Usefulness of the Córdoba Equation for Estimating Body Fat When Determining the Level of Risk of Developing Diabetes Type 2 or Prediabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement and Data Collection
2.2. Body Fat Estimation and Risk Scales
- (1)
- FINDRISC: This index takes into account sex, age, BMI, waist circumference, physical activity, consumption of fruits and vegetables, use of antihypertensive medication, history of hyperglycemia, and family history of diabetes. A score higher than 15 indicates a high risk [50].
- (2)
- QDiabetes score (QD-score): This model incorporates variables including age, sex, ethnicity, height, weight, blood glucose levels, smoking status, history of stroke, family history of diabetes, use of antihypertensive medication, presence of depression or schizophrenia, and use of steroids or statins. It also considers a history of polycystic ovary syndrome or gestational diabetes. In the absence of established cut-off points, a relative risk of ≥3 was defined as indicative of a high-risk profile [51].
- (3)
- Canrisk: This index includes information on sex, age, physical activity, fruit and vegetable consumption, history of hypertension, past hyperglycemia, family history of diabetes, ethnicity, and education level. A score above 43 suggests a higher diabetes risk [52].
- (4)
- Trinidad Risk Assessment Questionnaire for Type 2 Diabetes Mellitus (TRAQ-D): This model accounts for age, sex, BMI, smoking history, family history of diabetes, and ethnicity [53].
- (5)
- Prediabetes risk scale for Qatar (PRISQ Scale): This tool assesses prediabetes risk, incorporating factors such as age, sex, waist circumference, BMI, and blood pressure. In the Qatari population, a score ≥16 indicates a high risk, a threshold that was also found to be valid in the Spanish population [54].
2.3. Statistical Analysis
3. Results
4. Discussion
- Increased lipolysis and free fatty acid release: VAT is more metabolically active than SAT and releases higher amounts of free fatty acids (FFAs) into the portal circulation, contributing to hepatic insulin resistance [68].
- Secretion of pro-inflammatory cytokines: Visceral adipose tissue (VAT) generates inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), which disrupt insulin signaling and contribute to a state of chronic low-grade inflammation [69].
- Ectopic fat accumulation: Excess visceral adipose tissue (VAT) can result in lipid accumulation in non-adipose tissues, such as the liver, muscles, and pancreas, further aggravating insulin resistance and beta-cell dysfunction [70].
- Dual-Energy X-ray Absorptiometry (DXA). DXA is widely regarded as the gold standard for analyzing body composition, providing precise measurements of total fat mass, lean mass, and visceral fat [72]. Studies have shown that a higher VAT volume and lower lean mass, as measured by DXA, significantly predict T2D incidence, independent of BMI [73]. For example, a prospective cohort study involving more than 1800 adults found that individuals in the highest VAT tertile (measured by DXA) had a 3.5-fold higher risk of developing T2D compared to those in the lowest tertile [74].
- Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). Both MRI and CT provide highly accurate evaluations of adipose tissue distribution, enabling differentiation between VAT and SAT [75]. Some studies using MRI have demonstrated that progressive VAT accumulation is a key predictor of impaired insulin sensitivity and T2D development [76].
