Scapular Muscle Activation at Different Shoulder Abduction Angles During Pilates Reformer Arm Work Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedures
2.3. EMG Data Collection and Analysis
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahearn, E.L.; Greene, A.; Lasner, A. Some Effects of Supplemental Pilates Training on the Posture, Strength, and Flexibility of Dancers 17 to 22 Years of Age. J. Danc. Med. Sci. 2018, 22, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Saçlı, V.; Çatalbaş, M. The effect of Pilates exercises on functional movement screening: A systematic review. Adv. Health Exerc. 2025, 5, 8–14. [Google Scholar]
- Roller, M.; Kachingwe, A.; Beling, J.; Ickes, D.-M.; Cabot, A.; Shrier, G. Pilates reformer exercises for fall risk reduction in older adults: A randomized controlled trial. J. Bodyw. Mov. Ther. 2018, 22, 983–998. [Google Scholar] [CrossRef]
- Bulguroglu, I.; Guclu-Gunduz, A.; Yazici, G.; Ozkul, C.; Irkec, C.; Nazliel, B.; Batur-Caglayan, H.Z. The effects of Mat Pilates and Reformer Pilates in patients with Multiple Sclerosis: A randomized controlled study. NeuroRehabilitation 2017, 41, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Altunalan, T.; Çalik, M.; Kapanşahin, M. Effect of Eight Weeks of Reformer Pilates on Shoulder Proprioception Dynamic Stability and Functionality. Bezmialem Sci. 2024, 12, 239–245. [Google Scholar] [CrossRef]
- Escamilla, R.F.; Yamashiro, K.; Paulos, L.; Andrews, J.R. Shoulder muscle activity and function in common shoulder rehabilitation exercises. Sports Med. 2009, 39, 663–685. [Google Scholar] [CrossRef]
- Kibler, W.B.; Sciascia, A. The role of the scapula in preventing and treating shoulder instability. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 390–397. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, G.; Yang, J.; Li, Z. Effect of different loads on the shoulder in abduction postures: A finite element analysis. Sci. Rep. 2023, 13, 9490. [Google Scholar] [CrossRef]
- Ludewig, P.M.; Reynolds, J.F. The association of scapular kinematics and glenohumeral joint pathologies. J. Orthop. Sports Phys. Ther. 2009, 39, 90–104. [Google Scholar] [CrossRef]
- Ebaugh, D.D.; McClure, P.W.; Karduna, A.R. Scapulothoracic and glenohumeral kinematics following an external rotation fatigue protocol. J. Orthop. Sports Phys. Ther. 2006, 36, 557–571. [Google Scholar] [CrossRef]
- Cools, A.M.; Struyf, F.; De Mey, K.; Maenhout, A.; Castelein, B.; Cagnie, B. Rehabilitation of scapular dyskinesis: From the office worker to the elite overhead athlete. Br. J. Sports Med. 2014, 48, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, B.M.; Maluf, K.S.; Curran-Everett, D.; Davidson, B.S. Associations between cervical and scapular posture and the spatial distribution of trapezius muscle activity. J. Electromyogr. Kinesiol. 2014, 24, 542–549. [Google Scholar]
- Choi, W.J.; Cynn, H.S.; Lee, C.H.; Jeon, H.S.; Lee, J.H.; Jeong, H.J.; Yoon, T.L. Shrug exercises combined with shoulder abduction improve scapular upward rotator activity and scapular alignment in subjects with scapular downward rotation impairment. J. Electromyogr. Kinesiol. 2015, 25, 363–370. [Google Scholar]
