Effects of Empagliflozin on Sarcopenia Risk, Body Composition, and Muscle Strength in Type 2 Diabetes: A 24-Week Real-World Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Aims and Research Questions
- Does empagliflozin treatment result in a reduction in skeletal muscle mass or strength?
- What are the changes in fat mass, body weight, and glycemic parameters over a 6-month treatment period with empagliflozin?
2.2. Participants
2.3. Study Protocol
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Perspective for Clinical Practice
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASMI | appendicular skeletal muscle mass index |
BIA | bioelectrical impedance analysis |
BMI | body mass index |
EWGSOP | European Working Group on Sarcopenia in Older People |
FOXO1 | forkhead box protein O1 |
FPG | fasting plasma glucose |
GIP | glucose-dependent insulinotropic polypeptide |
GLP-1 | glucagon-like peptide-1 |
IL | interleukin |
NF-κB | nuclear factor-κB |
OADs | oral antidiabetic drugs |
SGLT2i | sodium-glucose cotransporter 2 inhibitor |
T2D | type 2 diabetes |
TNF | tumor necrosis factor |
References
- International Diabetes Federation. IDF Diabetes Atlas, 11th ed.; The International Diabetes Federation: Brussels, Belgium, 2025; Available online: https://diabetesatlas.org (accessed on 7 April 2025).
- Satman, I.; Omer, B.; Tutuncu, Y.; Kalaca, S.; Gedik, S.; Dinccag, N.; Karsidag, K.; Genc, S.; Telci, A.; Canbaz, B.; et al. Twelve-Year Trends in the Prevalence and Risk Factors of Diabetes and Prediabetes in Turkish Adults. Eur. J. Epidemiol. 2013, 28, 169–180. [Google Scholar] [CrossRef]
- Sonmez, A.; Haymana, C.; Bayram, F.; Salman, S.; Dizdar, O.S.; Gurkan, E.; Kargili Carlıoglu, A.; Barcin, C.; Sabuncu, T.; Satman, I.; et al. Turkish Nationwide Survey of Glycemic and Other Metabolic Parameters of Patients with Diabetes Mellitus (TEMD study). Diabetes Res. Clin. Pract. 2018, 146, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, Y.; Chen, S.; Shao, H. Anti-diabetic drugs and sarcopenia: Emerging links, mechanistic insights, and clinical implications. J. Cachexia Sarcopenia Muscle 2021, 12, 1368–1379. [Google Scholar] [CrossRef] [PubMed]
- Filippin, L.I.; Teixeira, V.N.; da Silva, M.P.; Miraglia, F.; da Silva, F.S. Sarcopenia: A Predictor of Mortality and the Need for Early Diagnosis and Intervention. Aging Clin. Exp. Res. 2015, 27, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Larsson, S.C. Epidemiology of Sarcopenia: Prevalence, Risk Factors, and Consequences. Metabolism 2023, 144, 155533. [Google Scholar] [CrossRef]
- Ali, S.; Garcia, J.M. Sarcopenia, Cachexia and Aging: Diagnosis, Mechanisms and Therapeutic Options—A Mini-Review. Gerontology 2014, 60, 294–305. [Google Scholar] [CrossRef]
- Salom Vendrell, C.; García Tercero, E.; Moro Hernández, J.B.; Cedeno-Veloz, B.A. Sarcopenia as a Little-Recognized Comorbidity of Type II Diabetes Mellitus: A Review of the Diagnosis and Treatment. Nutrients 2023, 15, 4149. [Google Scholar] [CrossRef]
- Damluji, A.A.; Alfaraidhy, M.; AlHajri, N.; Rohant, N.N.; Kumar, M.; Al Malouf, C.; Bahrainy, S.; Ji Kwak, M.; Batchelor, W.B.; Forman, D.E.; et al. Sarcopenia and Cardiovascular Diseases. Circulation 2023, 147, 1534–1553. [Google Scholar] [CrossRef]
