Vascular Access Type and Survival Outcomes in Hemodialysis Patients: A Seven-Year Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Variables
2.4. Data Collection
2.5. Ethical Considerations
2.6. Sample Size and Power Calculation
2.7. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Effect of Vascular Access Types on Survival
3.3. Adjusted Overall Survival According to the Presence of Other Risk Factors
3.4. Survival Based on the Presence or Absence of Risk Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polanco-Flores, N.A. Chronic Renal Disease in Mexico: A Preventive Uncontrolled Epidemic. Rev. Méd. Hosp. Gen. Méx. 2019, 82, 194–197. [Google Scholar] [CrossRef]
- Cueto-Manzano, A.M.; Rojas-Campos, E. Status of Renal Replacement Therapy and Peritoneal Dialysis in Mexico. Perit. Dial. Int. 2007, 27, 142–148. [Google Scholar] [CrossRef] [PubMed]
- García-de-Alba-Verduzco, J.E.; García-de-Alba-Verduzco, J.E.; López-Elizalde, R.; García-de-Alba-García, J.E. Tabla de Vida Para Derechohabientes del Instituto de Seguridad y Servicios Sociales de Los Trabajadores Del Estado (ISSSTE), México 2021. Cir. Cir. 2024, 92, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Instituto Mexicano del Seguro Social (IMSS). Atiende IMSS a Cerca de 80 Mil Personas Con Terapia de Reemplazo Renal a Nivel Nacional. Available online: https://www.imss.gob.mx/prensa/archivo/202403/125 (accessed on 11 February 2025).
- Saunders, H.; Rehan, A.; Hashmi, M.F.; Sanghavi, D.K. Continuous Renal Replacement Therapy; StatPearls Publishing: St. Petersburg, FL, USA, 2025. [Google Scholar]
- Santoro, D.; Benedetto, F.; Mondello, P.; Pipitò, N.; Barillà, D.; Spinelli, F.; Ricciardi, C.A.; Cernaro, V.; Buemi, M. Vascular Access for Hemodialysis: Current Perspectives. Int. J. Nephrol. Renovasc. Dis. 2014, 7, 281–294. [Google Scholar] [CrossRef]
- Lok, C.E.; Huber, T.S.; Orchanian-Cheff, A.; Rajan, D.K. Arteriovenous Access for Hemodialysis. JAMA 2024, 331, 1307–1317. [Google Scholar] [CrossRef]
- García-Yañez, J.C.; Serrano-Gavuzzo, C.A.; Arvizu-Hernandez, M.; Moguel-González, B.; Bravo, E. Evaluation of Hemodialysis Vascular Access. Perspective from Mexico. Front. Nephrol. 2023, 3, 1084188. [Google Scholar] [CrossRef]
- Lawson, J.H.; Niklason, L.E.; Roy-Chaudhury, P. Challenges and Novel Therapies for Vascular Access in Haemodialysis. Nat. Rev. Nephrol. 2020, 16, 586–602. [Google Scholar] [CrossRef]
- Flick, A.I.; Winters, R. Vascular Tunneled Central Catheter Access; StatPearls Publishing: St. Petersburg, FL, USA, 2025. [Google Scholar]
- Sohail, M.A.; Vachharajani, T.J.; Anvari, E. Central Venous Catheters for Hemodialysis—The Myth and the Evidence. Kidney Int. Rep. 2021, 6, 2958–2968. [Google Scholar] [CrossRef]
- Murdeshwar, H.N.; Anjum, F. Hemodialysis; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Pisoni, R.L.; Zepel, L.; Port, F.K.; Robinson, B.M. Trends in US Vascular Access Use, Patient Preferences, and Related Practices: An Update From the US DOPPS Practice Monitor With International Comparisons. Am. J. Kidney Dis. 2015, 65, 905–915. [Google Scholar] [CrossRef]