- Ludewig, P.M.; Cook, T.M.; Nawoczenski, D.A. Three-dimensional scapular orientation and muscle activity at selected positions of humeral elevation. J. Orthop. Sports Phys. Ther. 1996, 24, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.Y.; Lee, J.S.; Mun, B.M.; Kim, T.H. A comparison of trapezius muscle activities of different shoulder abduction angles and rotation conditions during prone horizontal abduction. J. Phys. Ther. Sci. 2015, 27, 97–100. [Google Scholar]
- Kara, D.; Harput, G.; Duzgun, I. Shoulder-Abduction Angle and Trapezius Muscle Activity During Scapular-Retraction Exercise. J. Athl. Train. 2021, 56, 1327–1333. [Google Scholar] [PubMed]
- Megumi Wakuda de Abreu Vasconcelos, C.; Ricardo Lopes, C.; Martins Almeida, V.; Krause Neto, W.; Soares, E. Effect of Different Grip Position and Shoulder- Abduction Angle on Muscle Strength And Activation During The Seated Cable Row. Int. J. Strength Cond. 2023, 3, 1–13. [Google Scholar] [CrossRef]
- Guney-Deniz, H.; Harput, G.; Toprak, U.; Duzgun, I. Relationship Between Middle Trapezius Muscle Activation and Acromiohumeral Distance Change During Shoulder Elevation with Scapular Retraction. J. Sport Rehabil. 2019, 28, 266–271. [Google Scholar]
- Kulig, K.; Andrews, J.G.; Hay, J.G. Human strength curves. Exerc. Sport Sci. Rev. 1984, 12, 417–466. [Google Scholar]
- Inman, V.T.; Saunders, J.B.D.M.; Abbott, L.C. Observations on the function of the shoulder joint. J. Bone Jt. Surg. 1944, 26, 1–30. [Google Scholar]
- Richardson, J.T. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar]
- Elabd, A.M.; Ibrahim, A.R.; Elhafez, H.M.; Hussien, H.A.; Elabd, O.M. Efficacy of Kinesio Taping and Postural Correction Exercises on Levator Scapula Electromyographic Activities in Mechanical Cervical Dysfunction: A Randomized Blinded Clinical Trial. J. Manip. Physiol. Ther. 2020, 43, 588–596. [Google Scholar]
- Zanca, G.G.; Oliveira, A.B.; Ansanello, W.; Barros, F.C.; Mattiello, S.M. EMG of upper trapezius-electrode sites and association with clavicular kinematics. J. Electromyogr. Kinesiol. 2014, 24, 868–874. [Google Scholar]
- Patselas, T.; Karanasios, S.; Sakellari, V.; Fysekis, I.; Patselas, M.I.; Gioftsos, G. EMG activity of the serratus anterior and trapezius muscles during elevation and PUSH UP exercises. J. Bodyw. Mov. Ther. 2021, 27, 247–255. [Google Scholar]
- Castelein, B.; Cagnie, B.; Parlevliet, T.; Danneels, L.; Cools, A. Optimal Normalization Tests for Muscle Activation of the Levator Scapulae, Pectoralis Minor, and Rhomboid Major: An Electromyography Study Using Maximum Voluntary Isometric Contractions. Arch. Phys. Med. Rehabil. 2015, 96, 1820–1827. [Google Scholar]
- Kang, F.J.; Ou, H.L.; Lin, K.Y.; Lin, J.J. Serratus Anterior and Upper Trapezius Electromyographic Analysis of the Push-Up Plus Exercise: A Systematic Review and Meta-Analysis. J. Athl. Train. 2019, 54, 1156–1164. [Google Scholar]
