Evaluation of Anatomical Measurements of the Bulbus Oculi by Optical Biometry in the Eastern Region of Türkiye
Abstract
:1. Introduction
2. Material and Method
2.1. Optical Biometry Measurement (Lenstar LS900, Haag-Streit AG, Koeniz, Switzerland)
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoffmann, P.C.; Hütz, W.W. Analysis of biometry and prevalence data for corneal astigmatism in 23 239 eyes. J. Cataract. Refract. Surg. 2010, 36, 1479–1485. [Google Scholar] [CrossRef]
- Sherwin, J.C.; Mackey, D.A. Update on the epidemiology and genetics of myopic refractive error. Expert Rev. Ophthalmol. 2013, 8, 63–87. [Google Scholar] [CrossRef]
- He, M.; Chen, H.; Wang, W. Refractive errors, ocular biometry, and diabetic retinopathy: A comprehensive review. Curr. Eye Res. 2020, 46, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Nenning, M.; Hirnschall, N.; Findl OBiometry OAramberri, J.; Hoffer, K.J.; Olsen, T.; Savini, G.; Shammas, H.J. (Eds.) Intraocular Lens Calculations. Essentials in Ophthalmology; Springer: Cham, Switzerland, 2024; pp. 177–196. [Google Scholar]
- Hernández-López, I.; Estradé-Fernández, S.; Cárdenas-Díaz, T.; Batista-Leyva, A.J. Biometry, refractive errors, and the results of cataract surgery: A large sample study. J. Ophthalmol. 2021, 2021, 9918763. [Google Scholar] [CrossRef] [PubMed]
- Gaurisankar, Z.S.; van Rijn, G.A.; Lima, J.E.E.; Ilgenfritz, A.P.; Cheng, Y.; Haasnoot, G.W.; Luyten, G.P.; Beenakker, J.W.M. Correlations between ocular biometrics and refractive error: A systematic review and meta-analysis. Acta Ophthalmol. 2019, 97, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.B.; Hoffer, K.J.; Ribeiro, F.; Ribeiro, P.; O’Neill, J.G. Ocular biometric measurements in cataract surgery candidates in Portugal. PLoS ONE 2017, 12, e0184837. [Google Scholar] [CrossRef]
- Meng, J.; Wei, L.; He, W.; Qi, J.; Lu, Y.; Zhu, X. Lens thickness and associated ocular biometric factors among cataract patients in Shanghai. Eye Vis. 2021, 8, 22. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, Y.; Luo, Q.; Fan, W. Ocular biometric characteristics of cataract patients in western China. BMC Ophthalmol. 2018, 18, 99. [Google Scholar] [CrossRef]
- Lim, L.S.; Saw, S.M.; Jeganathan, V.S.E.; Tay, W.T.; Aung, T.; Tong, L.; Mitchell, P.; Wong, T.Y. Distribution and determinants of ocular biometric parameters in an Asian population: The Singapore Malay Eye Study. Investig. Ophthalmol. Vis. Sci. 2010, 51, 103–109. [Google Scholar] [CrossRef]
- Fotedar, R.; Wang, J.J.; Burlutsky, G.; Morgan, I.G.; Rose, K.; Wong, T.Y.; Mitchell, P. Distribution of axial length and ocular biometry measured using partial coherence laser interferometry (IOLMaster) in an older white population. Ophthalmology 2010, 117, 417–423. [Google Scholar] [CrossRef]
