Current Endocrine Therapy in Hormone-Receptor-Positive Breast Cancer: From Tumor Biology to the Rationale for Therapeutic Tunning
Abstract
1. Introduction
1.1. Genetic Alterations in BC
1.2. HRs and Pathway Signaling in BC
1.3. Short Review of the Molecular Types of BC and Therapeutic Implications
1.4. Tumor Microenvironment and Therapeutic Implications (TME)
1.5. Angiogenesis in Therapy
1.6. Impact of ESR Mutations on the Therapeutic Management of HR-Positive BC
1.7. Adjuvant HT
1.7.1. SERMs
1.7.2. SERDs
1.7.3. Aromatase Inhibitors (AIs)
1.7.4. Ovarian Function Suppression (OFS)
1.7.5. Emergence of CDK4/6 Inhibitors in HR-Positive BC
2. Materials and Methods
3. Discussion—Therapeutic Tuning: Factors Guiding Personalization
3.1. HT Therapy in Premenopausal Women
3.2. HT Therapy in Postmenopausal Women
3.3. Risk Stratification
3.4. Limitations of Key Studies
3.5. Escalation and De-Escalation Treatment Strategies in Hormone-Receptor-Positive Breast Cancer
3.5.1. Premenopausal Women
3.5.2. Postmenopausal Women
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lima, S.M.; Kehm, R.D.; Terry, M.B. Global breast cancer incidence and mortality trends by region, age-groups, and fertility patterns. eClinicalMedicine 2021, 38, 100985. [Google Scholar] [CrossRef] [PubMed]
- Houghton, S.C.; Hankinson, S.E. Cancer progress and priorities: Breast cancer. Cancer Epidemiol. Biomark. Prev. 2021, 30, 822–844. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, A.; Imoto, I.; Iwata, H. Functions of Breast Cancer Predisposition Genes: Implications for Clinical Management. Int. J. Mol. Sci. 2022, 23, 7481. [Google Scholar] [CrossRef] [PubMed]
- Nolan, E.; Lindeman, G.J.; Visvader, J.E. Deciphering breast cancer: From biology to the clinic. Cell 2023, 186, 1708–1728. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, N.; Myers, C. Breast cancer-induced angiogenesis: Multiple mechanisms and the role of the microenvironment. Breast Cancer Res. 2003, 5, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Maioru, O.V.; Radoi, V.E.; Coman, M.C.; Hotinceanu, I.A.; Dan, A.; Eftenoiu, A.E.; Severin, E.M. Developments in Genetics: Better Management of Ovarian Cancer Patients. Int. J. Mol. Sci. 2023, 24, 15987. [Google Scholar] [CrossRef] [PubMed]
- Grigore, L.G.; Radoi, V.E.; Serban, A.; Mihai, A.D.; Stoica, I. The Molecular Detection of Germline Mutations in the BRCA1 and BRCA2 Genes Associated with Breast and Ovarian Cancer in a Romanian Cohort of 616 Patients. Curr. Issues. Mol. Biol. 2024, 46, 4630–4645. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, M.; Nassiri, M.; Kooshyar, M.M.; Vakili-Azghandi, M.; Avan, A.; Sandry, R.; Gopalan, V. Hereditary breast cancer; Genetic penetrance and current status with BRCA. J. Cell. Physiol. 2018, 234, 5741–5750. [Google Scholar] [CrossRef] [PubMed]
- Godet, I.; Gilkes, D.M. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr. Cancer Sci. Ther. 2017, 4, 10-15761. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.H.; Baek, S.H.; Lee, M.J.; Kook, Y.; Bae, S.J.; Ahn, S.G.; Jeong, J. Clinical Relevance of TP53 Mutation and Its Characteristics in Breast Cancer with Long-Term Follow-Up Date. Cancers 2024, 16, 3899. [Google Scholar] [CrossRef] [PubMed]