- Mendez-Rebolledo, G.; Orozco-Chavez, I.; Morales-Verdugo, J.; Ramirez-Campillo, R.; Cools, A.M.J. Electromyographic analysis of the serratus anterior and upper trapezius in closed kinetic chain exercises performed on different unstable support surfaces: A systematic review and meta-analysis. PeerJ 2022, 10, e13589. [Google Scholar]
- Kibler, W.B.; Ludewig, P.M.; McClure, P.W.; Michener, L.A.; Bak, K.; Sciascia, A.D. Clinical implications of scapular dyskinesis in shoulder injury: The 2013 consensus statement from the ‘Scapular Summit’. Br. J. Sports Med. 2013, 47, 877–885. [Google Scholar]
- Kinney, E.; Wusthoff, J.; Zyck, A.; Hatzel, B.; Vaughn, D.; Strickler, T.; Glass, S. Activation of the trapezius muscle during varied forms of Kendall exercises. Phys. Ther. Sport 2008, 9, 3–8. [Google Scholar]
- Wickham, J.; Pizzari, T.; Stansfeld, K.; Burnside, A.; Watson, L. Quantifying ‘normal’ shoulder muscle activity during abduction. J. Electromyogr. Kinesiol. 2010, 20, 212–222. [Google Scholar] [CrossRef]
- Johnson, G.R.; Pandyan, A.D. The activity in the three regions of the trapezius under controlled loading conditions—An experimental and modelling study. Clin. Biomech. 2005, 20, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Cools, A.M.; Dewitte, V.; Lanszweert, F.; Notebaert, D.; Roets, A.; Soetens, B.; Cagnie, B.; Witvrouw, E.E. Rehabilitation of scapular muscle balance: Which exercises to prescribe? Am. J. Sports Med. 2007, 35, 1744–1751. [Google Scholar]
- Harput, G.; Deniz, H.G.; Düzgün, I. Upper to middle trapezius muscle activation ratio during scapular retraction exercise at different shoulder abduction angles. Turk. J. Physiother. Rehabil. 2017, 28, 111–117. [Google Scholar]
- McCabe, R.A.; Orishimo, K.F.; McHugh, M.P.; Nicholas, S.J. Surface electromygraphic analysis of the lower trapezius muscle during exercises performed below ninety degrees of shoulder elevation in healthy subjects. N. Am. J. Sports Phys. Ther. 2007, 2, 34–43. [Google Scholar]
- Ekstrom, R.A.; Donatelli, R.A.; Soderberg, G.L. Surface electromyographic analysis of exercises for the trapezius and serratus anterior muscles. J. Orthop. Sports Phys. Ther. 2003, 33, 247–258. [Google Scholar] [PubMed]
- Garcia, J.F.; Herrera, C.; Maciukiewicz, J.M.; Anderson, R.E.; Ribeiro, D.C.; Dickerson, C.R. Variation of muscle recruitment during exercises performed below horizontal arm elevation that target the lower trapezius: A repeated measures cross-sectional study on asymptomatic individuals. J. Electromyogr. Kinesiol. 2023, 70, 102777. [Google Scholar]
- Tsuruike, M.; Ellenbecker, T.S. Serratus anterior and lower trapezius muscle activities during multi-joint isotonic scapular exercises and isometric contractions. J. Athl. Train. 2015, 50, 199–210. [Google Scholar] [PubMed]
- Arlotta, M.; Lovasco, G.; McLean, L. Selective recruitment of the lower fibers of the trapezius muscle. J. Electromyogr. Kinesiol. 2011, 21, 403–410. [Google Scholar]
- Contemori, S.; Panichi, R.; Biscarini, A. Effects of scapular retraction/protraction position and scapular elevation on shoulder girdle muscle activity during glenohumeral abduction. Hum. Mov. Sci. 2019, 64, 55–66. [Google Scholar] [CrossRef]