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arroyave, F.; Montaño, D.; Lizcano, F. Diabetes Mellitus Is a Chronic Disease that Can Benefit from Therapy with Induced Pluripotent Stem Cells. Int. J. Mol. Sci. 2020, 21, 8685. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kolarić, V.; Svirčević, V.; Bijuk, R.; Zupančič, V. Chronic complications of diabetes and quality of life. Acta Clin. Croat. 2022, 61, 520–527. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eizirik, D.L.; Pasquali, L.; Cnop, M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: Different pathways to failure. Nat. Rev. Endocrinol. 2020, 16, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef]
- Mizukami, H.; Kudoh, K. Diversity of pathophysiology in type 2 diabetes shown by islet pathology. J. Diabetes Investig. 2022, 13, 6–13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruze, R.; Liu, T.; Zou, X.; Song, J.; Chen, Y.; Xu, R.; Yin, X.; Xu, Q. Obesity and type 2 diabetes mellitus: Connections in epidemiology, pathogenesis, and treatments. Front. Endocrinol. 2023, 14, 1161521. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Di Murro, E.; Di Giuseppe, G.; Soldovieri, L.; Moffa, S.; Improta, I.; Capece, U.; Nista, E.C.; Cinti, F.; Ciccarelli, G.; Brunetti, M.; et al. Physical Activity and Type 2 Diabetes: In Search of a Personalized Approach to Improving β-Cell Function. Nutrients 2023, 15, 4202. [Google Scholar] [CrossRef]
- Shojima, N.; Yamauchi, T. Progress in genetics of type 2 diabetes and diabetic complications. J. Diabetes Investig. 2023, 14, 503–515. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; Zhang, Z.; Zhang, K.; Ge, X.; Sun, R.; Zhai, X. Early detection of type 2 diabetes risk: Limitations of current diagnostic criteria. Front. Endocrinol. 2023, 14, 1260623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Majety, P.; Lozada Orquera, F.A.; Edem, D.; Hamdy, O. Pharmacological approaches to the prevention of type 2 diabetes mellitus. Front. Endocrinol. 2023, 14, 1118848. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes-Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tinajero, M.G.; Malik, V.S. An Update on the Epidemiology of Type 2 Diabetes: A Global Perspective. Endocrinol. Metab. Clin. N. Am. 2021, 50, 337–355. [Google Scholar] [CrossRef] [PubMed]
- Chivese, T.; Hoegfeldt, C.A.; Werfalli, M.; Yuen, L.; Sun, H.; Karuranga, S.; Li, N.; Gupta, A.; Immanuel, J.; Divakar, H.; et al. IDF Diabetes Atlas: The prevalence of pre-existing diabetes in pregnancy—A systematic reviewand meta-analysis of studies published during 2010–2020. Diabetes Res. Clin. Pract. 2022, 183, 109049. [Google Scholar] [CrossRef] [PubMed]
- Harreiter, J.; Roden, M. Diabetes mellitus–Definition, Klassifikation, Diagnose, Screening und Prävention (Update 2023). Wien. Klin. Wochenschr. 2023, 135 (Suppl. S1), 7–17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ogurtsova, K.; Guariguata, L.; Barengo, N.C.; Ruiz, P.L.; Sacre, J.W.; Karuranga, S.; Sun, H.; Boyko, E.J.; Magliano, D.J. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Pract. 2022, 183, 109118. [Google Scholar] [CrossRef] [PubMed]
- Mestre-Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Tomás-Gil, P.; Paublini, H.; López-González, A.A. Influence of sociodemographic variables and healthy habits on the values of type 2 diabetes risk scales. Acad. J. Health Sci. 2024, 39, 99–106. [Google Scholar] [CrossRef]