- Scabia, V.; Ayyanan, A.; De Martino, F.; Agnoletto, A.; Battista, L.; Laszlo, C.; Treboux, A.; Zaman, K.; Stravodimou, A.; Jallut, D.; et al. Estrogen receptor positive breast cancers have patient specific hormone sensitivities and rely on progesterone receptor. Nat. Commun. 2024, 16, 3899. [Google Scholar] [CrossRef] [PubMed]
- Miziak, P.; Baran, M.; Błaszczak, E.; Przybyszewska-Podstawka, A.; Kałafut, J.; Smok-Kalwat, J.; Dmoszyńska-Graniczka, M.; Kiełbus, M.; Stepulak, A. Estrogen Receptor Signaling in Breast Cancer. Cancers 2023, 15, 4689. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Molecular Classification of Breast Cancer Relevance and Challenges. Arch. Pathol. Lab. Med. 2022, 147, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Botstein, D. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Pu, M.; Messer, K.; Davies, S.R.; Vickery, T.L.; Pittman, E.; Parker, B.A.; Ellis, M.J.; Flatt, S.W.; Marinac, C.R.; Nelson, S.H.; et al. Research-based PAM50 signature and long-term breast cancer survival. Breast Cancer Res. Treat. 2019, 179, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Tsang, J.Y.S.; Tse, G.M. Molecular Classification of Breast Cancer. 2019. Available online: www.anatomicpathology.com (accessed on 13 July 2025).
- Smolarz, B.; Zadrożna Nowak, A.; Romanowicz, H. Breast Cancer—Epidemiology, Classification, Pathogenesis and Treatment (Review of Literature). Cancers 2022, 14, 2569. [Google Scholar] [CrossRef] [PubMed]
- Pavese, F.; Capoluongo, E.D.; Muratore, M.; Minucci, A.; Santonocito, C.; Fuso, P.; Concolino, P.; Di Stasio, E.; Carbognin, L.; Tiberi, G.; et al. BRCA Mutation Status in Triple-Negative Breast Cancer Patients Treated with Neoadjuvant Chemotherapy: A Pivotal Role for Treatment Decision-Making. Cancers 2022, 14, 4571. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Barge, A.; Parris, C.N. Combination strategies with PARP inhibitors in BRCA-mutated triple-negative breast cancer: Overcoming resistance mechanisms. Oncogene 2024, 44, 193–207. [Google Scholar] [CrossRef] [PubMed]
- de Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023, 41, 374–403. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Tsang, J.Y.; Tse, G.M. Tumor microenvironment in breast cancer—Updates on therapeutic implications and pathologic assessment. Cancers 2021, 13, 4233. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Jiang, Y.C.; Sun, C.K.; Chen, Q.M. Role of the tumor microenvironment in tumor progression and the clinical applications (Review). Oncol. Rep. 2016, 35, 2499–2515. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Hou, X.; Yu, J.; He, X. Combinatorial Strategies With PD-1/PD-L1 Immune Checkpoint Blockade for Breast Cancer Therapy: Mechanisms and Clinical Outcomes. Front. Pharmacol. 2022, 13, 928369. [Google Scholar] [CrossRef] [PubMed]
- Madu, C.O.; Wang, S.; Madu, C.O.; Lu, Y. Angiogenesis in breast cancer progression, diagnosis, and treatment. J. Cancer 2020, 11, 4474–4494. [Google Scholar] [CrossRef] [PubMed]
- Harry, J.A.; Ormiston, M.L. Novel Pathways for Targeting Tumor Angiogenesis in Metastatic Breast Cancer. Front. Oncol. 2021, 11, 772305. [Google Scholar] [CrossRef] [PubMed]
