increase in functional connectivity and excitability in thalamus and cortexes. |
5-methoxy-N, N-dimethyltryptamine (5-MeO-DMT) | 5-HT receptor agonist with binding 5-HT1A > 5-HT2A; 5-HT↑ via inhibition of SERT, NE↑ via inhibition of NET, DA↑ via inhibition of DAT. |
N, N-Dimethyltryptamine (DMT) | 5-HT receptor agonist with binding 5-HT1A > 5-HT2A > 5-HT2C > 5-HT1B; 5-HT↑ via inhibition of SERT and increase in release; NE↑ via inhibition of NET; increase in other neurotransmitters. |
3,4-Methylenedioxy-methamphetamine (MDMA) | 5-HT↑ via inhibition of SERT; NE↑ via inhibition of NET; partial agonist of 5-HT2A, 5-HT1A, and 5-HT2C receptors; increase in oxytocin in blood levels. |
NMDA receptor antagonist | |
Esmethadone (REL-1017). | Pre-synaptic GABAergic NMDA receptor blockade: release of glutamate↑; post-synaptic BDNF and neuroplasticity↑; binding to calcium and sodium channels, H1, M5, µ, 5-HT2C, 5-HT5A, 5-HT7 receptors, and NET. |
AMPA receptor modulator | |
Osavampator (TAK-653, NBI-1065845) | Selective positive allosteric modulator of the AMPA receptors. |
Opioid receptor antagonists | |
Aticaprant | Opioid κ receptor antagonism. |
Navacaprant | Opioid κ receptor antagonism and modulating glutamatergic, GABAergic, serotonergic, and dopaminergic systems. |
Orexin receptor antagonist | |
Seltorexant, Filorexant Suvorexant | Orexin-2 receptor antagonists. |
Anti-inflammatory drugs | |
JNJ-55308942 JNJ-54175446 | Antagonist of P2X7 receptors and attenuates P2X7 receptor-mediated IL-1β release |
Antidepressants | Side Effects | |
---|---|---|
Selective Serotonin Reuptake Inhibitors | ||
Citalopram Escitalopram Fluoxetine Fluvoxamine Paroxetine Sertraline Vilazodone Vortioxetine | Sexual dysfunction
|
Hyponatremia Serotonin syndrome Discontinuation syndrome (especially with short half-life such as paroxetine and fluvoxamine) (fluoxetine is less likely to cause)
|
Gepirone | QTc prolongation, minimal sexual side effects, does not cause weight gain | |
Serotonin–Norepinephrine Reuptake Inhibitors | ||
Venlafaxine | Nausea, dizziness, insomnia, somnolence, dry mouth Sexual dysfunction Discontinuation syndrome Hypertension (Venlafaxine XR > 225 mg/day) | |
Duloxetine | Nausea, dry mouth, constipation, fatigue, decreased appetite, sweating Sexual dysfunction Initial insomnia, irritability, anxiety, nervousness, and restlessness Mydriasis Hypertension | |
Dopamine Reuptake Inhibitor | ||
Bupropion | Insomnia, headache, tremors, nausea, Increased irritability and agitation | Few sexual side effects Not cause increased appetite or weight gain. |
Atypical Antidepressants | ||
Mirtazapine | Sedation Weight gain (increase appetite) | Neutropenia, thrombocytopenia, bone marrow supression (rare) Dizziness, dry mouth, constipation, disturbing dreams |
Trazodone Nefazodone | Sedation Orthostatic hypotension Dizziness | Headache Priapism (rare) |
Tricyclic Antidepressants | ||
Amitriptyline Clomipramine Doxepin Imipramine Trimipramine Desipramine Nortriptyline Protriptyline Amoxapine Maprotiline | Anticholinergic
|
Weight gain Sexual dysfunction Elevation of liver enzymes Discontinuation syndrome (mostly related to cholinergic and serotonergic rebound) |
Monoamine Oxidase Inhibitors | ||
Phenelzine Tranylcypromine Isocarboxazid Selegiline Moclobemide | Orthostatic Hypotension, Dizziness, Reflex tachycardia Weight gain Sedation Hypertensive crisis (with tyramine rich food consumption)
Hepatotoxicity Pyridoxine deficiency Drug Interactions | |
Melatonergic Agents | ||
Agomelatine | Headache, dizziness, somnolence, diarrhea, nausea, sedation, fatigue, and insomnia Hepatotoxicity Abdominal pain Lower risk of sexual dysfunction | |
N-Methyl-D-Aspartate antagonists | ||
IV Ketamine IN Esketamine | Nausea, headache, blurred vision, drowsiness, dizziness, sedation, lethargy Psychiatric
