Bio-Adrenomedullin and Dipeptidyl Peptidase 3 as Novel Sepsis Biomarkers in the Emergency Department and the Intensive Care Unit: A Narrative Review
Abstract
:1. Introduction
2. Adrenomedullin
2.1. Molecular Biology and Pathophysiology
2.2. Bio-ADM as a Diagnostic Tool for Sepsis
2.3. Bio-ADM as a Risk Stratification Tool and a Marker of Morbidity
2.4. Bio-ADM as a Tool for Guiding Treatment
2.5. Bio-ADM as a Prognosticator of Mortality
3. Dipeptidyl Peptidase 3 (DPP3)
3.1. Molecular Biology and Pathophysiology
3.2. DPP3 as a Risk Stratification Tool and a Marker of Morbidity
3.3. DPP3 as a Tool for Guiding Treatment
3.4. DPP3 as a Prognosticator of Mortality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hotchkiss, R.S.; Moldawer, L.L.; Opal, S.M.; Reinhart, K.; Turnbull, I.R.; Vincent, J.-L. Sepsis and Septic Shock. Nat. Rev. Dis. Primer 2016, 2, 16045. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801. [Google Scholar] [CrossRef] [PubMed]
- Mira, J.C.; Gentile, L.F.; Mathias, B.J.; Efron, P.A.; Brakenridge, S.C.; Mohr, A.M.; Moore, F.A.; Moldawer, L.L. Sepsis Pathophysiology, Chronic Critical Illness, and Persistent Inflammation-Immunosuppression and Catabolism Syndrome. Crit. Care Med. 2017, 45, 253–262. [Google Scholar] [CrossRef]
- Evans, T. Diagnosis and Management of Sepsis. Clin. Med. 2018, 18, 146–149. [Google Scholar] [CrossRef] [PubMed]
- van Lier, D.; Kox, M.; Pickkers, P. Promotion of Vascular Integrity in Sepsis through Modulation of Bioactive Adrenomedullin and Dipeptidyl Peptidase 3. J. Intern. Med. 2021, 289, 792–806. [Google Scholar] [CrossRef] [PubMed]
- Barichello, T.; Generoso, J.S.; Singer, M.; Dal-Pizzol, F. Biomarkers for Sepsis: More than Just Fever and Leukocytosis—A Narrative Review. Crit. Care 2022, 26, 14. [Google Scholar] [CrossRef]
- Pierrakos, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.C.; Vincent, J.-L. Biomarkers of Sepsis: Time for a Reappraisal. Crit. Care 2020, 24, 287. [Google Scholar] [CrossRef]
- Saeed, K.; Wilson, D.C.; Bloos, F.; Schuetz, P.; Van Der Does, Y.; Melander, O.; Hausfater, P.; Legramante, J.M.; Claessens, Y.-E.; Amin, D.; et al. The Early Identification of Disease Progression in Patients with Suspected Infection Presenting to the Emergency Department: A Multi-Centre Derivation and Validation Study. Crit. Care 2019, 23, 40. [Google Scholar] [CrossRef]
- Piccioni, A.; Saviano, A.; Cicchinelli, S.; Valletta, F.; Santoro, M.C.; De Cunzo, T.; Zanza, C.; Longhitano, Y.; Tullo, G.; Tilli, P.; et al. Proadrenomedullin in Sepsis and Septic Shock: A Role in the Emergency Department. Medicina 2021, 57, 920. [Google Scholar] [CrossRef]
- Zudaire, E.; Portal-Núñez, S.; Cuttitta, F. The Central Role of Adrenomedullin in Host Defense. J. Leukoc. Biol. 2006, 80, 237–244. [Google Scholar] [CrossRef]
- López, J.; Martínez, A. Cell and Molecular Biology of the Multifunctional Peptide, Adrenomedullin. Int. Rev. Cytol. 2002, 221, 1–92. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Hur, M.; Struck, J.; Bergmann, A.; Somma, S.D. Circulating Biologically Active Adrenomedullin Predicts Organ Failure and Mortality in Sepsis. Ann. Lab. Med. 2019, 39, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Hinson, J.P.; Kapas, S.; Smith, D.M. Adrenomedullin, a Multifunctional Regulatory Peptide. Endocr. Rev. 2000, 21, 138–167. [Google Scholar] [CrossRef]