- Lee, K.E.; Klein, B.K.; Klein, R.; Quandt, Z.; Wong, T.Y. Age, Stature, and Education Associations with Ocular Dimensions in an Older White Population. Arch. Ophthalmol. 2009, 127, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Tamaoki, A.; Kojima, T.; Hasegawa, A.; Yamamoto, M.; Kaga, T.; Tanaka, K.; Ichikawa, K. Clinical evaluation of a new swept-source optical coherence biometer that uses individual refractive indices to measure axial length in cataract patients. Ophthalmic. Res. 2019, 62, 11–23. [Google Scholar] [CrossRef]
- Popov, I.; Waczulikova, I.; Stefanickova, J.; Valaskova, J.; Tomcikova, D.; Shiwani, H.A.; Delev, D.; Rodrigo, L.; Saxena, S.; Kruzliak, P.; et al. Analysis of biometric parameters of 2340 eyes measured with optical biometer Lenstar LS900 in a Caucasian population. Eur. J. Ophthalmol. 2022, 32, 213–220. [Google Scholar] [CrossRef]
- Suzuki, S.; Suzuki, Y.; Iwase, A.; Araie, M. Corneal thickness in an ophthalmologically normal Japanese population. Ophthalmology 2005, 112, 1327–1336. [Google Scholar] [CrossRef] [PubMed]
- Kelekele, J.T.K.; Kayembe, D.L.; Mwanza, J.C. Profile of central corneal thickness and corneal endothelial cell morpho-density in healthy Congolese eyes. BMC Ophthalmol. 2021, 21, 185. [Google Scholar] [CrossRef] [PubMed]
- Dimasi, D.P.; Burdon, K.P.; Craig, J.E. The genetics of central corneal thickness. Br. J. Ophthalmol. 2010, 94, 971–976. [Google Scholar] [CrossRef]
- Mashige, K.P. A review of corneal diameter, curvature, and thickness values and influencing factors. Afr. Vis. Eye Health 2013, 72, 185–194. [Google Scholar] [CrossRef]
- Read, S.A.; Collins, M.J.; Carney, L.G. A review of astigmatism and its possible genesis. Clin. Exp. Optom. 2007, 90, 5–19. [Google Scholar] [CrossRef]
- Fotouhi, A.; Hashemi, H.; Yekta, A.A.; Mohammad, K.; Khoob, M.K. Characteristics of astigmatism in a population of schoolchildren, Dezful, Iran. Optom. Vis. Sci. 2011, 88, 1054–1059. [Google Scholar] [CrossRef]
- Jamali, A.; Naghdi, T.; Abardeh, M.H.; Jamalzehi, M.; Khalajzadeh, M.; Kamangar, M.; Tehranchi, N.; Nabovati, P. Ocular biometry characteristics in cataract surgery candidates: A cross-sectional study. Med. Hypothesis Discov. Innov. Ophthalmol. 2021, 10, 11–17. [Google Scholar] [CrossRef]