- Haw, J.S.; Shah, M.; Turbow, S.; Egeolu, M.; Umpierrez, G. Diabetes Complications in Racial and Ethnic Minority Populations in the USA. Curr. Diabetes Rep. 2021, 21, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Paudel, G.; Vandelanotte, C.; Dahal, P.K.; Biswas, T.; Yadav, U.N.; Sugishita, T.; Rawal, L. Self-care behaviours among people with type 2 diabetes mellitus in South Asia: A systematic review and meta-analysis. J. Glob. Health 2022, 12, 04056. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kalan Farmanfarma, K.H.; Ansari-Moghaddam, A.; Zareban, I.; Adineh, H.A. Prevalence of type 2 diabetes in Middle-East: Systematic review & meta-analysis. Prim. Care Diabetes 2020, 14, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Ikechi, I.S.; Ejike-Odeh, E.J.; Ifeanyichukwu, O.E.; Ogbu, C.; Agwu, U.U.; Ife, E. Prevalence of prediabetes among first degree relatives of type 2 diabetes individuals in Abakaliki, Ebonyi State Nigeria. Acad. J. Health Sci. 2023, 38, 85–88. [Google Scholar] [CrossRef]
- Imerb, N.; Thonusin, C.; Chattipakorn, N.; Chattipakorn, S.C. Aging, obese-insulin resistance, and bone remodeling. Mech. Ageing Dev. 2020, 191, 111335. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.E.; Wong, T.Y. Diabetic retinopathy: Looking forward to 2030. Front. Endocrinol. 2023, 13, 1077669. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, X.; Lu, L.; Hou, W.; Huang, T.; Chen, X.; Qi, J.; Zhao, Y.; Zhu, M. Epigenetics in the pathogenesis of diabetic nephropathy. Acta Biochim. Biophys. Sin. 2022, 54, 163–172. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Magdaleno Marcos, G.; Martín Serradilla, J.I.; de Andrés de Llano, J.I.; Andrés Alberola, I.; Per Contreras, F.E.; Eirín Feijoo, M.; Fernández Morado, C. Tendencias en la hospitalización de complicaciones neurológicas de diabetes mellitus en el área de Palencia en el periodo 1993–2017. Acad. J. Health Sci. 2023, 38, 95–99. [Google Scholar] [CrossRef]
- Karagiannidis, E.; Moysidis, D.V.; Papazoglou, A.S.; Panteris, E.; Deda, O.; Stalikas, N.; Sofidis, G.; Kartas, A.; Bekiaridou, A.; Giannakoulas, G.; et al. Prognostic significance of metabolomic biomarkers in patients with diabetes mellitus and coronary artery disease. Cardiovasc. Diabetol. 2022, 21, 70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Georgakis, M.K.; Harshfield, E.L.; Malik, R.; Franceschini, N.; Langenberg, C.; Wareham, N.J.; Markus, H.S.; Dichgans, M. Diabetes Mellitus, Glycemic Traits, and Cerebrovascular Disease: A Mendelian Randomization Study. Neurology 2021, 96, e1732–e1742. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caruso, P.; Maiorino, M.I.; Longo, M.; Porcellini, C.; Matrone, R.; Digitale Selvaggio, L.; Gicchino, M.; Carbone, C.; Scappaticcio, L.; Bellastella, G.; et al. Liraglutide for Lower Limb Perfusion in People With Type 2 Diabetes and Peripheral Artery Disease: The STARDUST Randomized Clinical Trial. JAMA Netw. Open 2024, 7, e241545. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int. J. Mol. Sci. 2020, 21, 1835. [Google Scholar] [CrossRef]
- Ma, C.X.; Ma, X.N.; Guan, C.H.; Li, Y.D.; Mauricio, D.; Fu, S.B. Cardiovascular disease in type 2 diabetes mellitus: Progress toward personalized management. Cardiovasc. Diabetol. 2022, 21, 74. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aguiló Juanola, M.C.; López-González, A.A.; Tomás-Gil, P.; Paublini, H.; Tárraga-López, P.J.; Ramírez-Manent, J.I. Influence of tobacco consumption on the values of different cardiometabolic risk scales in 418,343 spanish workers. Acad. J. Health Sci. 2024, 39, 92–98. [Google Scholar] [CrossRef]