- Struck, J.; Tao, C.; Morgenthaler, N.G.; Bergmann, A. Identification of an Adrenomedullin Precursor Fragment in Plasma of Sepsis Patients. Peptides 2004, 25, 1369–1372. [Google Scholar] [CrossRef]
- Meeran, K.; O’Shea, D.; Upton, P.D.; Small, C.J.; Ghatei, M.A.; Byfield, P.H.; Bloom, S.R. Circulating Adrenomedullin Does Not Regulate Systemic Blood Pressure but Increases Plasma Prolactin after Intravenous Infusion in Humans: A Pharmacokinetic Study. J. Clin. Endocrinol. Metab. 1997, 82, 95–100. [Google Scholar] [CrossRef]
- Valenzuela-Sánchez, F.; Valenzuela-Méndez, B.; De Austria, R.B.; Rodríguez-Gutiérrez, J.F.; Estella-García, Á.; Fernández-Ruiz, L.; González-García, M.Á.; Rello, J. Plasma Levels of Mid-Regional pro-Adrenomedullin in Sepsis Are Associated with Risk of Death. Minerva Anestesiol. 2019, 85, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela-Sánchez, F.; Valenzuela-Méndez, B.; Rodríguez-Gutiérrez, J.F.; Estella-García, Á.; González-García, M.Á. New Role of Biomarkers: Mid-Regional pro-Adrenomedullin, the Biomarker of Organ Failure. Ann. Transl. Med. 2016, 4, 329. [Google Scholar] [CrossRef]
- Schönauer, R.; Els-Heindl, S.; Fischer, J.-P.; Köbberling, J.; Riedl, B.; Beck-Sickinger, A.G. Adrenomedullin 2.0: Adjusting Key Levers for Metabolic Stability. J. Med. Chem. 2016, 59, 5695–5705. [Google Scholar] [CrossRef]
- Kato, J.; Kitamura, K. Bench-to-Bedside Pharmacology of Adrenomedullin. Eur. J. Pharmacol. 2015, 764, 140–148. [Google Scholar] [CrossRef]
- Lundberg, O.H.M.; Rosenqvist, M.; Bronton, K.; Schulte, J.; Friberg, H.; Melander, O. Bioactive Adrenomedullin in Sepsis Patients in the Emergency Department Is Associated with Mortality, Organ Failure and Admission to Intensive Care. PLoS ONE 2022, 17, e0267497. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, M.; Chaudry, I.H.; Wang, P. Novel Approach to Prevent the Transition from the Hyperdynamic Phase to the Hypodynamic Phase of Sepsis: Role of Adrenomedullin and Adrenomedullin Binding Protein-1. Ann. Surg. 2002, 236, 625–633. [Google Scholar] [CrossRef] [PubMed]
- McMullan, R.R.; McAuley, D.F.; O’Kane, C.M.; Silversides, J.A. Vascular Leak in Sepsis: Physiological Basis and Potential Therapeutic Advances. Crit. Care 2024, 28, 97. [Google Scholar] [CrossRef] [PubMed]
- Kakihana, Y.; Ito, T.; Nakahara, M.; Yamaguchi, K.; Yasuda, T. Sepsis-Induced Myocardial Dysfunction: Pathophysiology and Management. J. Intensive Care 2016, 4, 22. [Google Scholar] [CrossRef]
- Tang, F.; Zhao, X.-L.; Xu, L.-Y.; Zhang, J.-N.; Ao, H.; Peng, C. Endothelial Dysfunction: Pathophysiology and Therapeutic Targets for Sepsis-Induced Multiple Organ Dysfunction Syndrome. Biomed. Pharmacother. 2024, 178, 117180. [Google Scholar] [CrossRef]
- Miranda, M.; Balarini, M.; Caixeta, D.; Bouskela, E. Microcirculatory Dysfunction in Sepsis: Pathophysiology, Clinical Monitoring, and Potential Therapies. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H24–H35. [Google Scholar] [CrossRef]
- Mebazaa, A.; Geven, C.; Hollinger, A.; Wittebole, X.; Chousterman, B.G.; Blet, A.; Gayat, E.; Hartmann, O.; Scigalla, P.; Struck, J.; et al. Circulating Adrenomedullin Estimates Survival and Reversibility of Organ Failure in Sepsis: The Prospective Observational Multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) Study. Crit. Care 2018, 22, 354. [Google Scholar] [CrossRef]