- Izzo, A.; Massimino, E.; Riccardi, G.; Della Pepa, G. A Narrative Review on Sarcopenia in Type 2 Diabetes Mellitus: Prevalence and Associated Factors. Nutrients 2021, 13, 183. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2025. Diabetes Care 2024, 47, 158–178. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Y.; Lin, T.; Hou, L.; Song, Q.; Ge, N.; Yue, J. Reliability and Validity of Two Hand Dynamometers When Used by Community-Dwelling Adults Aged over 50 Years. BMC Geriatr. 2022, 22, 580. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Ferrannini, E.; Muscelli, E.; Frascerra, S.; Baldi, S.; Mari, A.; Heise, T.; Broedl, U.C.; Woerle, H.J. Metabolic Response to Sodium-Glucose Cotransporter 2 Inhibition in Type 2 Diabetic Patients. J. Clin. Investig. 2014, 124, 499–508. [Google Scholar] [CrossRef]
- Sergi, G.; De Rui, M.; Stubbs, B.; Veronese, N.; Manzato, E. Measurement of Lean Body Mass Using Bioelectrical Impedance Analysis: A Consideration of the Pros and Cons. Aging Clin. Exp. Res. 2017, 29, 591–597. [Google Scholar] [CrossRef]
- Kim, K.M.; Jang, H.C.; Lim, S. Differences Among Skeletal Muscle Mass Indices Derived from Height-, Weight-, and Body Mass Index-Adjusted Models in Assessing Sarcopenia. Korean J. Intern. Med. 2016, 31, 643–650. [Google Scholar] [CrossRef]
- Sasaki, T. Sarcopenia, Frailty Circle and Treatment with Sodium-Glucose Cotransporter 2 Inhibitors. J. Diabetes Investig. 2019, 10, 193–195. [Google Scholar] [CrossRef]
- Tsurutani, Y.; Nakai, K.; Inoue, K.; Azuma, K.; Mukai, S.; Maruyama, S.; Iizuka, T.; Matsuzawa, Y.; Saito, J.; Omura, M.; et al. Comparative Study of the Effects of Ipragliflozin and Sitagliptin on Multiple Metabolic Variables in Japanese Patients with Type 2 Diabetes: A Multicentre, Randomized, Prospective, Open-Label, Active-Controlled Study. Diabetes Obes. Metab. 2018, 20, 2675–2679. [Google Scholar] [CrossRef]
- Sugiyama, S.; Jinnouchi, H.; Kurinami, N.; Hieshima, K.; Yoshida, A.; Jinnouchi, K.; Nishimura, H.; Suzuki, T.; Miyamoto, F.; Kajiwara, K.; et al. Dapagliflozin Reduces Fat Mass Without Affecting Muscle Mass in Type 2 Diabetes. J. Atheroscler. Thromb. 2018, 25, 467–476. [Google Scholar] [CrossRef]
- Zeng, Y.H.; Liu, S.C.; Lee, C.C.; Sun, F.J.; Liu, J.J. Effect of Empagliflozin Versus Linagliptin on Body Composition in Asian Patients with Type 2 Diabetes Treated with Premixed Insulin. Sci. Rep. 2022, 12, 17065. [Google Scholar] [CrossRef]
- Zhang, S.; Qi, Z.; Wang, Y.; Song, D.; Zhu, D. Effect of Sodium-Glucose Transporter 2 Inhibitors on Sarcopenia in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. Front. Endocrinol. 2023, 14, 1203666. [Google Scholar] [CrossRef]
- Morciano, C.; Gugliandolo, S.; Capece, U.; Di Giuseppe, G.; Mezza, T.; Ciccarelli, G.; Soldovieri, L.; Brunetti, M.; Avolio, A.; Splendore, A.; et al. SGLT2 inhibition and adipose tissue metabolism: Current outlook and perspectives. Cardiovasc. Diabetol. 2024, 23, 449. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ota, T. Emerging Roles of SGLT2 Inhibitors in Obesity and Insulin Resistance: Focus on Fat Browning and Macrophage Polarization. Adipocyte 2018, 7, 121–128. [Google Scholar] [CrossRef]