- Pejerrey, S.M.; Dustin, D.; Kim, J.A.; Gu, G.; Rechoum, Y.; Fuqua, S.A.W. The Impact of ESR1 Mutations on the Treatment of Metastatic Breast Cancer. Discov. Oncol. 2018, 9, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Brett, J.O.; Spring, L.M.; Bardia, A.; Wander, S.A. ESR1 mutation as an emerging clinical biomarker in metastatic hormone receptor-positive breast cancer. Breast Cancer Res. 2021, 23, 85. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, G.; Hrebien, S.; Garcia-Murillas, I.; Cutts, R.J.; Pearson, A.; Tarazona, N.; Fenwick, K.; Kozarewa, I.; Lopez-Knowles, E.; Ribas, R.; et al. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci. Transl. Med. 2015, 7, 313ra182. [Google Scholar] [CrossRef] [PubMed]
- Burstein, H.J. Adjuvant endocrine therapy in postmenopausal women: Making treatment choices based on the magnitude of benefit. Breast 2019, 48, S89–S91. [Google Scholar] [CrossRef] [PubMed]
- Pistilli, B.; Lohrisch, C.; Sheade, J.; Fleming, G.F. Personalizing Adjuvant Endocrine Therapy for Early-Stage Hormone Receptor–Positive Breast Cancer. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Rej, R.K.; Roy, J.; Allu, S.R. Therapies for the Treatment of Advanced/Metastatic Estrogen Receptor-Positive Breast Cancer: Current Situation and Future Directions. Cancers 2024, 16, 552. [Google Scholar] [CrossRef] [PubMed]
- Arao, Y.; Hamilton, K.J.; Grimm, S.A.; Korach, K.S. The genomic regulatory elements for estrogen receptor alpha transactivation-function-1 regulated genes. FASEB J. 2020, 34, 16003–16021. [Google Scholar] [CrossRef] [PubMed]
- Jordan, V.C. The SERM Saga, Something from Nothing: American Cancer Society/SSO Basic Science Lecture. Ann. Surg. Oncol. 2019, 26, 1981–1990. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yu, X.; Sun, Z.; Zhu, L.; Lang, J. Value of endometrial thickness in diagnosis of endometrial hyperplasia during selective estrogen receptor modulator therapy in premenopausal breast cancer patients. J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 101929. [Google Scholar] [CrossRef] [PubMed]
- Oceguera-Basurto, P.; Topete, A.; Oceguera-Villanueva, A.; Rivas-Carrillo, J.; Paz-Davalos, M.; Quintero-Ramos, A.; Del Toro-Arreola, A.; Daneri-Navarro, A. Selective estrogen receptor modulators in the prevention of breast cancer in premenopausal women: A review. Transl. Cancer Res. 2020, 9, 4444–4456. [Google Scholar] [CrossRef] [PubMed]
- Bychkovsky, B.; Laws, A.; Katlin, F.; Hans, M.; Knust Graichen, M.; Pace, L.E.; Scheib, R.; Garber, J.E.; King, T.A. Initiation and tolerance of chemoprevention among women with high-risk breast lesions: The potential of low-dose tamoxifen. Breast Cancer Res. Treat. 2022, 193, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Hernando, C.; Ortega-Morillo, B.; Tapia, M.; Moragón, S.; Martínez, M.T.; Eroles, P.; Garrido-Cano, I.; Adam-Artigues, A.; Lluch, A.; Bermejo, B.; et al. Oral selective estrogen receptor degraders (Serds) as a novel breast cancer therapy: Present and future from a clinical perspective. Int. J. Mol. Sci. 2021, 22, 7812. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, Z.; Jamil, A.; Altaf, F.; Siddique, R.; Adilovic, E.; Fatima, E.; Shah, S. Elacestrant in the treatment landscape of ER-positive, HER2-negative, ESR1-mutated advanced breast cancer: A contemporary narrative review. Ann. Med. Surg. 2024, 86, 4624–4633. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yu, Y.; Luo, S.; Fu, W.; Zhang, J.; Song, C. The value of oral selective estrogen receptor degraders in patients with HR-positive, HER2-negative advanced breast cancer after progression on ≥1 line of endocrine therapy: Systematic review and meta-analysis. BMC Cancer 2024, 24, 21. [Google Scholar] [CrossRef]