- Kox, M.; Pickkers, P. Adrenomedullin: Its Double-Edged Sword during Sepsis Slices Yet Again. Intensive Care Med. Exp. 2014, 2, 1. [Google Scholar] [CrossRef]
- Geven, C.; Kox, M.; Pickkers, P. Adrenomedullin and Adrenomedullin-Targeted Therapy as Treatment Strategies Relevant for Sepsis. Front. Immunol. 2018, 9, 292. [Google Scholar] [CrossRef] [PubMed]
- Temmesfeld-Wollbrück, B.; Brell, B.; Dávid, I.; Dorenberg, M.; Adolphs, J.; Schmeck, B.; Suttorp, N.; Hippenstiel, S. Adrenomedullin Reduces Vascular Hyperpermeability and Improves Survival in Rat Septic Shock. Intensive Care Med. 2007, 33, 703–710. [Google Scholar] [CrossRef]
- Ertmer, C.; Morelli, A.; Rehberg, S.; Lange, M.; Hucklenbruch, C.; Van Aken, H.; Booke, M.; Westphal, M. Exogenous Adrenomedullin Prevents and Reverses Hypodynamic Circulation and Pulmonary Hypertension in Ovine Endotoxaemia. Br. J. Anaesth. 2007, 99, 830–836. [Google Scholar] [CrossRef]
- Müller-Redetzky, H.C.; Will, D.; Hellwig, K.; Kummer, W.; Tschernig, T.; Pfeil, U.; Paddenberg, R.; Menger, M.D.; Kershaw, O.; Gruber, A.D.; et al. Mechanical Ventilation Drives Pneumococcal Pneumonia into Lung Injury and Sepsis in Mice: Protection by Adrenomedullin. Crit. Care 2014, 18, R73. [Google Scholar] [CrossRef] [PubMed]
- Brell, B.; Temmesfeld-Wollbrück, B.; Altzschner, I.; Frisch, E.; Schmeck, B.; Hocke, A.C.; Suttorp, N.; Hippenstiel, S. Adrenomedullin Reduces Staphylococcus Aureus α-Toxin–Induced Rat Ileum Microcirculatory Damage. Crit. Care Med. 2005, 33, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Wang, P. The Pivotal Role of Adrenomedullin in Producing Hyperdynamic Circulation During the Early Stage of Sepsis. Arch. Surg. 1998, 133, 1298. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.; Wachter, U.; Vogt, J.A.; Scheuerle, A.; McCook, O.; Weber, S.; Gröger, M.; Stahl, B.; Georgieff, M.; Möller, P.; et al. Adrenomedullin Binding Improves Catecholamine Responsiveness and Kidney Function in Resuscitated Murine Septic Shock. Intensive Care Med. Exp. 2013, 1, 2. [Google Scholar] [CrossRef]
- Geven, C.; Peters, E.; Schroedter, M.; Struck, J.; Bergmann, A.; McCook, O.; Radermacher, P.; Kox, M.; Pickkers, P. Effects of the Humanized Anti-Adrenomedullin Antibody Adrecizumab (HAM8101) on Vascular Barrier Function and Survival in Rodent Models of Systemic Inflammation and Sepsis. Shock 2018, 50, 648–654. [Google Scholar] [CrossRef]
- Struck, J.; Hein, F.; Karasch, S.; Bergmann, A. Epitope Specificity of Anti-Adrenomedullin Antibodies Determines Efficacy of Mortality Reduction in a Cecal Ligation and Puncture Mouse Model. Intensive Care Med. Exp. 2013, 1, 3. [Google Scholar] [CrossRef]
- Blet, A.; Sadoune, M.; Polidano, E.; Merval, R.; Bernard, C.; Samuel, J.; Mebazaa, A. Hemodynamics Effects of Adrecizumab in Sepsis Rat. Intensive Care Med. Exp. 2015, 3, A618. [Google Scholar] [CrossRef]
- Geven, C.; Bergmann, A.; Kox, M.; Pickkers, P. Vascular Effects of Adrenomedullin and the Anti-Adrenomedullin Antibody Adrecizumab in Sepsis. Shock 2018, 50, 132–140. [Google Scholar] [CrossRef]
- Geven, C.; Pickkers, P. The Mechanism of Action of the Adrenomedullin-Binding Antibody Adrecizumab. Crit. Care 2018, 22, 159. [Google Scholar] [CrossRef]
- Deniau, B.; Takagi, K.; Asakage, A.; Mebazaa, A. Adrecizumab: An Investigational Agent for the Biomarker-Guided Treatment of Sepsis. Expert. Opin. Investig. Drugs 2021, 30, 95–102. [Google Scholar] [CrossRef]