| Cardiovascular/hemodynamic
Ulcerative cystitis Abuse potential Suicidal thought (in young adults) |
Dextromethorphan + Bupropion | Dizziness, nausea, headache, diarrhea, somnolence, and dry mouth. Psychomimetic effects, weight gain, and increased sexual dysfunction or suicide-related adverse events were not reported. | |
Neurosteroids | ||
Zuranolone Brexanolone | Somnolence, dizziness, headache, sedation, diarrhea, nausea, nasopharyngitis, urinary tract infection Presyncope (only for brexanolone) | |
Medicinal and nutritional agents | ||
St. John’s Wort | Gastrointestinal irritations, allergic reactions, fatigue, restlessness | |
SAMe | Gastrointestinal symptoms, sweating, vertigo, dizziness, tachycardia, restlessness, and anxiety | |
Omega 3 fatty acids | Increased bleeding (increased risk combination with aspirin), headache, dizziness |
Name | Dosage Form | Average Weekly Cost ($) |
---|---|---|
Selective serotonin reuptake inhibitors and related agents | ||
Citalopram (generic) | Tablet | 0.93–1.86 |
Escitalopram (generic) | Tablet | 2.18–2.32 |
Escitalopram (generic) | OD tablet | 9.24–9.84 |
Fluoxetine (generic) | Capsule | 2.32–2.98 |
Fluvoxamine (generic) | Tablet | 2.65–7.94 |
Paroxetine (generic) | Tablet | 2.28–4.69 |
Sertraline (generic) | Capsule | 2.12–4.69 |
Vilazodone (Viibryd) | Tablet | 21.88–29.12 |
Vortioxetine (Trintellix) | Tablet | 20.64–22.41 |
Serotonin Norepinephrine reuptake inhibitor | ||
Desvenlafaxine (generic) | ER tablet | 16.39 |
Duloxetine (generic) | DR capsule | 6.84 |
Levomilnacipran (Fetzima) | ER capsule | 26.88–30.60 |
Venlafaxine (generic) | ER capsule | 1.28–2.63 |
Dopamine reuptake inhibitor | ||
Bupropion (generic) | SR capsule | 1.08–1.61 |
Bupropion (generic) | ER capsule | 1.02–2.05 |
Atypical antidepressants | ||
Mirtazapine (generic) | OD tablet/tablet | 0.68–2.05 |
Trazodone (generic) | Tablet | 1.02–2.03 |
Tricyclic antidepressants | ||
Amitriptyline (Aventyl) | Tablet | 2.54–3.23 |
Clomipramine (generic) | Tablet | 1.81–20.72 |
Desipramine (generic) | Tablet | 6.65–19.96 |
Doxepin (generic) | Capsule | 7.64–11.29 |
Impramine (generic) | Tablet | 1.80–12.93 |
Nortriptyline (generic) | Capsule | 10.91–14.54 |
Trimipramine (generic) | Tablet/capsule | 10.98–20. 77 |
Monoamine oxidase inhibitors | ||
Moclobemide (generic) | Tablet | 7.28 to 14.56 |
Phenelzine (Nardil) | Tablet | 9.80–16.60 |
Tranylcypromine (Parnate) | Tablet | 5.68–17.03 |
Neuroteroid antidepressant | ||
Zuranolone (Zurzuvae) | Capsule | 7950 |
N-methyl-D-aspartate receptor antagonists | ||
Dextromethorphan/bupropion (Auvelity) | ER Tablet | 144.20–179.43 |
Ketamine infusion * | Vial | 5.20–15.59 + 800–2000 service fee for first 2–3 weeks |
Esketamine (SPRAVATO) ** | Intranasal Spray | W1: 1092–1365 + 4-h service fee W2–4: 1092–1638 + 4-h service fee W5–8: 546–819 + 2-h service fee W≥9: 273–819 + 2-h service fee |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, K.; Oruc, E.B.; Koparal, B. Pharmacological Monotherapy for Depressive Disorders: Current and Future—A Narrative Review. Medicina 2025, 61, 558. https://doi.org/10.3390/medicina61040558
Gao K, Oruc EB, Koparal B. Pharmacological Monotherapy for Depressive Disorders: Current and Future—A Narrative Review. Medicina. 2025; 61(4):558. https://doi.org/10.3390/medicina61040558
Chicago/Turabian StyleGao, Keming, Evrim Bayrak Oruc, and Buket Koparal. 2025. "Pharmacological Monotherapy for Depressive Disorders: Current and Future—A Narrative Review" Medicina 61, no. 4: 558. https://doi.org/10.3390/medicina61040558
APA StyleGao, K., Oruc, E. B., & Koparal, B. (2025). Pharmacological Monotherapy for Depressive Disorders: Current and Future—A Narrative Review. Medicina, 61(4), 558. https://doi.org/10.3390/medicina61040558