- Sastre-Alzamora, T.; Tomás-Gil, P.; Paublini, H.; Pallarés, L.; Ramírez-Manent, J.I.; López-González, A.A. Relationship between heart age and cardiometabolic risk scales in 139634 Spanish workers. Acad. J. Health Sci. 2024, 39, 141–148. [Google Scholar] [CrossRef]
- Zelig, R.; Samavat, H.; Duda, P.; Singer, S.; Feldman, C.; LaSalle, P.; Muhammad, E.; Touger-Decker, R. Screening for diabetes risk using the diabetes risk test and point-of-care hemoglobin A1C values in adults seen in a dental clinic. Quintessence Int. 2023, 54, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, S.C.; Taylor, H.J.; Liang, Y.; Manikpurage, H.D.; Pennells, L.; Foguet, C.; Abraham, G.; Gibson, J.T.; Jiang, X.; Liu, Y.; et al. Integrated clinical risk prediction of type 2 diabetes with a multifactorial polygenic risk score. medRxiv 2024. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ward, E.D.; Hopkins, W.A.; Shealy, K. Evaluation of the Use of a Diabetes Risk Test to Identify Prediabetes in an Employee Wellness Screening. J. Pharm. Pract. 2022, 35, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.L.; Koh, Y.L.; Tan, N.C. The utility of diabetes risk score items as predictors of incident type 2 diabetes in Asian populations: An evidence-based review. Diabetes Res. Clin. Pract. 2016, 122, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.; Mora, S. Risk prediction for health outcomes in type 2 diabetes: Utility of a polysocial risk score? Lancet Healthy Longev. 2025, 6, 100677. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Herrero, M.T.; Ramírez-Iñiguez de la Torre, M.V.; López González, A.A. Estimación del nivel de riesgo cardiometabolico relacionado con obesidad en trabajadores sanitarios españoles. Acad. J. Health Sci. 2023, 38, 89–95. [Google Scholar] [CrossRef]
- Garg, U.K.; Mathur, N.; Sahlot, R.; Tiwari, P.; Sharma, B.; Saxena, A.; Jainaw, R.K.; Agarwal, L.; Gupta, S.; Mathur, S.K. Abdominal fat depots and their association with insulin resistance in patients with type 2 diabetes. PLoS ONE 2023, 18, e0295492. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martins, F.F.; Marinho, T.S.; Cardoso, L.E.M.; Barbosa-da-Silva, S.; Souza-Mello, V.; Aguila, M.B.; Mandarim-De-Lacerda, C.A. Semaglutide (GLP-1 receptor agonist) stimulates browning on subcutaneous fat adipocytes and mitigates inflammation and endoplasmic reticulum stress in visceral fat adipocytes of obese mice. Cell Biochem. Funct. 2022, 40, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Ali, M.; Zehra, T.; Haider Zaidi, S.A.; Tariq, R. Intermittent Fasting: A User-Friendly Method for Type 2 Diabetes Mellitus. Cureus 2021, 13, e19348. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khoramipour, K.; Chamari, K.; Hekmatikar, A.A.; Ziyaiyan, A.; Taherkhani, S.; Elguindy, N.M.; Bragazzi, N.L. Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients 2021, 13, 1180. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Xu, C.; Liu, J.; Chen, J.; Li, G.; Huang, B.; Pan, Y.; Zhang, Y.; Wei, Q.; et al. Circular RNA circGlis3 protects against islet β-cell dysfunction and apoptosis in obesity. Nat. Commun. 2023, 14, 351. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dambha-Miller, H.; Day, A.J.; Strelitz, J.; Irving, G.; Griffin, S.J. Behaviour change, weight loss and remission of Type 2 diabetes: A community-based prospective cohort study. Diabet. Med. 2020, 37, 681–688. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lemp, J.M.; Bommer, C.; Xie, M.; Michalik, F.; Jani, A.; Davies, J.I.; Bärnighausen, T.; Vollmer, S.; Geldsetzer, P. Quasi-experimental evaluation of a nationwide diabetes prevention programme. Nature 2023, 624, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Figares Vicioso, M.P.; del Barrio Fernández, J.L.; López-González, A.A.; Ramírez-Manent, J.I.; Vicente Herrero, M.T. Prevalencia de factores de riesgo cardiometabólico. Comparativa sector Comercio vs. Industria y variables asociadas. Acad. J. Health Sci. 2024, 39, 59–66. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47 (Suppl. S1), S20–S42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marina Arroyo, M.; Ramírez Gallegos, I.; López-González, A.A.; Vicente-Herrero, M.T.; Vallejos, D.; Tárraga López, P.J.; Ramírez Manent, J.I. Equation Córdoba body fat values according to sociodemographic variables and healthy habits in 386924 Spanish workers. Acad. J. Health Sci. 2024, 39, 31–39. [Google Scholar] [CrossRef]
- Gómez-Ambrosi, J.; Silva, C.; Catalán, V.; Rodríguez, A.; Galofré, J.C.; Escalada, J.; Valentí, V.; Rotellar, F.; Romero, S.; Ramírez, B.; et al. Clinical usefulness of a new equation for estimating body fat. Diabetes Care 2012, 35, 383–388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yildiz, T.; Zuhur, S.; Shafi Zuhur, S. Diabetes Risk Assessment and Awareness in a University Academics and Employees. Med. Bull. Sisli Etfal Hosp. 2021, 55, 524–531. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hippisley-Cox, J.; Coupland, C. Development and validation of QDiabetes-2018 risk prediction algorithm to estimate future risk of type 2 diabetes: Cohort study. BMJ 2017, 359, j5019. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bird, M.; Cerutti, S.; Jiang, Y.; Srugo, S.A.; de Groh, M. Implementation of the CANRISK Tool: A Qualitative Exploration Among Allied Health Professionals in Canada. Can. J. Diabetes 2022, 46, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Latcham, Z.; Seereeram, R.; Kamalodeen, A.; Sanchez, S.; Deonarine, U.; Sinanan, R.; Mungrue, K. TRAQ-D (Trinidad Risk Assessment Questionnaire for Type 2 Diabetes Mellitus): A cheap, reliable, non-invasive screening tool for diabetes. Br. J. Diabetes Vasc. Dis. 2010, 10, 187–192. [Google Scholar] [CrossRef]
- Abbas, M.; Mall, R.; Errafii, K.; Lattab, A.; Ullah, E.; Bensmail, H.; Arredouani, A. Simple risk score to screen for prediabetes: A cross-sectional study from the Qatar Biobank cohort. J. Diabetes Investig. 2021, 12, 988–997. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Obrador de Hevia, J.; López-González, Á.A.; Ramírez-Manent, J.I.; Paublini Oliveira, H.; Tárraga López, P.J.; Riutord-Sbert, P. Relationship between alcohol consumption and other variables with the values of different cardiovascular risk factors in 139634 Spanish workers. Acad. J. Health Sci. 2024, 39, 132–141. [Google Scholar] [CrossRef]
- Chandrasekaran, P.; Weiskirchen, R. The Role of Obesity in Type 2 Diabetes Mellitus-An Overview. Int. J. Mol. Sci. 2024, 25, 1882. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Echouffo-Tcheugui, J.B.; Selvin, E. Prediabetes and What It Means: The Epidemiological Evidence. Annu. Rev. Public Health 2021, 42, 59–77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salmón-Gómez, L.; Catalán, V.; Frühbeck, G.; Gómez-Ambrosi, J. Relevance of body composition in phenotyping the obesities. Rev. Endocr. Metab. Disord. 2023, 24, 809–823. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, Y.; Li, D.; Vermund, S.H. Advantages and Limitations of the Body Mass Index (BMI) to Assess Adult Obesity. Int. J. Environ. Res. Public Health 2024, 21, 757. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tan, C.; Chan, K.E.; Ng, C.H.; Tseng, M.; Syn, N.; Tang, A.S.P.; Chin, Y.H.; Lim, W.H.; Tan, D.J.H.; Chew, N.; et al. DEXA Scan Body Fat Mass Distribution in Obese and Non-Obese Individuals and Risk of NAFLD-Analysis of 10,865 Individuals. J. Clin. Med. 2022, 11, 6205. [Google Scholar] [CrossRef]