- Yonaha, T.; Maruta, T.; Otao, G.; Igarashi, K.; Nagata, S.; Yano, T.; Taniguchi, M.; Kitamura, K.; Tsuneyoshi, I. The Diagnostic and Prognostic Value of Mature and Total Adrenomedullin for Sepsis: A Prospective Observational Study. Anaesthesiol. Intensive Ther. 2021, 53, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, O.H.M.; Lengquist, M.; Spångfors, M.; Annborn, M.; Bergmann, D.; Schulte, J.; Levin, H.; Melander, O.; Frigyesi, A.; Friberg, H. Circulating Bioactive Adrenomedullin as a Marker of Sepsis, Septic Shock and Critical Illness. Crit. Care 2020, 24, 636. [Google Scholar] [CrossRef] [PubMed]
- Caironi, P.; Latini, R.; Struck, J.; Hartmann, O.; Bergmann, A.; Maggio, G.; Cavana, M.; Tognoni, G.; Pesenti, A.; Gattinoni, L.; et al. Circulating Biologically Active Adrenomedullin (Bio-ADM) Predicts Hemodynamic Support Requirement and Mortality During Sepsis. Chest 2017, 152, 312–320. [Google Scholar] [CrossRef]
- Casalboni, S.; Valli, G.; Terlizzi, F.; Mastracchi, M.; Fidelio, G.; De Marco, F.; Bernardi, C.; Chieruzzi, A.; Curcio, A.; De Cicco, F.; et al. 30 Days Mortality Prognostic Value of POCT Bio-Adrenomedullin and Proenkephalin in Patients with Sepsis in the Emergency Department. Medicina 2022, 58, 1786. [Google Scholar] [CrossRef]
- Bolanaki, M.; Winning, J.; Slagman, A.; Lehmann, T.; Kiehntopf, M.; Stacke, A.; Neumann, C.; Reinhart, K.; Möckel, M.; Bauer, M. Biomarkers Improve Diagnostics of Sepsis in Adult Patients with Suspected Organ Dysfunction Based on the Quick Sepsis-Related Organ Failure Assessment (qSOFA) Score in the Emergency Department. Crit. Care Med. 2024, 52, 887–899. [Google Scholar] [CrossRef]
- Marino, R.; Struck, J.; Maisel, A.S.; Magrini, L.; Bergmann, A.; Somma, S.D. Plasma Adrenomedullin Is Associated with Short-Term Mortality and Vasopressor Requirement in Patients Admitted with Sepsis. Crit. Care 2014, 18, R34. [Google Scholar] [CrossRef]
- Prajapati, S.C.; Chauhan, S.S. Dipeptidyl Peptidase III: A Multifaceted Oligopeptide N-end Cutter. FEBS J. 2011, 278, 3256–3276. [Google Scholar] [CrossRef] [PubMed]
- Malovan, G.; Hierzberger, B.; Suraci, S.; Schaefer, M.; Santos, K.; Jha, S.; Macheroux, P. The Emerging Role of Dipeptidyl Peptidase 3 in Pathophysiology. FEBS J. 2023, 290, 2246–2262. [Google Scholar] [CrossRef]
- Ye, P.; Duan, W.; Leng, Y.-Q.; Wang, Y.-K.; Tan, X.; Wang, W.-Z. DPP3: From Biomarker to Therapeutic Target of Cardiovascular Diseases. Front. Cardiovasc. Med. 2022, 9, 974035. [Google Scholar] [CrossRef]
- Kropotova, E.S.; Pavlova, E.N.; Naryzhny, S.N.; Mosevitsky, M.I. Dipeptidylamino-Tripeptidylcarboxypeptidase NEMP3 and DPP3 (DPP III) Are the Same Protein. Biochem. Biophys. Res. Commun. 2022, 616, 110–114. [Google Scholar] [CrossRef]
- Rehfeld, L.; Funk, E.; Jha, S.; Macheroux, P.; Melander, O.; Bergmann, A. Novel Methods for the Quantification of Dipeptidyl Peptidase 3 (DPP3) Concentration and Activity in Human Blood Samples. J. Appl. Lab. Med. 2019, 3, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Boorsma, E.M.; Ter Maaten, J.M.; Damman, K.; Van Veldhuisen, D.J.; Dickstein, K.; Anker, S.D.; Filippatos, G.; Lang, C.C.; Metra, M.; Santos, K.; et al. Dipeptidyl Peptidase 3, a Marker of the Antagonist Pathway of the Renin–Angiotensin–Aldosterone System in Patients with Heart Failure. Eur. J. Heart Fail. 2021, 23, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Colin, M.; Delaitre, C.; Foulquier, S.; Dupuis, F. The AT1/AT2 Receptor Equilibrium Is a Cornerstone of the Regulation of the Renin Angiotensin System beyond the Cardiovascular System. Molecules 2023, 28, 5481. [Google Scholar] [CrossRef]