- Ameln, D.J.D.; Chadwick, E.K.; Blana, D.; Murgia, A. The Stabilizing Function of Superficial Shoulder Muscles Changes Between Single-Plane Elevation and Reaching Tasks. IEEE Trans. Biomed. Eng. 2019, 66, 564–572. [Google Scholar]
- Hardwick, D.H.; Beebe, J.A.; McDonnell, M.K.; Lang, C.E. A comparison of serratus anterior muscle activation during a wall slide exercise and other traditional exercises. J. Orthop. Sports Phys. Ther. 2006, 36, 903–910. [Google Scholar]
- Neumann, D.A.; Camargo, P.R. Kinesiologic considerations for targeting activation of scapulothoracic muscles—Part 1: Serratus anterior. Braz. J. Phys. Ther. 2019, 23, 459–466. [Google Scholar] [PubMed]
- Son, M.; Kim, S. Comparison of infraspinatus and posterior deltoid muscle activities according to exercise mehods and forearm positions during shoulder external rotation exercise. Phys. Ther. Korea 2022, 29, 106–116. [Google Scholar]
- Meisterhans, M.; Bouaicha, S.; Meyer, D.C. Posterior and inferior glenosphere position in reverse total shoulder arthroplasty supports deltoid efficiency for shoulder flexion and elevation. J. Shoulder Elb. Surg. 2019, 28, 1515–1522. [Google Scholar]
- Reinold, M.M.; Wilk, K.E.; Fleisig, G.S.; Zheng, N.; Barrentine, S.W.; Chmielewski, T.; Cody, R.C.; Jameson, G.G.; Andrews, J.R. Electromyographic analysis of the rotator cuff and deltoid musculature during common shoulder external rotation exercises. J. Orthop. Sports Phys. Ther. 2004, 34, 385–394. [Google Scholar] [PubMed]
- Castelein, B.; Cagnie, B.; Parlevliet, T.; Cools, A. Superficial and Deep Scapulothoracic Muscle Electromyographic Activity During Elevation Exercises in the Scapular Plane. J. Orthop. Sports Phys. Ther. 2016, 46, 184–193. [Google Scholar]
- Behrsin, J.F.; Maguire, K. Levator Scapulae Action during Shoulder Movement: A Possible Mechanism for Shoulder Pain of Cervical Origin. Aust. J. Physiother. 1986, 32, 101–106. [Google Scholar]
- Alizadeh, M.H.; Daneshmandi, H.; Shademan, B.; Ahmadizad, S. The effect of exercise training on scapular position of muscle activity measured by EMG. World J. Sport Sci. 2009, 2, 48–52. [Google Scholar]
- Berckmans, K.R.; Castelein, B.; Borms, D.; Parlevliet, T.; Cools, A. Rehabilitation Exercises for Dysfunction of the Scapula: Exploration of Muscle Activity Using Fine-Wire EMG. Am. J. Sports. Med. 2021, 49, 2729–2736. [Google Scholar]
- Seo, S.I.; Jung, E.Y.; Mun, W.L.; Roh, S.Y. Changes in Shoulder Girdle Muscle Activity and Ratio During Pilates-Based Exercises. Life 2025, 15, 303. [Google Scholar] [CrossRef]
- Ou, H.-L.; Huang, T.-S.; Chen, Y.-T.; Chen, W.-Y.; Chang, Y.-L.; Lu, T.-W.; Chen, T.-H.; Lin, J.-J. Alterations of scapular kinematics and associated muscle activation specific to symptomatic dyskinesis type after conscious control. Man. Ther. 2016, 26, 97–103. [Google Scholar] [PubMed]
- De Mey, K.; Danneels, L.; Cagnie, B.; Van den Bosch, L.; Flier, J.; Cools, A.M. Kinetic chain influences on upper and lower trapezius muscle activation during eight variations of a scapular retraction exercise in overhead athletes. J. Sci. Med. Sport 2013, 16, 65–70. [Google Scholar] [PubMed]