- Hamilton, E.P.; Loibl, S.; Bachelot, T.; Gnant, M.; Niikura, N.; Park, Y.H.; Tolaney, S.M.; Pistilli, B.; Rastogi, P.; Saini, K.S.; et al. CAMBRIA-1 & CAMBRIA-2 phase III trials: Camizestrant versus standard endocrine therapy in ER+/HER2– early breast cancer. Futur. Oncol. 2025, 21, 795–806. [Google Scholar] [CrossRef]
- Cairns, J.; Ingle, J.N.; Dudenkov, T.M.; Kalari, K.R.; Carlson, E.E.; Na, J.; Buzdar, A.U.; Robson, M.E.; Ellis, M.J.; Goss, P.E.; et al. Pharmacogenomics of aromatase inhibitors in postmenopausal breast cancer and additional mechanisms of anastrozole action. J. Clin. Investig. 2020, 5, e137571. [Google Scholar] [CrossRef] [PubMed]
- Janowska, S.; Holota, S.; Lesyk, R.; Wujec, M. Aromatase Inhibitors as a Promising Direction for the Search for New Anticancer Drugs. Molecules 2024, 29, 346. [Google Scholar] [CrossRef] [PubMed]
- Etikasari, R.; Murti Andayani, T.; Endarti, D.; Widayati Taroeno-Hariadi, K.; Mada, G. The 5-Year Disease-Free Survival of Third Generation Aromatase Inhibitor for Postmenopausal Women with HR-Positive HER2-Negative Non-Metastatic Breast Cancer. Stem Cell Res. 2023, 17, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Bui, K.T.; Willson, M.L.; Goel, S.; Beith, J.; Goodwin, A. Ovarian suppression for adjuvant treatment of hormone receptor-positive early breast cancer. Cochrane Database Syst. Rev. 2020, 3, CD013538. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Reyes, M.; Maya-Núñez, G.; Pérez-Solis, M.A.; López-Muñoz, E.; Guillén, N.; Olivo-Marin, J.C.; Aguilar-Rojas, A. Treatment of Breast Cancer With Gonadotropin-Releasing Hormone Analogs. Front. Oncol. 2019, 9, 943. [Google Scholar] [CrossRef] [PubMed]
- Azim, H.A.; Shohdy, K.S.; Kaldas, D.F.; Kassem, L.; Azim, H.A. Adjuvant ovarian function suppression and tamoxifen in premenopausal breast cancer patients: A meta-analysis. Curr. Probl. Cancer 2020, 44, 100592. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Yang, B.; Wu, J. Revisiting ovarian function suppression with GnRH agonists for premenopausal women with breast cancer: Who should use and the impact on survival outcomes. Cancer Treat. Rev. 2024, 129, 102770. [Google Scholar] [CrossRef] [PubMed]
- Lambertini, M.; Boni, L.; Michelotti, A.; Magnolfi, E.; Cogoni, A.A.; Mosconi, A.M.; Giordano, M.; Garrone, O.; Arpino, G.; Poggio, F.; et al. Long-Term Outcomes with Pharmacological Ovarian Suppression during Chemotherapy in Premenopausal Early Breast Cancer Patients. JNCI J. Natl. Cancer Inst. 2021, 114, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Durrani, S.; Heena, H. Controversies regarding ovarian suppression and infertility in early stage breast cancer. Cancer Manag. Res. 2020, 12, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Molinelli, C.; Jacobs, F.; Nader-Marta, G.; Borea, R.; Scavone, G.; Ottonello, S.; Lambertini, M. Ovarian Suppression: Early Menopause and Late Effects. Curr. Treat. Options Oncol. 2024, 25, 523–542. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, S.; Xin, Q.; Zhang, Y.; Wang, K.; Li, M. Recent progress of CDK4/6 inhibitors’ current practice in breast cancer. Cancer Gene Ther. 2024, 31, 1283–1291. [Google Scholar] [CrossRef] [PubMed]