- Harrison-Bernard, L.M. The Renal Renin-Angiotensin System. Adv. Physiol. Educ. 2009, 33, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.K.; Griendling, K.K. Angiotensin II Cell Signaling: Physiological and Pathological Effects in the Cardiovascular System. Am. J. Physiol. Cell Physiol. 2007, 292, C82–C97. [Google Scholar] [CrossRef] [PubMed]
- Picod, A.; Placier, S.; Genest, M.; Callebert, J.; Julian, N.; Zalc, M.; Assad, N.; Nordin, H.; Santos, K.; Gaudry, S.; et al. Circulating Dipeptidyl Peptidase 3 Modulates Systemic and Renal Hemodynamics Through Cleavage of Angiotensin Peptides. Hypertension 2024, 81, 927–935. [Google Scholar] [CrossRef]
- Grdiša, M.; Vitale, L. Types and Localization of Aminopeptidases in Different Human Blood Cells. Int. J. Biochem. 1991, 23, 339–345. [Google Scholar] [CrossRef]
- Blet, A.; Deniau, B.; Santos, K.; van Lier, D.P.T.; Azibani, F.; Wittebole, X.; Chousterman, B.G.; Gayat, E.; Hartmann, O.; Struck, J.; et al. Monitoring Circulating Dipeptidyl Peptidase 3 (DPP3) Predicts Improvement of Organ Failure and Survival in Sepsis: A Prospective Observational Multinational Study. Crit. Care 2021, 25, 61. [Google Scholar] [CrossRef] [PubMed]
- Takagi, K.; Blet, A.; Levy, B.; Deniau, B.; Azibani, F.; Feliot, E.; Bergmann, A.; Santos, K.; Hartmann, O.; Gayat, E.; et al. Circulating Dipeptidyl Peptidase 3 and Alteration in Haemodynamics in Cardiogenic Shock: Results from the OptimaCC Trial. Eur. J. Heart Fail. 2020, 22, 279–286. [Google Scholar] [CrossRef]
- Dépret, F.; Amzallag, J.; Pollina, A.; Fayolle-Pivot, L.; Coutrot, M.; Chaussard, M.; Santos, K.; Hartmann, O.; Jully, M.; Fratani, A.; et al. Circulating Dipeptidyl Peptidase-3 at Admission Is Associated with Circulatory Failure, Acute Kidney Injury and Death in Severely Ill Burn Patients. Crit. Care 2020, 24, 168. [Google Scholar] [CrossRef]
- Deniau, B.; Rehfeld, L.; Santos, K.; Dienelt, A.; Azibani, F.; Sadoune, M.; Kounde, P.R.; Samuel, J.L.; Tolpannen, H.; Lassus, J.; et al. Circulating Dipeptidyl Peptidase 3 Is a Myocardial Depressant Factor: Dipeptidyl Peptidase 3 Inhibition Rapidly and Sustainably Improves Haemodynamics. Eur. J. Heart Fail. 2020, 22, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Deniau, B.; Picod, A.; van Lier, D.; Ayar, P.V.; Santos, K.; Hartmann, O.; Gayat, E.; Mebazaa, A.; Blet, A.; Azibani, F. High Plasma Dipeptidyl Peptidase 3 Levels Are Associated with Mortality and Organ Failure in Shock: Results from the International, Prospective and Observational FROG-ICU Cohort. Br. J. Anaesth. 2022, 128, e54–e57. [Google Scholar] [CrossRef] [PubMed]
- van Lier, D.; Beunders, R.; Kox, M.; Pickkers, P. Associations of Dipeptidyl-Peptidase 3 with Short-Term Outcome in a Mixed Admission ICU-Cohort. J. Crit. Care 2023, 78, 154383. [Google Scholar] [CrossRef] [PubMed]
- Frigyesi, A.; Lengquist, M.; Spångfors, M.; Annborn, M.; Cronberg, T.; Nielsen, N.; Levin, H.; Friberg, H. Circulating Dipeptidyl Peptidase 3 on Intensive Care Unit Admission Is a Predictor of Organ Dysfunction and Mortality. J. Intensive Care 2021, 9, 52. [Google Scholar] [CrossRef]