- Pisoni, R.L.; Zepel, L.; Fluck, R.; Lok, C.E.; Kawanishi, H.; Süleymanlar, G.; Wasse, H.; Tentori, F.; Zee, J.; Li, Y.; et al. International Differences in the Location and Use of Arteriovenous Accesses Created for Hemodialysis: Results From the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 2018, 71, 469–478. [Google Scholar] [CrossRef]
- Contreras-Jimenez, E.; Lopez-Pena, G.; Ruben-Castillo, C.; Mier y Teran-Ellis, S.; Cuen-Ojeda, C.; Arzola-Flores, L.H.; Anaya-Ayala, J.E.; Hinojosa-Becerril, C.A. Análisis de Los Resultados Clínicos de Fístulas Arteriovenosas Para Acceso de Hemodiálisis En Población Adulta Mayor Mexicana. Cir. Cir. 2023, 91, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.M.; Churilla, B.M.; Lee, T.C.; Thamer, M.; Zhang, Y.; Allon, M.; Crews, D.C. Patient Perspectives on Arteriovenous Fistula Placement, Maturation, and Use: A Qualitative Study. Kidney Med. 2024, 6, 100919. [Google Scholar] [CrossRef] [PubMed]
- Murea, M.; Grey, C.R.; Lok, C.E. Shared Decision-Making in Hemodialysis Vascular Access Practice. Kidney Int. 2021, 100, 799–808. [Google Scholar] [CrossRef]
- Jayroe, H.; Foley, K. Arteriovenous Fistula, 1st ed.; StatPearls Publishing: Treasure Island, FL, USA, 2025; Volume 1. [Google Scholar]
- Tan, E.K.; Tan, S.G. The Permanent Catheter. Hemodial. Int. 2014, 18, 522–524. [Google Scholar] [CrossRef]
- Clark, E.G.; Barsuk, J.H. Temporary Hemodialysis Catheters: Recent Advances. Kidney Int. 2014, 86, 888–895. [Google Scholar] [CrossRef]
- World Medical Association. Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191. [Google Scholar] [CrossRef]
- Brown, R.S.; Patibandla, B.K.; Goldfarb-Rumyantzev, A.S. The Survival Benefit of “Fistula First, Catheter Last” in Hemodialysis Is Primarily Due to Patient Factors. J. Am. Soc. Nephrol. 2017, 28, 645–652. [Google Scholar] [CrossRef]
- Rosner, B. Fundamentals of Biostatistics, 7th ed.; Cengage Learning, Inc.: Boston, MA, USA, 2010; Volume 1. [Google Scholar]
- Andrade, C. Survival Analysis, Kaplan-Meier Curves, and Cox Regression: Basic Concepts. Indian J. Psychol. Med. 2023, 45, 434–435. [Google Scholar] [CrossRef]
- Tolia, M.; Gkantaifi, A.; Hayward, L.; Gupta, G.; Kyriazoglou, A.; Mauri, D.; Nixon, I. Superficial Soft Tissue Sarcomas: 10-year Survival Outcomes. Oncol. Lett. 2023, 25, 96. [Google Scholar] [CrossRef]
- Lundgreen, C.S.; Larson, D.R.; Atkinson, E.J.; Devick, K.L.; Lewallen, D.G.; Berry, D.J.; Maradit Kremers, H.; Crowson, C.S. Adjusted Survival Curves Improve Understanding of Multivariable Cox Model Results. J. Arthroplast. 2021, 36, 3367–3371. [Google Scholar] [CrossRef]
- Post-Hoc Power Calculator Post-Hoc Power Calculator. Evaluate Statistical Power of an Existing Study. Available online: https://clincalc.com/stats/Power.aspx (accessed on 28 April 2023).