- He, J.; Zhang, B.; Fan, Y.; Wang, Y.; Zhang, M.; Li, C.; Zhang, L.; Guo, P.; Zhang, M. Comparison of bioelectrical body and visceral fat indices and anthropometric measures in relation to type 2 diabetes by sex among Chinese adults, a cross-sectional study. Front. Public Health 2023, 11, 1001397. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Idilman, I.S.; Yildiz, A.E.; Karaosmanoglu, A.D.; Ozmen, M.N.; Akata, D.; Karcaaltincaba, M. Proton density fat fraction: Magnetic resonance imaging applications beyond the liver. Diagn. Interv. Radiol. 2022, 28, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Marina Arroyo, M.; Ramírez Gallegos, I.; López-González, Á.A.; Vicente-Herrero, M.T.; Vallejos, D.; Sastre-Alzamora, T.; Manent, J.I.R. Usefulness of the ECORE-BF Scale to Determine Atherogenic Risk in 386,924 Spanish Workers. Nutrients 2024, 16, 2434. [Google Scholar] [CrossRef]
- Hunt, S.C.; Davidson, L.E.; Adams, T.D.; Ranson, L.; McKinlay, R.D.; Simper, S.C.; Litwin, S.E. Associations of Visceral, Subcutaneous, Epicardial, and Liver Fat with Metabolic Disorders up to 14 Years After Weight Loss Surgery. Metab. Syndr. Relat. Disord. 2021, 19, 83–92. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bensussen, A.; Torres-Magallanes, J.A.; Roces de Álvarez-Buylla, E. Molecular tracking of insulin resistance and inflammation development on visceral adipose tissue. Front. Immunol. 2023, 14, 1014778. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kolb, H. Obese visceral fat tissue inflammation: From protective to detrimental? BMC Med. 2022, 20, 494. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yamazaki, H.; Tauchi, S.; Machann, J.; Haueise, T.; Yamamoto, Y.; Dohke, M.; Hanawa, N.; Kodama, Y.; Katanuma, A.; Stefan, N.; et al. Fat Distribution Patterns and Future Type 2 Diabetes. Diabetes 2022, 71, 1937–1945. [Google Scholar] [CrossRef] [PubMed]
- Aragón-Herrera, A.; Moraña-Fernández, S.; Otero-Santiago, M.; Anido-Varela, L.; Campos-Toimil, M.; García-Seara, J.; Román, A.; Seijas, J.; García-Caballero, L.; Rodríguez, J.; et al. The lipidomic and inflammatory profiles of visceral and subcutaneous adipose tissues are distinctly regulated by the SGLT2 inhibitor empagliflozin in Zucker diabetic fatty rats. Biomed. Pharmacother. 2023, 161, 114535. [Google Scholar] [CrossRef] [PubMed]
- Gugliucci, A. Biomarkers of dysfunctional visceral fat. Adv. Clin. Chem. 2022, 109, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Jiang, S.; Pan, B.; Xie, W.; Meng, J. Ectopic and visceral fat deposition in aging, obesity, and idiopathic pulmonary fibrosis: An interconnected role. Lipids Health Dis. 2023, 22, 201. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maskarinec, G.; Shvetsov, Y.B.; Wong, M.C.; Garber, A.; Monroe, K.; Ernst, T.M.; Buchthal, S.D.; Lim, U.; Le Marchand, L.; Heymsfield, S.B.; et al. Subcutaneous and visceral fat assessment by DXA and MRI in older adults and children. Obesity 2022, 30, 920–930. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tornero-Aguilera, J.F.; Villegas-Mora, B.E.; Clemente-Suárez, V.J. Differences in Body Composition Analysis by DEXA, Skinfold and BIA Methods in Young Football Players. Children 2022, 9, 1643. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dokpuang, D.; Zhiyong Yang, J.; Nemati, R.; He, K.; Plank, L.D.; Murphy, R.; Lu, J. Magnetic resonance study of visceral, subcutaneous, liver and pancreas fat changes after 12 weeks intermittent fasting in obese participants with prediabetes. Diabetes Res. Clin. Pract. 