- Bauer, M.; Gerlach, H.; Vogelmann, T.; Preissing, F.; Stiefel, J.; Adam, D. Mortality in Sepsis and Septic Shock in Europe, North America and Australia between 2009 and 2019— Results from a Systematic Review and Meta-Analysis. Crit. Care 2020, 24, 239. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, Regional, and National Sepsis Incidence and Mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- McColl, T.; Gatien, M.; Calder, L.; Yadav, K.; Tam, R.; Ong, M.; Taljaard, M.; Stiell, I. Implementation of an Emergency Department Sepsis Bundle and System Redesign: A Process Improvement Initiative. CJEM 2017, 19, 112–121. [Google Scholar] [CrossRef]
- Tong-Minh, K.; Welten, I.; Endeman, H.; Hagenaars, T.; Ramakers, C.; Gommers, D.; van Gorp, E.; van der Does, Y. Predicting Mortality in Adult Patients with Sepsis in the Emergency Department by Using Combinations of Biomarkers and Clinical Scoring Systems: A Systematic Review. BMC Emerg. Med. 2021, 21, 70. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, Y.; Yang, C.; Li, X. Review of the Predictive Value of Biomarkers in Sepsis Mortality. Emerg. Med. Int. 2024, 2024, 2715606. [Google Scholar] [CrossRef]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.L.; Ramsay, G.; et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 2003, 31, 1250–1256. [Google Scholar] [CrossRef]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2012. Crit. Care Med. 2013, 41, 580–637. [Google Scholar] [CrossRef]
- Dellinger, R.P.; Levy, M.M.; Carlet, J.M.; Bion, J.; Parker, M.M.; Jaeschke, R.; Reinhart, K.; Angus, D.C.; Brun-Buisson, C.; Beale, R.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2008. Crit. Care Med. 2008, 36, 296–327. [Google Scholar] [CrossRef]
- Weber, J.; Sachse, J.; Bergmann, S.; Sparwaßer, A.; Struck, J.; Bergmann, A. Sandwich Immunoassay for Bioactive Plasma Adrenomedullin. J. Appl. Lab. Med. 2017, 2, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Iskander, K.N.; Osuchowski, M.F.; Stearns-Kurosawa, D.J.; Kurosawa, S.; Stepien, D.; Valentine, C.; Remick, D.G. Sepsis: Multiple Abnormalities, Heterogeneous Responses, and Evolving Understanding. Physiol. Rev. 2013, 93, 1247–1288. [Google Scholar] [CrossRef] [PubMed]
- Cajander, S.; Kox, M.; Scicluna, B.P.; Weigand, M.A.; Mora, R.A.; Flohé, S.B.; Martin-Loeches, I.; Lachmann, G.; Girardis, M.; Garcia-Salido, A.; et al. Profiling the Dysregulated Immune Response in Sepsis: Overcoming Challenges to Achieve the Goal of Precision Medicine. Lancet Respir. Med. 2024, 12, 305–322. [Google Scholar] [CrossRef]
- Llitjos, J.-F.; Carrol, E.D.; Osuchowski, M.F.; Bonneville, M.; Scicluna, B.P.; Payen, D.; Randolph, A.G.; Witte, S.; Rodriguez-Manzano, J.; François, B.; et al. Enhancing Sepsis Biomarker Development: Key Considerations from Public and Private Perspectives. Crit. Care 2024, 28, 238. [Google Scholar] [CrossRef]
Study (Author, Year) | Median [IQR] Bio-ADM Concentration | Diagnostic Cut-Off | Sensitivity (%)/Specificity (%) | AUC for Sepsis Diagnosis | ||
---|---|---|---|---|---|---|
Non-Sepsis | Sepsis | Septic Shock | ||||
Lundberg et al. 2020 [42] | 29 pg/mL [18–56] | 74 pg/mL [42–145] | 107 pg/mL [58–188] | 37 pg/mL | 61%/80% | 0.76 [0.73–0.78] |