- Mendoza-Hernandez, M.A.; Guzman-Esquivel, J.; Ramos-Rojas, M.A.; Santillan-Luna, V.V.; Sanchez-Ramirez, C.A.; Hernandez-Fuentes, G.A.; Diaz-Martinez, J.; Melnikov, V.; Rojas-Larios, F.; Martinez-Fierro, M.L.; et al. Differences in the Evolution of Clinical, Biochemical, and Hematological Indicators in Hospitalized Patients with COVID-19 According to Their Vaccination Scheme: A Cohort Study in One of the World’s Highest Hospital Mortality Populations. Vaccines 2024, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- VanderWeele, T.J. On the Distinction Between Interaction and Effect Modification. Epidemiology 2009, 20, 863–871. [Google Scholar] [CrossRef]
- Hart, J.E.; Puett, R.C.; Rexrode, K.M.; Albert, C.M.; Laden, F. Effect Modification of Long-Term Air Pollution Exposures and the Risk of Incident Cardiovascular Disease in US Women. J. Am. Heart Assoc. 2015, 4, e357. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Martinez, J.; Kotzker, W.; Mendoza-Hernandez, M.A.; Gadh, R.S.; Hernandez-Fuentes, G.A.; Bañuelos, A.; Guzmán-Esquivel, J.; Hong, A.; Delgado-Enciso, O.G.; Geyer-Roberts, E.; et al. Analysis of Survival Modification by Furosemide Use in a Cohort of Hospitalized COVID-19 Patients with Severe or Critical Disease in Mexico: Due to Its Chemical Structure, Furosemide Is More than Just a Diuretic. Pharmaceutics 2024, 16, 920. [Google Scholar] [CrossRef] [PubMed]
- Allon, M. Vascular Access for Hemodialysis Patients. Clin. J. Am. Soc. Nephrol. 2019, 14, 954–961. [Google Scholar] [CrossRef]
- Ahmadi, S.-F.; Streja, E.; Zahmatkesh, G.; Streja, D.; Kashyap, M.; Moradi, H.; Molnar, M.Z.; Reddy, U.; Amin, A.N.; Kovesdy, C.P.; et al. Reverse Epidemiology of Traditional Cardiovascular Risk Factors in the Geriatric Population. J. Am. Med. Dir. Assoc. 2015, 16, 933–939. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Anderson, J.E. Cardiovascular and survival paradoxes in dialysis patients: Reverse epidemiology in patients with chronic kidney disease who are not yet on dialysis. Semin. Dial. 2007, 20, 566–569. [Google Scholar] [CrossRef]
- Woodside, K.J.; Bell, S.; Mukhopadhyay, P.; Repeck, K.J.; Robinson, I.T.; Eckard, A.R.; Dasmunshi, S.; Plattner, B.W.; Pearson, J.; Schaubel, D.E.; et al. Arteriovenous Fistula Maturation in Prevalent Hemodialysis Patients in the United States: A National Study. Am. J. Kidney Dis. 2018, 71, 793–801. [Google Scholar] [CrossRef]
- Levin, N.W.; Handelman, G.J.; Coresh, J.; Port, F.K.; Kaysen, G.A. Reverse Epidemiology: A Confusing, Confounding, and Inaccurate Term. Semin. Dial. 2007, 20, 586–592. [Google Scholar] [CrossRef]
- Nlandu, Y.; Lepira, F.; Makulo, J.-R.; Engole, Y.; Sumaili, E.; Wameso, M.-N.; Mokoli, V.; Luse, J.; Longo, A.; Zinga, C.; et al. Reverse Epidemiology of Elevated Blood Pressure among Chronic Hemodialysis Black Patients with Stroke: A Historical Cohort Study. BMC Nephrol. 2017, 18, 277. [Google Scholar] [CrossRef]