- Kukulka, C.G.; Clamann, H.P. Comparison of the recruitment and discharge properties of motor units in human brachial biceps and adductor pollicis during isometric contractions. Brain Res. 1981, 219, 45–55. [Google Scholar] [PubMed]
Position | Description |
---|---|
Starting position | Half-kneeling, facing pulley bar, hands in neutral, shoulder flexion held at 90° |
Arm work, 0° (AW0) | Starting position, pull handle in shoulder extension direction 0° (2 s), hold (2 s), return to starting position (2 s) |
Arm work, 90° (AW90) | Starting position, pull handle in horizontal abduction 90° (2 s), hold (2 s), return to starting position (2 s) |
Arm work, 135° (AW135) | Starting position, pull handle in shoulder abduction 135° (2s), hold (2 s), return to starting position (2 s) |
Arm work, 160° (AW160) | Starting position, pull handle in shoulder abduction 160° (2 s), hold (2 s), return to starting position (2 s) |
Variable | Pilates Reformer AW Shoulder Angle [95% CI] | F (p) | ηp2 | Post Hoc | ||||
---|---|---|---|---|---|---|---|---|
0° | 90° | 135° | 160° | |||||
UT | CON | 2.25 ± 1.43 [1.63; 2.87] | 7.40 ± 3.95 * [5.69; 9.11] | 9.99 ± 5.20 *,† [7.74; 12.24] | 10.94 ± 5.55 *,† [8.53; 13.34] | 54.704 (<0.001) | 0.713 | 0 < 90 < 135, 160 |
ISO | 2.26 ± 1.60 [1.55; 2.97] | 10.99 ± 3.75 * [9.33; 12.66] | 13.34 ± 7.04 * [10.22; 16.47] | 14.73 ± 7.95 * [11.21; 18.26] | 43.659 (<0.001) | 0.675 | 0 < 90, 135, 160 | |
ECC | 2.01 ± 1.44 [1.37; 2.65] | 6.12 ± 2.44 * [5.04; 7.20] | 6.30 ± 3.11 * [4.92; 7.69] | 6.75 ± 3.89 * [5.02; 8.47] | 35.217 (<0.001) | 0.626 | 0 < 90, 135, 160 | |
MT | CON | 3.47 ± 1.87 [3.38; 4.29] | 10.49 ± 4.22 * [8.61; 12.36] | 3.27 ± 1.26 † [2.71; 3.83] | 5.90 ± 3.02 *,†,§ [4.56; 7.24] | 39.321 (<0.001) | 0.652 | 0, 135 < 160 < 90 |
ISO | 9.38 ± 5.80 [6.87; 11.89] | 20.83 ± 13.26 * [15.10; 26.56] | 6.81 ± 2.87 † [5.57; 8.05] | 11.96 ± 5.24 †,§ [9.70; 14.23] | 15.552 (<0.001) | 0.414 | 0 < 90 135 < 160 < 90 | |
ECC | 2.74 ± 1.31 [2.15; 3.32] | 5.16 ± 2.94 * [4.16; 6.76] | 2.19 ± 1.13 † [1.69; 2.69] | 3.93 ± 2.21 § [2.95; 4.90] | 13.698 (<0.001) | 0.395 | 0, 135 < 90 135 < 160 | |
LT | CON | 3.22 ± 1.38 [2.63; 3.82] | 11.92 ± 3.29 * [10.50; 13.34] | 13.78 ± 3.66 * [12.20; 15.37] | 10.89 ± 2.77 *,§ [9.69; 12.09] | 106.430 (<0.001) | 0.829 | 0 < 90 0 < 160 < 135 |
ISO | 4.30 ± 2.21 [3.36; 5.23] | 19.20 ± 3.98 * [17.52; 20.87] | 24.05 ± 6.22 *,† [21.42; 26.68] | 19.52 ± 6.48 *,§ [16.78; 22.25] | 95.503 (<0.001) | 0.806 | 0 < 90, 160 < 135 | |
ECC | 2.80 ± 2.01 [1.91; 3.70] | 7.48 ± 2.42 * [6.41; 8.55] | 9.14 ± 4.18 * [7.29; 11.00] | 7.13 ± 3.33 * [5.65; 8.61] | 23.957 (<0.001) | 0.533 | 0 < 90, 160, 135 | |
SA | CON | 1.98 ± 0.77 [1.64; 2.32] | 3.96 ± 1.63 * [3.24; 4.68] | 10.32 ± 3.33 *,† [8.84; 11.80] | 13.00 ± 4.45 *,†,§ [11.47; 14.53] | 149.709 (<0.001) | 0.877 | 0 < 90 < 135 < 160 |
ISO | 1.35 ± 0.76 [1.03; 1.67] | 3.24 ± 2.74 * [2.09; 4.40] | 15.07 ± 6.24 *,† [12.44; 17.70] | 18.31 ± 7.61 *,†,§ [15.09; 21.52] | 83.831 (<0.001) | 0.785 | 0 < 90 < 135 < 160 | |