Yonaha et al. 2021 [41] | 2.2 pmol/L [1.2–3.7] | 7.8 pmol/L [3.7–18.1] | 5.2 pmol/L (≈31.2 pg/mL) | 88.1%/67.9% | 0.848 [0.773–0.923] |
Study (Author, Year, Country) | Study Type Setting | Study Population Demographics | Main Findings |
---|---|---|---|
Caironi et al., 2017 Italy [43] | Multicenter open-label randomized trial, ICU setting |
|
|
Mebazaa et al., 2018 Multinational (5 European countries: France, Belgium, Netherlands, Italy, Germany) [26] | Prospective observational multicenter multinational study, ICU setting |
|
|
Lundberg et al., 2020 Sweden [42] | Retrospective observational multicenter study, ICU setting |
|
|
Lundberg et al., 2022 Sweden [20] | Prospective observational single-center cohort study, ED setting |
|
|
Casalboni et al., 2022 Italy [44] | Prospective observational single-center study, ED setting |
|
|
Bolanaki et al., 2024 Germany [45] | Prospective observational multicenter study, ED setting |
|
|
Marino et al., 2014 Italy [46] | Prospective observational single-center study, ED setting |
|
|
Kim et al., 2019 Korea [12] | Prospective observational single-center registry, Both ICU and ED setting |
|
|
Yonaha et al., 2021 Japan [41] | Prospective observational single-center study, ICU setting |
|
|
Study (Author, Year, Country) | Study Type Setting | Study Population Demographics | Main Findings |
---|---|---|---|
Blet et al., 2021 Multinational (5 European countries: France, Belgium, Netherlands, Italy, Germany) [58] | Prospective observational multicenter multinational study, ICU setting |
|
|
Rehfeld et al., 2019 Germany [51] | Characterization and validation of 2 novel assays for measuring DPP3 concentration and activity in human plasma |
|
|
Deniau et al., 2022 Multinational (France, Germany, Netherlands) [62] | Prospective observational multinational study, ICU setting |
|
|
van Lier et al., 2023 Netherlands [63] | Prospective observational single-center study, ICU setting |
|
|
Frigyesi et al., 2021 Sweden [64] | Prospective observational multicenter study, ICU setting |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ventoulis, I.; Verras, C.; Matsiras, D.; Bistola, V.; Bezati, S.; Parissis, J.; Polyzogopoulou, E. Bio-Adrenomedullin and Dipeptidyl Peptidase 3 as Novel Sepsis Biomarkers in the Emergency Department and the Intensive Care Unit: A Narrative Review. Medicina 2025, 61, 1059. https://doi.org/10.3390/medicina61061059
Ventoulis I, Verras C, Matsiras D, Bistola V, Bezati S, Parissis J, Polyzogopoulou E. Bio-Adrenomedullin and Dipeptidyl Peptidase 3 as Novel Sepsis Biomarkers in the Emergency Department and the Intensive Care Unit: A Narrative Review. Medicina. 2025; 61(6):1059. https://doi.org/10.3390/medicina61061059
Chicago/Turabian StyleVentoulis, Ioannis, Christos Verras, Dionysis Matsiras, Vasiliki Bistola, Sofia Bezati, John Parissis, and Effie Polyzogopoulou. 2025. "Bio-Adrenomedullin and Dipeptidyl Peptidase 3 as Novel Sepsis Biomarkers in the Emergency Department and the Intensive Care Unit: A Narrative Review" Medicina 61, no. 6: 1059. https://doi.org/10.3390/medicina61061059
APA StyleVentoulis, I., Verras, C., Matsiras, D., Bistola, V., Bezati, S., Parissis, J., & Polyzogopoulou, E. (2025). Bio-Adrenomedullin and Dipeptidyl Peptidase 3 as Novel Sepsis Biomarkers in the Emergency Department and the Intensive Care Unit: A Narrative Review. Medicina, 61(6), 1059. https://doi.org/10.3390/medicina61061059