- Boulet, N.; Pensier, J.; Occean, B.-V.; Peray, P.F.; Mimoz, O.; Rickard, C.M.; Buetti, N.; Lefrant, J.-Y.; Muller, L.; Roger, C. Central Venous Catheter-Related Infections: A Systematic Review, Meta-Analysis, Trial Sequential Analysis and Meta-Regression Comparing Ultrasound Guidance and Landmark Technique for Insertion. Crit. Care 2024, 28, 378. [Google Scholar] [CrossRef] [PubMed]
- Murea, M.; Geary, R.L.; Houston, D.K.; Edwards, M.S.; Robinson, T.W.; Davis, R.P.; Hurie, J.B.; Williams, T.K.; Velazquez-Ramirez, G.; Bagwell, B.; et al. A Randomized Pilot Study to Evaluate Graft versus Fistula Vascular Access Strategy in Older Patients with Advanced Kidney Disease: Results of a Feasibility Study. Pilot. Feasibility Stud. 2020, 6, 86. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef] [PubMed]
- Sattar, A.; Argyropoulos, C.; Weissfeld, L.; Younas, N.; Fried, L.; Kellum, J.A.; Unruh, M. All-Cause and Cause-Specific Mortality Associated with Diabetes in Prevalent Hemodialysis Patients. BMC Nephrol. 2012, 13, 130. [Google Scholar] [CrossRef]
- Zarkowsky, D.S.; Arhuidese, I.J.; Hicks, C.W.; Canner, J.K.; Qazi, U.; Obeid, T.; Schneider, E.; Abularrage, C.J.; Freischlag, J.A.; Malas, M.B. Racial/Ethnic Disparities Associated With Initial Hemodialysis Access. JAMA Surg. 2015, 150, 529. [Google Scholar] [CrossRef]
- Griva, K.; Seow, P.S.; Seow, T.Y.-Y.; Goh, Z.S.; Choo, J.C.J.; Foo, M.; Newman, S. Patient-Related Barriers to Timely Dialysis Access Preparation: A Qualitative Study of the Perspectives of Patients, Family Members, and Health Care Providers. Kidney Med. 2020, 2, 29–41. [Google Scholar] [CrossRef]
- Woo, K.; Pieters, H. The Patient Experience of Hemodialysis Vascular Access Decision-Making. J. Vasc. Access 2021, 22, 911–919. [Google Scholar] [CrossRef]
- Mckeon, K.; Sibbel, S.; Brunelli, S.M.; Matheson, E.; Lefeber, N.; Epps, M.; Tentori, F. Utilization of Home Dialysis and Permanent Vascular Access at Dialysis Initiation Following a Structured CKD Education Program. Kidney Med. 2022, 4, 100490. [Google Scholar] [CrossRef]
- MacRae, J.M.; Oliver, M.; Clark, E.; Dipchand, C.; Hiremath, S.; Kappel, J.; Kiaii, M.; Lok, C.; Luscombe, R.; Miller, L.M.; et al. Arteriovenous Vascular Access Selection and Evaluation. Can. J. Kidney Health Dis. 2016, 3, 2054358116669125. [Google Scholar] [CrossRef]
- Fila, B.; Ibeas, J.; Tey, R.R.; Lovčić, V.; Zibar, L. Arteriovenous Fistula for Haemodialysis: The Role of Surgical Experience and Vascular Access Education. Nefrología 2016, 36, 89–94. [Google Scholar] [CrossRef]