- Nomura, H.; Ando, F.; Niino, N.; Shimokata, H.; Miyake, Y. The relationship between age and intraocular pressure in a Japanese population: The influence of central corneal thickness. Curr. Eye Res. 2002, 24, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Shimmyo, M.; Ross, A.J.; Moy, A.J.; Mostafavi, B. Intraocular pressure, Goldmann applanation tension, cornea thickness, and corneal curvature in Caucasians, Asians, Hispanics, and African Americans. Am. J. Ophthalmol. 2003, 136, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Iyamu, E.; Osuobeni, E. Age, gender, corneal diameter, corneal curvature and central corneal thickness in Nigerians with normal intraocular pressure. J. Optom. 2012, 5, 87–97. [Google Scholar] [CrossRef]
- Foster, P.J.; Baasanhu, J.; Alsbirk, P.H.; Munkhbayar, D.; Uranchimeg, D.; Johnson, G.J. Central corneal thickness and intraocular pressure in a Mongolian population. Ophthalmology 1998, 105, 969–973. [Google Scholar] [CrossRef]
- Jonas, J.B.; Nangia, V.; Gupta, R.; Sinha, A.; Bhate, K. Lens thickness and associated factors. Clin. Exp. Ophthalmol. 2012, 40, 583–590. [Google Scholar] [CrossRef]
- Muralidharan, G.; Martínez-Enríquez, E.; Birkenfeld, J.; Velasco-Ocana, M.; Pérez-Merino, P.; Marcos, S. Morphological changes of the human crystalline lens in myopia. Biomed. Opt. Express 2019, 10, 6084–6095. [Google Scholar] [CrossRef]
- Ying, J.; Wang, Q.; Belin, M.W.; Wan, T.; Lin, S.; Feng, Y.; Gao, R.; Huang, J. Corneal elevation in a large number of myopic Chinese patients. Cont. Lens. Anterior. Eye 2016, 39, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.J.; Liu, Y.T.; Tsai, C.C.; Chen, Y.C.; Chou, C.K.; Lee, S.M. Relationship between central corneal thickness, refractive error, corneal curvature, anterior chamber depth, and axial length. J. Chin. Med. Assoc. 2009, 72, 133–137. [Google Scholar] [CrossRef]
- McBrien, N.A.; Gentle, A. Role of the sclera in the development and pathological complications of myopia. Prog. Retin. Eye Res. 2003, 22, 307–338. [Google Scholar] [CrossRef]
- Pijewska, E.; Zhang, P.; Meina, M.; Meleppat, R.K.; Szkulmowski, M.; Zawadzki, R.J. Extraction of phase-based optoretinograms (ORG) from serial B-scans acquired over tens of seconds by mouse retinal raster scanning OCT system. Biomed. Opt. Express 2021, 12, 7849–7871. [Google Scholar] [CrossRef]
- Kolokoltsev, O.; Gómez-Arista, I.; Treviño-Palacios, C.G.; Qureshi, N.; Mejia-Uriarte, E.V. Swept source OCT beyond the coherence length limit. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 222–227. [Google Scholar] [CrossRef]
Age Group (Year) | Total | ||||||
---|---|---|---|---|---|---|---|
≤19 | 20–39 | 40–59 | 60–79 | ≥80 | |||
Gender n (%) | Male | 652 (8.2%) | 1009 (12.7%) | 1943 (24.5%) | 3903 (49.2%) | 421 (5.3%) | 7928 (100.0%) |
Female | 428 (6.8%) | 873 (14.0%) | 1345 (21.5%) | 3129 (50.0%) | 480 (7.7%) | 6255 (100.0%) | |