ECC | 1.95 ± 0.90 [1.56; 2.34] | 2.99 ± 1.34 * [2.42; 3.57] | 7.37 ± 2.53 *,† [6.27; 8.46] | 8.44 ± 3.24 *,† [7.04; 9.84] | 62.538 (<0.001) | 0.740 | 0 < 90 < 135, 160 | |
PD | CON | 3.53 ± 1.66 [2.81; 4.25] | 5.35 ± 1.82 * [4.56; 6.14] | 3.20 ± 1.20 † [2.68; 3.71] | 2.60 ± 1.19 †,§ [2.09; 3.12] | 25.423 (<0.001) | 0.536 | 0 < 90 160 < 135 < 90 |
ISO | 14.70 ± 6.56 [11.93; 17.48] | 14.80 ± 5.29 [12.57; 17.03] | 6.83 ± 2.81 *,† [5.64; 8.01] | 4.83 ± 2.35 *,†,§ [3.84; 5.82] | 48.885 (<0.001) | 0.680 | 160 < 135 < 0, 90 | |
ECC | 3.38 ± 1.26 [2.83; 3.92] | 3.90 ± 2.45 [2.84; 4.96] | 2.06 ± 0.87 *,† [1.68; 2.44] | 1.81 ± 0.75 *,† [1.49; 2.14] | 13.276 (<0.001) | 0.376 | 135, 160 < 0, 90 | |
LS | CON | 2.12 ± 0.89 [1.76; 2.50] | 3.93 ± 1.37 * [3.36; 4.51] | 5.74 ± 1.90 *,† [4.94; 6.54] | 6.90 ± 2.36 *,†,§ [5.90; 7.89] | 80.954 (<0.001) | 0.779 | 0 < 90 < 135 < 160 |
ISO | 4.91 ± 2.46 [3.85; 5.98] | 6.40 ± 2.54 [5.31; 7.50] | 9.10 ± 3.71 *,† [7.50; 10.71] | 10.44 ± 4.08 *,†,§ [8.67; 12.21] | 27.688 (<0.001) | 0.557 | 0, 90 < 135 < 160 | |
ECC | 2.61 ± 1.38 [2.00; 3.22] | 3.81 ± 1.49 * [3.15; 4.48] | 4.32 ± 1.79 * [3.53; 5.11] | 5.43 ± 2.49 *,†,§ [4.21; 6.53] | 25.982 (<0.001) | 0.553 | 0 < 90, 135 < 160 |
Variable | Pilates Reformer AW Shoulder Angle [95% CI] | F (p) | ηp2 | Post Hoc | |||
---|---|---|---|---|---|---|---|
0° | 90° | 135° | 160° | ||||
UT/LT | 0.94 ± 0.77 [0.60; 1.29] | 0.67 ± 0.38 [0.51; 0.84] | 0.69 ± 0.45 [0.49; 0.89] | 0.95 ± 0.62 †,§ [0.67; 1.23] | 4.152 (0.032) | 0.165 | 90, 135 < 160 |
UT/SA | 1.72 ± 1.47 [1.06; 2.37] | 3.82 ± 2.65 * [2.65; 4.99] | 1.07 ± 0.61 † [0.79; 1.34] | 1.02 ± 0.77 † [0.79; 1.34] | 19.104 (<0.001) | 0.476 | 0, 135, 160 < 90 |
LS/LT | 1.18 ± 0.94 [0.79; 1.58] | 0.41 ± 0.21 * [0.32; 0.50] | 0.47 ± 0.24 * [0.36; 0.57] | 0.66 ± 0.33 *,†,§ [0.52; 0.80] | 15.192 (<0.001) | 0.398 | 90, 135 < 160 < 0 |
LS/SA | 2.39 ± 1.57 [1.70; 3.07] | 3.11 ± 2.40 [2.08; 4.15] | 0.65 ± 0.24 *,† [0.54; 0.75] | 0.62 ± 0.23 *,† [0.52; 0.72] | 21.347 (<0.001) | 0.492 | 135, 160 < 0, 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mun, W.-L.; Jung, E.-Y.; Lei, S.; Roh, S.-Y. Scapular Muscle Activation at Different Shoulder Abduction Angles During Pilates Reformer Arm Work Exercise. Medicina 2025, 61, 645. https://doi.org/10.3390/medicina61040645
Mun W-L, Jung E-Y, Lei S, Roh S-Y. Scapular Muscle Activation at Different Shoulder Abduction Angles During Pilates Reformer Arm Work Exercise. Medicina. 2025; 61(4):645. https://doi.org/10.3390/medicina61040645
Chicago/Turabian StyleMun, Woo-Lim, Eui-Young Jung, Shi Lei, and Su-Yeon Roh. 2025. "Scapular Muscle Activation at Different Shoulder Abduction Angles During Pilates Reformer Arm Work Exercise" Medicina 61, no. 4: 645. https://doi.org/10.3390/medicina61040645
APA StyleMun, W.-L., Jung, E.-Y., Lei, S., & Roh, S.-Y. (2025). Scapular Muscle Activation at Different Shoulder Abduction Angles During Pilates Reformer Arm Work Exercise. Medicina, 61(4), 645. https://doi.org/10.3390/medicina61040645