- Leblic Ramírez, I.; Riera del Moral, L.; Sánchez Villanueva, R.; Stefanov Kiuri, S.; Álvarez García, L.; Echarri Carrillo, R.; Gallegos Villalobos, Á.; Fernandez Heredero, Á. Effect of a Multidisciplinary Team in the Management of Vascular Access for Hemodialysis. Nefrol. (Engl. Ed.) 2024, 44, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Campoy, S.; Smits, G.; Vu Tran, Z.; Chonchol, M. Effectiveness of a Chronic Kidney Disease Clinic in Achieving K/DOQI Guideline Targets at Initiation of Dialysis--a Single-Centre Experience. Nephrol. Dial. Transplant. 2007, 22, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Chang, Y.; Mau, L.; Lin, M.; Chiu, H.; Tsai, J.; Huang, C.; Chen, H.; HWANG, S. Chronic Kidney Disease Care Program Improves Quality of Pre-end-stage Renal Disease Care and Reduces Medical Costs. Nephrology 2010, 15, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Yeoh, H.H.; Tiquia, H.S.; Abcar, A.C.; Rasgon, S.A.; Idroos, M.L.; Daneshvari, S.F. Impact of Predialysis Care on Clinical Outcomes. Hemodial. Int. 2003, 7, 338–341. [Google Scholar] [CrossRef]
- Levin, A.; Lewis, M.; Mortiboy, P.; Faber, S.; Hare, I.; Porter, E.C.; Mendelssohn, D.C. Multidisciplinary Predialysis Programs: Quantification and Limitations of Their Impact on Patient Outcomes in Two Canadian Settings. Am. J. Kidney Dis. 1997, 29, 533–540. [Google Scholar] [CrossRef]
- Elliott, M.J.; Ravani, P.; Quinn, R.R.; Oliver, M.J.; Love, S.; MacRae, J.; Hiremath, S.; Friesen, S.; James, M.T.; King-Shier, K.M. Patient and Clinician Perspectives on Shared Decision Making in Vascular Access Selection: A Qualitative Study. Am. J. Kidney Dis. 2023, 81, 48–58.e1. [Google Scholar] [CrossRef]
- Wong, T.-S.; Chen, Q.; Liu, T.; Yu, J.; Gao, Y.; He, Y.; Zhong, Q.; Tan, Z.; Liu, T.; Lu, J.; et al. Patients, Healthcare Providers, and General Population Preferences for Hemodialysis Vascular Access: A Discrete Choice Experiment. Front. Public Health 2024, 12, 1047769. [Google Scholar] [CrossRef]
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, Regional, and National Burden of Chronic Kidney Disease, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Méndez-Durán, A. Evolución Del Tratamiento Sustitutivo de La Función Renal En México En Los Últimos 10 Años. Nefrología 2021, 41, 82–83. [Google Scholar] [CrossRef]
Variable | All Patients 100% (428) | Catheter | p-Value * | |||||
---|---|---|---|---|---|---|---|---|
Fistula A-V 27.8% (119) | Tunneled 53.0% (227) | Temporal 19.2% (82) | Inter-Group | F vs. P | F vs. T | P vs. T | ||
>60 years | 52.6% (225) | 33.6% (40) | 59.5% (135) | 61.0% (50) | <0.001 | <0.001 | <0.001 | 0.896 |
Female | 38.6% (165) | 26.1% (31) | 42.7% (97) | 45.1% (37) | 0.003 | 0.002 | 0.006 | 0.795 |
Diabetes | 59.8% (256) | 42.9% (51) | 63.4% (144) | 74.4% (61) | <0.001 | <0.001 | <0.001 | 0.078 |
Hypertension (HTA) | 80.4% (344) | 84.0% (100) | 80.6% (183) | 74.4% (61) | 0.245 | 0.467 | 0.107 | 0.269 |
Hospitalizations | 23.6% (101) | 13.4% (16) | 25.6% (58) | 32.9% (27) | 0.003 | 0.009 | 0.001 | 0.248 |