Eye n (%) | OD | 494 (7.2%) | 931 (13.5%) | 1591 (23.2%) | 3413 (49.7%) | 442 (6.4%) | 6871 (100.0%) |
OS | 586 (8.0%) | 951 (13.0%) | 1697 (23.2%) | 3619 (49.5%) | 459 (6.3%) | 7312 (100.0%) | |
Total | 1080 (7.6%) | 1882 (13.3%) | 3288 (23.2%) | 7032 (49.6%) | 901 (6.4%) | 14,183 (100.0%) |
Mean ± Std. Dev. | 95% Confidence Interval | Min. | Max. | p | |||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
AL (mm) | ≤19 | 23.14 ± 1.33 d | 23.06 | 23.22 | 19.30 | 31.56 | 0.001 |
20–39 | 24.03 ± 1.79 a | 23.95 | 24.11 | 18.63 | 31.99 | ||
40–59 | 23.70 ± 1.66 b | 23.64 | 23.76 | 18.09 | 31.97 | ||
60–79 | 23.47 ± 1.24 c | 23.44 | 23.50 | 18.71 | 33.47 | ||
≥80 | 23.45 ± 1.17 c | 23.38 | 23.53 | 20.43 | 31.37 | ||
Total | 23.57 ± 1.45 | 23.55 | 23.6 | 18.09 | 33.47 | ||
CCT (μm) | ≤19 | 527.91 ± 46.94 a | 525.1 | 530.71 | 346 | 701 | 0.001 |
20–39 | 520.74 ± 42.90 b | 518.8 | 522.68 | 304 | 735 | ||
40–59 | 521.27 ± 34.12 b | 520.1 | 522.44 | 362 | 652 | ||
60–79 | 515.34 ± 36.09 c | 514.5 | 516.19 | 347 | 735 | ||
≥80 | 511.24 ± 36.60 d | 508.85 | 513.64 | 408 | 695 | ||
Total | 518.13 ± 37.81 | 517.51 | 518.75 | 304 | 735 | ||
AD (mm) | ≤19 | 3.11 ± 0.36 a | 3.09 | 3.13 | 1.77 | 5.46 | 0.001 |
20–39 | 3.05 ± 0.36 b | 3.04 | 3.07 | 1.55 | 5.00 | ||
40–59 | 2.79 ± 0.37 c | 2.78 | 2.80 | 1.55 | 4.74 | ||
60–79 | 2.64 ± 0.39 d | 2.63 | 2.65 | 1.51 | 5.28 | ||
≥80 | 2.52 ± 0.40 e | 2.49 | 2.55 | 1.56 | 4.85 | ||
Total | 2.76 ± 0.42 | 2.75 | 2.76 | 1.51 | 5.46 | ||
WTW (mm) | ≤19 | 12.19 ± 0.57 a | 12.15 | 12.22 | 8.05 | 15.61 | 0.001 |
20–39 | 12.12 ± 0.48 b | 12.10 | 12.15 | 9.61 | 14.04 | ||
40–59 | 11.92 ± 0.52 c | 11.9 | 11.94 | 8.89 | 15.26 | ||
60–79 | 11.78 ± 0.58 d | 11.76 | 11.79 | 7.12 | 14.50 | ||
≥80 | 11.62 ± 0.78 e | 11.56 | 11.67 | 7.75 | 14.78 | ||
Total | 11.88 ± 0.59 | 11.87 | 11.89 | 7.12 | 15.61 | ||
ACD (mm) | ≤19 | 3.64 ± 0.35 a | 3.62 | 3.66 | 2.29 | 5.92 | 0.001 |
20–39 | 3.57 ± 0.35 b | 3.56 | 3.59 | 2.12 | 5.57 | ||
40–59 | 3.31 ± 0.37 c | 3.3 | 3.32 | 2.09 | 5.23 | ||
60–79 | 3.15 ± 0.39 d | 3.14 | 3.16 | 1.96 | 5.72 | ||
≥80 | 3.03 ± 0.40 e | 3.01 | 3.06 | 2.08 | 5.36 | ||
Total | 3.27 ± 0.42 | 3.27 | 3.28 | 1.96 | 5.92 | ||
LT (mm) | ≤19 | 3.44± 0.30 e | 3.42 | 3.46 | 2.51 | 5.88 | 0.001 |
20–39 | 3.70 ± 0.34 d | 3.69 | 3.72 | 2.57 | 5.81 | ||
40–59 | 4.15 ± 0.40 c | 4.13 | 4.16 | 2.66 | 6.38 | ||
60–79 | 4.41 ± 0.40 b | 4.40 | 4.42 | 2.50 | 6.14 | ||
≥80 | 4.55 ± 0.42 a | 4.52 | 4.58 | 2.71 | 6.45 | ||
Total | 4.19 ± 0.51 | 4.18 | 4.2 | 2.50 | 6.45 | ||
K1 (D) | ≤19 | 43.52 ± 2.55 a | 43.37 | 43.67 | 35.69 | 65.71 | 0.001 |
20–39 | 43.31 ± 2.67 c | 43.19 | 43.43 | 33.39 | 72.02 | ||