- Shaheer, A.; Kumar, A.; Menon, P.; Jallo, M.; Basha, S. Effect of Add-On Therapy of Sodium-Glucose Cotransporter 2 Inhibitors and Dipeptidyl Peptidase 4 Inhibitors on Adipokines in Type 2 Diabetes Mellitus. J. Clin. Med. Res. 2021, 13, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, S.; Jojima, T.; Iijima, T.; Tomaru, T.; Usui, I.; Aso, Y. Empagliflozin Decreases the Plasma Concentration of Plasminogen Activator Inhibitor-1 (PAI-1) in Patients with Type 2 Diabetes: Association with Improvement of Fibrinolysis. J. Diabetes Complicat. 2020, 34, 107703. [Google Scholar] [CrossRef]
- Schaap, L.A.; van Schoor, N.M.; Lips, P.; Visser, M. Associations of Sarcopenia Definitions, and Their Components, With the Incidence of Recurrent Falling and Fractures: The Longitudinal Aging Study Amsterdam. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Sano, M.; Meguro, S.; Kawai, T.; Suzuki, Y. Increased Grip Strength with Sodium-Glucose Cotransporter 2. J. Diabetes 2016, 8, 736–737. [Google Scholar] [CrossRef]
- Drucker, D.J. Efficacy and Safety of GLP-1 Medicines for Type 2 Diabetes and Obesity. Diabetes Care 2024, 47, 1873–1888. [Google Scholar] [CrossRef]
- McCrimmon, R.J.; Catarig, A.M.; Frias, J.P.; Lausvig, N.L.; le Roux, C.W.; Thielke, D.; Lingvay, I. Effects of once-weekly semaglutide vs once-daily canagliflozin on body composition in type 2 diabetes: A substudy of the SUSTAIN 8 randomised controlled clinical trial. Diabetologia 2020, 63, 473–485. [Google Scholar] [CrossRef]
- Pantanetti, P.; Cangelosi, G.; Alberti, S.; Di Marco, S.; Michetti, G.; Cerasoli, G.; Di Giacinti, M.; Coacci, S.; Francucci, N.; Petrelli, F.; et al. Changes in body weight and composition, metabolic parameters, and quality of life in patients with type 2 diabetes treated with subcutaneous semaglutide in real-world clinical practice. Front. Endocrinol. 2024, 15, 1394506. [Google Scholar] [CrossRef]
- Look, M.; Dunn, J.P.; Kushner, R.F.; Cao, D.; Harris, C.; Gibble, T.H.; Stefanski, A.; Griffin, R. Body composition changes during weight reduction with tirzepatide in the SURMOUNT-1 study of adults with obesity or overweight. Diabetes Obes. Metab. 2025, 27, 2720–2729. [Google Scholar] [CrossRef]
- Neeland, I.J.; Linge, J.; Birkenfeld, A.L. Changes in lean body mass with glucagon-like peptide-1-based therapies and mitigation strategies. Diabetes Obes. Metab. 2024, 26, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Shi, Q.; Nong, K.; Li, S.; Yue, J.; Huang, J.; Dong, B.; Beauchamp, M.; Hao, Q. Exercise for sarcopenia in older people: A systematic review and network meta-analysis. J. Cachexia Sarcopenia Muscle 2023, 14, 1199–1211. [Google Scholar] [CrossRef] [PubMed]
- Shalit, A.; Gerontiti, E.; Boutzios, G.; Korakianiti, E.; Kanouta, F.; Vasileiou, V.; Psaltopoulou, T.; Paschou, S.A. Nutrition of aging people with diabetes mellitus: Focus on sarcopenia. Maturitas 2024, 185, 107975. [Google Scholar] [CrossRef] [PubMed]
Empagliflozin | Non-SGLT2 İnhibitor | p Value | |
---|---|---|---|
Age | 54.6 ± 11.7 | 61.1 ± 11 | 0.176 * |
Gender (female/male) | 11/10 | 7/3 | 0.353 ** |
Duration of diabetes, years | 9.8 ± 8.6 | 3.7 ± 5 | 0.013 * |
Chronic complications, n (%) | 7 (33.3%) | 0 | 0.038 ** |
Use of other OADs, n (%) | 19 (90.4%) | 10 (100%) | 0.313 ** |
Use of insulin, n (%) | 9 (42.8%) | 0 | 0.014 ** |
HbA1c, % | 8.8 ± 2.6 | 6.8 ± 1.1 | 0.042 * |
Fasting plasma glucose, mg/dL | 216 ± 126 | 122 ± 42 | 0.003 * |