Acute Myocardial Infarction (AMI) | 7.2% (31) | 9.2% (11) | 6.2% (14) | 7.3% (6) | 0.587 | 0.382 | 0.798 | 0.794 |
Stroke (EVC) | 5.60% (24) | 3.40% (4) | 5.30% (12) | 9.80% (8) | 0.168 | 0.592 | 0.073 | 0.190 |
Sepsis | 12.1% (52) | 6.7% (8) | 15.9% (369 | 9.8% (8) | 0.03 | 0.017 | 0.441 | 0.201 |
Mortality | 65.7% (281) | 34.5% (41) | 73.6% (167) | 89.0% (73) | <0.001 | <0.001 | <0.001 | 0.003 |
Survival Rate At | Survival Time | |||||
---|---|---|---|---|---|---|
2 Years | 5 Years | 7 Years | Months | 95% CI | ||
Global | 70.3% | 41.6% | 34.3% | 49.9 | 47.0 | 52.8 |
Fistula A-V | 94.1% | 74.8% | 65.5% | 72.4 | 68.7 | 76.2 |
Tunneled | 70.0% | 35.2% | 26.4% | 46.8 | 43.1 | 50.6 |
Non-tunneled | 36.6% | 11.0% | 11.0% | 25.9 | 20.4 | 31.4 |
p-value intergroup | <0.001 | <0.001 | <0.001 | <0.001 | ||
p-value (F vs. P) | <0.001 | <0.001 | <0.001 | <0.001 | ||
p-value (F vs. T) | <0.001 | <0.001 | <0.001 | <0.001 | ||
p-value (P vs. T) | <0.001 | <0.001 | <0.001 | <0.001 |
Overall (Score) | Change from Previous Step | Change from Previous Block | |||||||
---|---|---|---|---|---|---|---|---|---|
−2 Loglikelihood | χ2 | Df | Sig. | χ2 | df | Sig. | χ2 | df | Sig. |
2469.930 | 92.166 | 8 | <0.001 | 90.201 | 8 | <0.001 | 90.201 | 8 | <0.001 |
Unadjusted | 95% CI | Adjusted | 95% CI | |||||
---|---|---|---|---|---|---|---|---|
Covariate | HR | Lower | Upper | p | HR | Lower | Upper | p |
Age > 60 years | 1.881 | 1.464 | 2.418 | <0.001 | 1.345 | 1.032 | 1.752 | 0.028 |
Female | 1.130 | 0.890 | 1.435 | 0.317 | ||||
Diabetic | 2.428 | 1.845 | 3.196 | <0.001 | 2.393 | 1.784 | 3.210 | <0.001 |
Hypertension (HTA) | 0.549 | 0.418 | 0.721 | <0.001 | 0.474 | 0.358 | 0.627 | <0.001 |
Hospitalization | 1.467 | 1.134 | 1.899 | 0.004 | 1.654 | 1.274 | 2.146 | <0.001 |
Sepsis | 1.002 | 0.715 | 1.404 | 0.990 | ||||
Acute Myocardial Infarction (AMI) | 1.022 | 0.648 | 1.613 | 0.956 | ||||
Stroke (EVC) | 0.923 | 0.570 | 1.495 | 0.744 |
Variable (Factor) | Patients (n) | Factor Presence | Vascular Access Type | |||
---|---|---|---|---|---|---|
Global (n = 428) | AVF (n = 119) | Tunneled (n = 227) | Non-Tunneled (n = 82) | |||
>60 years old | 203 | No | 51.20% | 73.40% | 43.50% | 18.80% |
225 | Yes | 19.10% | 50.00% | 14.80% | 6.00% | |
p-value * | <0.001 | 0.015 | <0.001 | 0.144 | ||
Diabetes | 172 | No | 58.10% | 83.80% | 47.00% | 19.00% |
256 | Yes | 18.40% | 41.20% | 14.60% | 8.20% | |
p-value * | <0.001 | <0.001 | <0.001 | 0.224 | ||
Hypertension | 84 | No | 16.70% | 36.80% | 13.60% | 4.80% |
344 | Yes | 38.70% | 71.00% | 29.50% | 13.10% | |
p-value * | <0.001 | 0.007 | 0.036 | 0.435 | ||
Hospitalization | 327 | No | 40.4% | 70.9% | 30.8% | 12.7% |
101 | Yes | 14.90% | 31.30% | 13.80% | 7.40% | |
p-value * | <0.001 | 0.004 | 0.015 | 0.711 |
Factor Presence | No | Yes | ||||||