40–59 | 43.26 ± 1.81 c | 43.20 | 43.33 | 31.07 | 55.60 | ||
60–79 | 43.43 ± 1.71 b | 43.39 | 43.47 | 32.46 | 59.17 | ||
≥80 | 43.47 ± 1.76 a | 43.35 | 43.59 | 36.72 | 48.44 | ||
Total | 43.39 ± 1.96 | 43.35 | 43.42 | 31.07 | 72.02 | ||
K2 (D) | ≤19 | 45.15 ± 3.51 a | 44.94 | 45.36 | 37.02 | 77.25 | 0.001 |
20–39 | 44.75 ± 3.51 b | 44.59 | 44.90 | 33.77 | 79.27 | ||
40–59 | 44.24 ± 1.97 d | 44.17 | 44.30 | 32.87 | 65.18 | ||
60–79 | 44.45 ± 1.80 c | 44.41 | 44.5 | 36.99 | 66.60 | ||
≥80 | 44.68 ± 1.78 b | 44.56 | 44.79 | 38.08 | 55.06 | ||
Total | 44.51 ± 2.31 | 44.47 | 44.55 | 32.87 | 79.27 | ||
AST (D) | ≤19 | 1.63 ± 1.68 a | 1.53 | 1.73 | 0 | 12.18 | 0.001 |
20–39 | 1.44 ± 1.53 b | 1.37 | 1.51 | 0 | 12.87 | ||
40–59 | 0.97 ± 0.93 d | 0.94 | 1.01 | 0 | 10.35 | ||
60–79 | 1.02 ± 0.98 d | 1.0 | 1.04 | 0 | 14.36 | ||
≥80 | 1.20 ± 1.06 c | 1.13 | 1.28 | 0 | 8.65 | ||
Total | 1.12 ± 1.15 | 1.11 | 1.14 | 0 | 14.36 |
Mean ± Std. Dev. | 95% Confidence Interval | Min. | Max. | p | |||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Age (Year) | Male | 55.76 ± 20.06 | 55.31 | 56.20 | 3 | 96 | 0.001 |
Female | 57.07 ± 20.17 | 56.57 | 57.57 | 3 | 110 | ||
AL (mm) | Male | 23.71 ± 1.26 | 23.68 | 23.73 | 18.63 | 33.47 | 0.001 |
Female | 23.40 ± 1.64 | 23.36 | 23.44 | 18.09 | 31.99 | ||
CCT (μm) | Male | 517.95 ± 38.02 | 517.11 | 518.79 | 304 | 735 | 0.522 |
Female | 518.36 ± 37.52 | 517.43 | 519.29 | 347 | 735 | ||
AD (mm) | Male | 2.81 ± 0.41 | 2.80 | 2.82 | 1.53 | 5.46 | 0.001 |
Female | 2.69 ± 0.42 | 2.68 | 2.70 | 1.51 | 5.08 | ||
WTW (mm) | Male | 11.94 ± 0.60 | 11.92 | 11.95 | 7.12 | 15.61 | 0.001 |
Female | 11.80 ± 0.56 | 11.79 | 11.81 | 7.62 | 14.72 | ||
ACD (mm) | Male | 3.33 ± 0.41 | 3.32 | 3.33 | 1.96 | 5.92 | 0.001 |
Female | 3.21 ± 0.42 | 3.20 | 3.22 | 2.00 | 5.62 | ||
LT (mm) | Male | 4.20 ± 0.52 | 4.19 | 4.21 | 2.50 | 6.45 | 0.001 |
Female | 4.18 ± 0.49 | 4.16 | 4.19 | 2.51 | 6.01 | ||
K1 (D) | Male | 43.04 ± 1.94 | 43.00 | 43.08 | 31.07 | 72.02 | 0.001 |
Female | 43.82 ± 1.90 | 43.77 | 43.87 | 32.23 | 61.30 | ||
K2 (D) | Male | 44.13 ± 2.29 | 44.08 | 44.18 | 32.87 | 79.27 | 0.001 |
Female | 44.99 ± 2.25 | 44.93 | 45.05 | 33.77 | 69.92 | ||
AST (D) | Male | 1.09 ± 1.13 | 1.07 | 1.12 | 0.00 | 12.73 | 0.001 |
Female | 1.17 ± 1.18 | 1.14 | 1.20 | 0.00 | 14.36 |
Mean ± Std. Dev. | 95% Confidence Interval | Min | Max. | p | |||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Age (Year) | OD | 56.41 ± 19.91 | 55.94 | 56.88 | 3 | 110 | 0.651 |
OS | 56.26 ± 20.32 | 55.79 | 56.73 | 3 | 96 | ||
Total | 56.33 ± 20.12 | 56.00 | 56.67 | 3 | 110 | ||
AL (mm) | OD | 23.61 ± 1.46 | 23.58 | 23.65 | 18.63 | 33.47 | 0.003 |