2023, 202, 110775. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, A.; Ziyab, A.H.; Mohammad, T. Anthropometric and DXA-derived measures of body composition in relation to pre-diabetes among adults. BMJ Open Diabetes Res. Care 2023, 11, e003412. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Borga, M.; Ahlgren, A.; Romu, T.; Widholm, P.; Dahlqvist Leinhard, O.; West, J. Reproducibility and repeatability of MRI-based body composition analysis. Magn. Reson. Med. 2020, 84, 3146–3156. [Google Scholar] [CrossRef] [PubMed]
- Saponaro, C.; Sabatini, S.; Gaggini, M.; Carli, F.; Rosso, C.; Positano, V.; Armandi, A.; Caviglia, G.P.; Faletti, R.; Bugianesi, E.; et al. Adipose tissue dysfunction and visceral fat are associated with hepatic insulin resistance and severity of NASH even in lean individuals. Liver Int. 2022, 42, 2418–2427. [Google Scholar] [CrossRef] [PubMed]
- López-González, A.A.; Ramírez Manent, J.I.; Vicente-Herrero, M.T.; García Ruiz, E.; Albaladejo Blanco, M.; López Safont, N. Prevalencia de diabesidad en población laboral española: Influencia de variables sociodemográficas y consumo de tabaco. An. Sist. Sanit. Navar. 2022, 45, e0977. (In Spanish) [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Molina-Luque, R.; Yañez, A.M.; Bennasar-Veny, M.; Romero-Saldaña, M.; Molina-Recio, G.; López-González, Á.A. A Comparison of Equation Córdoba for Estimation of Body Fat (ECORE-BF) with Other Prediction Equations. Int. J. Environ. Res. Public Health 2020, 17, 7940. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Okawa, Y.; Mitsuhashi, T.; Tsuda, T. The Asia-Pacific Body Mass Index Classification and New-Onset Chronic Kidney Disease in Non-Diabetic Japanese Adults: A Community-Based Longitudinal Study from 1998 to 2023. Biomedicines 2025, 13, 373. [Google Scholar] [CrossRef]
Men | Women | Total | ||
---|---|---|---|---|
n = 246,061 | n = 172,282 | n = 418,343 | ||
Mean (SD) | Mean (SD) | Mean (SD) | p-Value | |
Age | 40.6 (11.1) | 39.6 (10.8) | 40.2 (11.0) | <0.0001 |
Height | 174.6 (7.0) | 161.8 (6.5) | 169.4 (9.3) | <0.0001 |
Weight | 81.4 (14.7) | 66.2 (14.0) | 75.1 (16.2) | <0.0001 |
Waist | 86.2 (11.1) | 74.8 (10.6) | 81.5 (12.2) | <0.0001 |
Systolic BP | 128.2 (15.5) | 117.4 (15.7) | 123.7 (16.5) | <0.0001 |
Diastolic BP | 77.8 (11.0) | 72.6 (10.4) | 75.6 (11.0) | <0.0001 |
Cholesterol | 192.6 (38.9) | 190.6 (35.8) | 191.8 (37.7) | <0.0001 |
HDL-c | 50.3 (8.5) | 56.8 (8.7) | 53.0 (9.1) | <0.0001 |
Non-HDL cholesterol | 144.9 (41.4) | 139.8 (39.6) | 142.9 (40.8) | <0.0001 |
LDL-c | 118.0 (36.7) | 116.1 (34.8) | 117.2 (35.9) | <0.0001 |
Triglycerides | 123.7 (86.4) | 89.1 (46.2) | 109.5 (74.6) | <0.0001 |
Glycemia | 93.3 (21.3) | 87.8 (15.1) | 91.0 (19.2) | <0.0001 |
% | % | % | p-value | |
Under 30 years | 18.8 | 20.7 | 19.6 | <0.0001 |
30–39 years | 27.6 | 29.7 | 28.4 | |
40–49 years | 30.0 | 29.6 | 29.9 | |
50–59 years | 19.7 | 16.8 | 18.5 | |
60–69 years | 3.9 | 3.2 | 3.6 | |
Economic class I | 4.9 | 6.9 | 5.7 | <0.0001 |
Economic class II | 14.9 | 23.4 | 18.4 | |
Economic class III | 80.3 | 69.7 | 75.9 | |
No tobacco consumption | 66.6 | 67.2 | 66.9 | <0.0001 |
Tobacco consumption | 33.4 | 32.8 | 33.2 |
Men | Women | |||||
---|---|---|---|---|---|---|
n | Mean (SD) | p-Value | n | Mean (SD) | p-Value | |
QD-score < 3 | 224,002 | 25.0 (4.9) | <0.001 | 153,641 | 33.8 (5.6) | <0.001 |
QD-score > 3 | 22,059 | 35.9 (3.8) | 18,641 | 47.6 (4.4) | ||