---|---|---|---|---|---|---|---|---|
AdHR | Lower | Upper | p | AdHR | Lower | Upper | p | |
All | ||||||||
AVF | 1 (Baseline value) | |||||||
Tunneled | 2.892 | 2.036 | 4.108 | <0.001 | ||||
Non-tunneled | 5.047 | 3.333 | 7.643 | <0.001 | ||||
≥60 years old | ||||||||
AVF | 1 (baseline value) | 1 (baseline value) | ||||||
Tunneled | 2.261 | 1.344 | 3.806 | 0.002 | 3.132 | 1.939 | 5.059 | <0.001 |
Non-tunneled | 4.570 | 2.425 | 8.613 | <0.001 | 6.276 | 3.473 | 11.342 | <0.001 |
Diabetes | ||||||||
AVF | 1 (baseline value) | 1 (baseline value) | ||||||
Tunneled | 3.416 | 1.734 | 6.729 | <0.001 | 2.603 | 1.735 | 3.905 | <0.001 |
Non-tunneled | 10.024 | 4.351 | 23.098 | <0.001 | 4.418 | 2.752 | 7.093 | <0.001 |
Hypertension | ||||||||
AVF | 1 (baseline value) | 1 (baseline value) | ||||||
Tunneled | 2.618 | 1.346 | 5.092 | <0.001 | 2.857 | 1.896 | 4.306 | <0.001 |
Non-tunneled | 4.319 | 1.981 | 9.415 | <0.001 | 5.531 | 3.380 | 9.051 | <0.001 |
Hospitalization | ||||||||
AVF | 1 (baseline value) | 1 (baseline value) | ||||||
Tunneled | 2.920 | 1.940 | 4.397 | <0.001 | 2.449 | 1.260 | 4.761 | 0.008 |
Non-tunneled | 5.223 | 3.170 | 8.606 | <0.001 | 7.814 | 3.063 | 19.936 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venegas-Ramírez, J.; Hernández-Fuentes, G.A.; Palomares, C.S.; Diaz-Martinez, J.; Navarro-Cuellar, J.I.; Calvo-Soto, P.; Duran, C.; Tapia-Vargas, R.; Espíritu-Mojarro, A.C.; Figueroa-Gutiérrez, A.; et al. Vascular Access Type and Survival Outcomes in Hemodialysis Patients: A Seven-Year Cohort Study. Medicina 2025, 61, 584. https://doi.org/10.3390/medicina61040584
Venegas-Ramírez J, Hernández-Fuentes GA, Palomares CS, Diaz-Martinez J, Navarro-Cuellar JI, Calvo-Soto P, Duran C, Tapia-Vargas R, Espíritu-Mojarro AC, Figueroa-Gutiérrez A, et al. Vascular Access Type and Survival Outcomes in Hemodialysis Patients: A Seven-Year Cohort Study. Medicina. 2025; 61(4):584. https://doi.org/10.3390/medicina61040584
Chicago/Turabian StyleVenegas-Ramírez, Jesús, Gustavo A. Hernández-Fuentes, Claudia S. Palomares, Janet Diaz-Martinez, Joel I. Navarro-Cuellar, Patricia Calvo-Soto, Carlos Duran, Rosa Tapia-Vargas, Ana C. Espíritu-Mojarro, Alejandro Figueroa-Gutiérrez, and et al. 2025. "Vascular Access Type and Survival Outcomes in Hemodialysis Patients: A Seven-Year Cohort Study" Medicina 61, no. 4: 584. https://doi.org/10.3390/medicina61040584
APA StyleVenegas-Ramírez, J., Hernández-Fuentes, G. A., Palomares, C. S., Diaz-Martinez, J., Navarro-Cuellar, J. I., Calvo-Soto, P., Duran, C., Tapia-Vargas, R., Espíritu-Mojarro, A. C., Figueroa-Gutiérrez, A., Guzmán-Esquivel, J., Antonio-Flores, D., Meza-Robles, C., & Delgado-Enciso, I. (2025). Vascular Access Type and Survival Outcomes in Hemodialysis Patients: A Seven-Year Cohort Study. Medicina, 61(4), 584. https://doi.org/10.3390/medicina61040584