OS | 23.54 ± 1.44 | 23.50 | 23.57 | 18.09 | 33.12 | ||
Total | 23.57 ± 1.45 | 23.55 | 23.58 | 18.09 | 33.47 | ||
CCT (μm) | OD | 517.42 ± 37.59 | 516.53 | 518.31 | 304 | 711 | 0.030 |
OS | 518.79 ± 37.99 | 517.92 | 519.67 | 346 | 735 | ||
Total | 518.13 ± 37.81 | 517.51 | 518.75 | 304 | 735 | ||
AD (mm) | OD | 2.76 ± 0.42 | 2.75 | 2.7706 | 1.51 | 5.28 | 0.262 |
OS | 2.75 ± 0.42 | 2.74 | 2.7623 | 1.52 | 5.46 | ||
Total | 2.76 ± 0.42 | 2.75 | 2.7635 | 1.51 | 5.46 | ||
WTW (mm) | OD | 11.87 ± 0.58 | 11.86 | 11.89 | 7.73 | 14.78 | 0.598 |
OS | 11.88 ± 0.59 | 11.86 | 11.89 | 7.12 | 15.61 | ||
Total | 11.88 ± 0.59 | 11.87 | 11.89 | 7.12 | 15.61 | ||
ACD (mm) | OD | 3.29 ± 0.42 | 3.27 | 3.29 | 1.99 | 5.72 | 0.346 |
OS | 3.27 ± 0.42 | 3.26 | 3.28 | 1.96 | 5.92 | ||
Total | 3.27 ± 0.42 | 3.27 | 3.28 | 1.96 | 5.92 | ||
LT (mm) | OD | 4.18 ± 0.51 | 4.17 | 4.19 | 2.51 | 6.45 | 0.057 |
OS | 4.20 ± 0.51 | 4.19 | 4.21 | 2.50 | 6.36 | ||
Total | 4.19 ± 0.51 | 4.18 | 4.20 | 2.50 | 6.45 | ||
K1 (D) | OD | 43.38 ± 1.96 | 43.33 | 43.42 | 31.07 | 72.02 | 0.584 |
OS | 43.39 ± 1.96 | 43.35 | 43.44 | 32.46 | 65.71 | ||
Total | 43.39 ± 1.96 | 43.35 | 43.42 | 31.07 | 72.02 | ||
K2 (D) | OD | 44.49 ± 2.32 | 44.43 | 44.54 | 32.87 | 79.27 | 0.230 |
OS | 44.53 ± 2.31 | 44.48 | 44.59 | 33.75 | 77.25 | ||
Total | 44.51 ± 2.31 | 44.47 | 44.55 | 32.87 | 79.27 | ||
AST (D) | OD | 1.11 ± 1.17 | 1.08 | 1.14 | 0.0 | 14.36 | 0.139 |
OS | 1.14 ± 1.13 | 1.11 | 1.16 | 0.0 | 12.87 | ||
Total | 1.12 ± 1.15 | 1.10 | 1.14 | 0.0 | 14.36 |
Correlations | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Age | AL | CCT | AD | WTW | ACD | LT | K1 | K2 | AST | ||
Age | r | 1 | |||||||||
p | |||||||||||
AL | r | −0.033 ** | 1 | ||||||||
p | 0.0001 | ||||||||||
CCT | r | −0.116 ** | −0.036 ** | 1 | |||||||
p | 0.0001 | 0.0001 | |||||||||
AD | r | −0.434 ** | 0.332 ** | −0.087 ** | 1 | ||||||
p | 0.0001 | 0.0001 | 0.0001 | ||||||||
WTW | r | −0.275 ** | 0.214 ** | 0.010 | 0.368 ** | 1 | |||||
p | 0.0001 | 0.0001 | 0.250 | 0.0001 | |||||||
ACD | r | −0.446 ** | 0.330 ** | 0.002 | 0.996 ** | 0.370 ** | 1 | ||||
p | 0.0001 | 0.0001 | 0.795 | 0.0001 | 0.0001 | ||||||
LT | r | 0.654 ** | −0.130 ** | −0.030 ** | −0.609 ** | −0.187 ** | −0.614 ** | 1 | |||
p | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |||||
K1 | r | 0.001 | −0.321 ** | −0.200 ** | 0.014 | −0.272 ** | −0.003 | 0.015 | 1 | ||
p | 0.896 | 0.0001 | 0.0001 | 0.090 | 0.0001 | 0.682 | 0.075 | ||||
K2 | r | −0.070 ** | −0.232 ** | −0.251 ** | 0.077 ** | −0.239 ** | 0.054 ** | −0.057 ** | 0.868 ** | 1 | |
p | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |||