Serum creatinine, mg/dL | 0.8 ± 0.2 | 0.7 ± 0.1 | 0.157 * |
Glomerular filtration rate (eGFR), mL/dk/1.73 m2 | 92 ± 21 | 94 ± 13 | 0.916 * |
Body mass index, kg/m2 | 31.5 ± 4 | 28.8 ± 5 | 0.190 * |
Waist circumference, cm | |||
Female | 111 ± 10.8 | 97.7 ± 12 | 0.041 * |
Male | 107.9 ± 8.9 | 104 ± 16.5 | 1.000 * |
Handgrip strength, kg | |||
Female | 23.5 ± 6.9 | 24.2 ± 5.7 | 0.964 * |
Male | 37.7 ± 7.1 | 39.1 ± 7.2 | 0.866 * |
Appendicular skeletal muscle mass (ASM), kg | |||
Female | 18.14 ± 3.32 | 15.08 ± 4.14 | 0.113 * |
Male | 25.31 ± 2.39 | 23.73 ± 2.8 | 0.612 * |
Appendicular skeletal muscle mass index (ASMI), kg/m2 | |||
Female | 7.36 ± 0.89 | 6.44 ± 1.28 | 0.077 * |
Male | 8.69 ± 0.71 | 8.58 ± 0.94 | 0.735 * |
Sarcopenia, n (%) | 2 (9.5%) | 2 (20%) | 0.335 ** |
Empagliflozin | Non-SGLT2 Inhibitor | |||||
---|---|---|---|---|---|---|
Baseline | 6 Months | * p Value | Baseline | 6 Months | * p Value | |
Body weight (kg) | 81.4 ± 15.3 | 78.8 ± 14.1 | 0.016 | 75.7 ± 10 | 73.4 ± 10.2 | 0.008 |
Body mass index (kg/m2) | 31.5 ± 4 | 30.1 ± 4.2 | 0.33 | 28.8 ± 5 | 28.6 ± 3.3 | 0.878 |
Lean mass (kg) | 50.5 ± 11.2 | 50 ± 11.3 | 0.159 | 45.3 ± 7.2 | 45.3 ± 11.8 | 0.445 |
Skeletal muscle mass (SMM) (kg) | 27.98 ± 6.85 | 27.70 ± 6.89 | 0.225 | 24.85 ± 4.34 | 24.66 ± 7.82 | 0.507 |
Appendicular skeletal muscle mass (ASM) (kg) | 20.73 ± 5.5 | 20.78 ± 5.5 | 0.164 | 19.41 ± 4.6 | 19.09 ± 4.5 | 0.284 |
Appendicular skeletal muscle mass index (ASMI) (kg/m2) | 7.81 ± 1.33 | 7.84 ± 1.38 | 0.154 | 7.48 ± 1.18 | 7.35 ± 1.2 | 0.284 |
Fat mass (kg) | 30.9 ± 8.6 | 28.8 ± 8.1 | 0.04 | 30.4 ± 11.1 | 28 ± 8.3 | 0.059 |
Total body water (kg) | 37.1 ± 8.2 | 36.8 ± 8.3 | 0.218 | 33.4 ± 5.2 | 33.4 ± 8.7 | 0.386 |
Waist circumference (cm) | 109.5 ± 9.8 | 102.8 ± 10 | 0.025 | 99.6 ± 12.9 | 98.6 ± 7.6 | 0.593 |
Handgrip strength (kg) | 30.3 ± 9.9 | 32.2 ± 9.2 | 0.602 | 28.7 ± 9.2 | 30.5 ± 11.1 | 0.878 |
HbA1c (%) | 8.8 ± 2.6 | 7.6 ± 1.4 | 0.049 | 6.8 ± 1.1 | 6.8 ± 0.8 | 0.858 |
Fasting plasma glucose (mg/dL) | 216 ± 126 | 126 ± 30 | 0.014 | 122 ± 42 | 109 ± 20 | 0.610 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çetin, D.; Bilgili, E.; Komaç, Ö.; Yetişken, M.; Güney, E. Effects of Empagliflozin on Sarcopenia Risk, Body Composition, and Muscle Strength in Type 2 Diabetes: A 24-Week Real-World Observational Study. Medicina 2025, 61, 1152. https://doi.org/10.3390/medicina61071152
Çetin D, Bilgili E, Komaç Ö, Yetişken M, Güney E. Effects of Empagliflozin on Sarcopenia Risk, Body Composition, and Muscle Strength in Type 2 Diabetes: A 24-Week Real-World Observational Study. Medicina. 2025; 61(7):1152. https://doi.org/10.3390/medicina61071152
Chicago/Turabian StyleÇetin, Deniz, Elif Bilgili, Ömer Komaç, Merve Yetişken, and Engin Güney. 2025. "Effects of Empagliflozin on Sarcopenia Risk, Body Composition, and Muscle Strength in Type 2 Diabetes: A 24-Week Real-World Observational Study" Medicina 61, no. 7: 1152. https://doi.org/10.3390/medicina61071152
APA StyleÇetin, D., Bilgili, E., Komaç, Ö., Yetişken, M., & Güney, E. (2025). Effects of Empagliflozin on Sarcopenia Risk, Body Composition, and Muscle Strength in Type 2 Diabetes: A 24-Week Real-World Observational Study. Medicina, 61(7), 1152. https://doi.org/10.3390/medicina61071152