FINDRISC low-normal | 237,936 | 25.2 (4.5) | <0.001 | 167,989 | 32.6 (5.1) | <0.001 |
FINDRISC high-very high | 8125 | 34.6 (4.4) | 4293 | 47.9 (5.2) | ||
Canrisk low-normal | 257,763 | 25.3 (4.1) | <0.001 | 166,377 | 36.5 (5.4) | <0.001 |
Canrisk high | 28,298 | 33.7 (4.6) | 5905 | 48.3 (5.3) | ||
TRAQ-D low | 238,776 | 25.6 (5.1) | <0.001 | 169,849 | 36.3 (6.0) | <0.001 |
TRAQ-D high-very high | 7285 | 36.0 (5.2) | 2433 | 49.6 (5.9) | ||
PRISQ normal | 119,402 | 21.8 (4.6) | <0.001 | 129,519 | 32.6 (5.4) | <0.001 |
PRISQ high | 126,659 | 29.2 (4.6) | 42,763 | 42.2 (6.2) |
Men | Women | |||||
---|---|---|---|---|---|---|
ECORE-BF Obesity | n | % | p-Value | n | % | p-Value |
QD-score < 3 | 224,002 | 27.6 | <0.001 | 153,641 | 40.3 | <0.001 |
QD-score > 3 | 22,059 | 99.3 | 18,641 | 99.8 | ||
FINDRISC low-normal | 237,936 | 34.4 | <0.001 | 167,989 | 30.8 | <0.001 |
FINDRISC high-very high | 8125 | 99.7 | 4293 | 99.5 | ||
Canrisk low-normal | 257,763 | 47.0 | <0.001 | 166,377 | 43.2 | <0.001 |
Canrisk high | 28,298 | 98.5 | 5905 | 99.7 | ||
TRAQ-D low | 238,776 | 51.4 | <0.001 | 169,849 | 44.4 | <0.001 |
TRAQ-D high-very high | 7285 | 99.6 | 2433 | 99.8 | ||
PRISQ normal | 119,402 | 19.5 | <0.001 | 129,519 | 30.9 | <0.001 |
PRISQ high | 126,659 | 84.1 | 42,763 | 88.2 |
Men n = 246,061 | Women n = 172,282 | |||
---|---|---|---|---|
AUC (95% CI) | Cut-off-Sens-Specif-Youden | AUC (95% CI) | Cut-off-Sens-Specif-Youden | |
QDScore > 3 | 0.970 (0.969–0.971) | 31.5-91.4-91.3-0.827 | 0.976 (0.975–0.977) | 42.0-92.4-92.3-0.847 |
FINDRISC high-very high | 0.886 (0.884–0.889) | 30.3-81.0-80.9-0.619 | 0.929 (0.926–0.932) | 42.3-86.4-86.4-0.728 |
Canrisk high | 0.912 (0.910–0.914) | 29.6-83.7-83.5-0.672 | 0.941 (0.938–0.943) | 42.3-87.7-87.1-0.758 |
TRAQ-D high-very high | 0.907 (0.903–0.910) | 30.5-82.3-82.0-0.643 | 0.938 (0.933–0.944) | 42.9-87.1-87.1-0.742 |
PRISQ high | 0.888 (0.886–0.889) | 25.3-81.8-81.7-0.635 | 0.881 (0.879–0.883) | 37.1-80.3-80.0-0.603 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marina Arroyo, M.; Ramírez Gallegos, I.; Paublini, H.; López-González, Á.A.; Tárraga López, P.J.; Martorell Sánchez, C.; Sastre-Alzamora, T.; Ramírez-Manent, J.I. Usefulness of the Córdoba Equation for Estimating Body Fat When Determining the Level of Risk of Developing Diabetes Type 2 or Prediabetes. Medicina 2025, 61, 613. https://doi.org/10.3390/medicina61040613
Marina Arroyo M, Ramírez Gallegos I, Paublini H, López-González ÁA, Tárraga López PJ, Martorell Sánchez C, Sastre-Alzamora T, Ramírez-Manent JI. Usefulness of the Córdoba Equation for Estimating Body Fat When Determining the Level of Risk of Developing Diabetes Type 2 or Prediabetes. Medicina. 2025; 61(4):613. https://doi.org/10.3390/medicina61040613
Chicago/Turabian StyleMarina Arroyo, Marta, Ignacio Ramírez Gallegos, Hernán Paublini, Ángel Arturo López-González, Pedro J. Tárraga López, Cristina Martorell Sánchez, Tomás Sastre-Alzamora, and José Ignacio Ramírez-Manent. 2025. "Usefulness of the Córdoba Equation for Estimating Body Fat When Determining the Level of Risk of Developing Diabetes Type 2 or Prediabetes" Medicina 61, no. 4: 613. https://doi.org/10.3390/medicina61040613
APA StyleMarina Arroyo, M., Ramírez Gallegos, I., Paublini, H., López-González, Á. A., Tárraga López, P. J., Martorell Sánchez, C., Sastre-Alzamora, T., & Ramírez-Manent, J. I. (2025). Usefulness of the Córdoba Equation for Estimating Body Fat When Determining the Level of Risk of Developing Diabetes Type 2 or Prediabetes. Medicina, 61(4), 613. https://doi.org/10.3390/medicina61040613