AST | r | −0.142 ** | 0.082 ** | −0.163 ** | 0.129 ** | −0.016 | 0.115 ** | −0.140 ** | 0.039 ** | 0.530 ** | 1 |
p | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.067 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Study | Country | Measurement Method | Age (Year) | AL (mm) | CCT (μm) | AD (mm) | WTW (mm) | ACD (mm) | LT (mm) | K1 (D) | K2 (D) | K (D) | AST (D) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Our study | Türkiye | Lenstar | 56.41 (3–110) | 23.57 | 518.13 | 2.76 | 11.88 | 3.27 | 4.19 | 43.39 | 44.51 | 1.12 | |
Hernández-López et al., 2021 [5] | Cuba | IOL Master | 68.7 | 23.52 | - | - | - | 3.02 | 4.55 | 43.47 | 44.61 | 44.04 | 1.22 |
Ferreira et al., 2017 [7] | Portugal | Lenstar | 69 (44–99) | 23.87 | - | - | 12.02 | 3.25 | 4.32 | - | - | 43.91 | 1.08 |
Meng et al., 2021 [8] | China | IOL Master | 62.5 (18–101) | 24.71 | 550 | 2.52 | 11.7 | - | 4.51 | - | - | 43.89 | - |
Huang et al., 2018 [9] | China | IOL Master | (50–98) | 24.32 | - | - | - | 3.08 | - | - | - | 44.23 | 1.0 |
Lim et al., 2010 [10] | Singapore | IOL Master | 57.3 (40–80) | 23.55 | - | - | - | 3.10 | - | - | - | 44.12 | - |
Fotedar et al., 2010 [11] | Australia | IOL Master | (59–85+) | 23.44 | - | - | 12.06 | 3.24 | - | 43.38 | - | 43.42 | - |
Lee et al., 2009 [12] | USA | IOL Master | 71.9 (58–100) | 23.69 | - | - | - | 3.11 | - | - | - | 43.83 | - |
Tamaoki et al., 2019 [13] | Japan | IOL Master | 71.95 | 24.09 | 550 | - | - | 3.09 | 4.62 | - | - | 44.48 | - |
Popov et al., 2022 [14] | Slovakya | Lenstar | 70.35 (19–96) | 23.33 | 551 | - | 11.96 | 3.08 | 4.57 | - | - | 44.03 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batur, M.; Yıldız, V.; Batur, M.; Seven, E.; Tekin, S. Evaluation of Anatomical Measurements of the Bulbus Oculi by Optical Biometry in the Eastern Region of Türkiye. Medicina 2025, 61, 692. https://doi.org/10.3390/medicina61040692
Batur M, Yıldız V, Batur M, Seven E, Tekin S. Evaluation of Anatomical Measurements of the Bulbus Oculi by Optical Biometry in the Eastern Region of Türkiye. Medicina. 2025; 61(4):692. https://doi.org/10.3390/medicina61040692
Chicago/Turabian StyleBatur, Methiye, Veysi Yıldız, Muhammed Batur, Erbil Seven, and Serek Tekin. 2025. "Evaluation of Anatomical Measurements of the Bulbus Oculi by Optical Biometry in the Eastern Region of Türkiye" Medicina 61, no. 4: 692. https://doi.org/10.3390/medicina61040692
APA StyleBatur, M., Yıldız, V., Batur, M., Seven, E., & Tekin, S. (2025). Evaluation of Anatomical Measurements of the Bulbus Oculi by Optical Biometry in the Eastern Region of Türkiye. Medicina, 61(4), 692. https://doi.org/10.3390/medicina61040692