- Shimoi, T.; Sagara, Y.; Hara, F.; Toyama, T.; Iwata, H. First-line endocrine therapy for postmenopausal patients with hormone receptor-positive, HER2-negative metastatic breast cancer: A systematic review and meta-analysis. Breast Cancer 2020, 27, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Goetz, M.P.; Toi, M.; Campone, M.; Sohn, J.; Paluch-Shimon, S.; Huober, J.; Park, I.H.; Trédan, O.; Chen, S.C.; Manso, L.; et al. MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer. J. Clin. Oncol. 2017, 35, 3638–3646. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Martin, M.; Rugo, H.S.; Jones, S.; Im, S.A.; Gelmon, K.; Harbeck, N.; Lipatov, O.N.; Walshe, J.M.; Moulder, S.; et al. Palbociclib and Letrozole in Advanced Breast Cancer. N. Engl. J. Med. 2016, 375, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Pagani, O.; Francis, P.A.; Fleming, G.F.; Walley, B.A.; Viale, G.; Colleoni, M.; Láng, I.; Gómez, H.L.; Tondini, C.; Pinotti, G.; et al. Absolute Improvements in Freedom From Distant Recurrence to Tailor Adjuvant Endocrine Therapies for Premenopausal Women: Results From TEXT and SOFT. J. Clin. Oncol. 2020, 38, 1293–1303. [Google Scholar] [CrossRef] [PubMed]
- Pagani, O.; Walley, B.A.; Fleming, G.F.; Colleoni, M.; Láng, I.; Gomez, H.L.; Tondini, C.; Burstein, H.J.; Goetz, M.P.; Ciruelos, E.M.; et al. Adjuvant Exemestane With Ovarian Suppression in Premenopausal Breast Cancer: Long-Term Follow-Up of the Combined TEXT and SOFT Trials. J. Clin. Oncol. 2023, 41, 1376–1382. [Google Scholar] [CrossRef] [PubMed]
- O’Shaughnessy, J.; Gradishar, W.; O’Regan, R.; Gadi, V. Risk of Recurrence in Patients With HER2+ Early-Stage Breast Cancer: Literature Analysis of Patient and Disease Characteristics. Clin. Breast Cancer 2023, 23, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Salvo, E.M.; Ramirez, A.O.; Cueto, J.; Law, E.H.; Situ, A.; Cameron, C.; Samjoo, I.A. Risk of recurrence among patients with HR-positive, HER2-negative, early breast cancer receiving adjuvant endocrine therapy: A systematic review and meta-analysis. Breast 2021, 57, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Johansson, A.; Dar, H.; van’t Veer, L.J.; Tobin, N.P.; Perez-Tenorio, G.; Nordenskjöld, A.; Lindström, L.S. Twenty-Year Benefit From Adjuvant Goserelin and Tamoxifen in Premenopausal Patients with Breast Cancer in a Controlled Randomized Clinical Trial. J. Clin. Oncol. 2022, 40, 4071–4082. [Google Scholar] [CrossRef] [PubMed]
- Beom, S.H.; Oh, J.; Kim, T.Y.; Lee, K.H.; Yang, Y.; Suh, K.J.; Moon, H.G.; Han, S.W.; Oh, D.Y.; Han, W.; et al. Efficacy of letrozole as first-line treatment of postmenopausal women with hormone receptor-positive metastatic breast cancer in Korea. Cancer Res. Treat. 2017, 49, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Gnant, M.; Fitzal, F.; Rinnerthaler, G.; Steger, G.G.; Greil-Ressler, S.; Balic, M.; Heck, D.; Jakesz, R.; Thaler, J.; Egle, D.; et al. Duration of Adjuvant Aromatase-Inhibitor Therapy in Postmenopausal Breast Cancer. N. Engl. J. Med. 2021, 385, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, J.; Brundage, M.D.; Parulekar, W.R.; Goss, P.E.; Ingle, J.N.; Pritchard, K.I.; Celano, P.; Muss, H.; Gralow, J.; Strasser-Weippl, K.; et al. Quality of Life From Canadian Cancer Trials Group MA.17R: A Randomized Trial of Extending Adjuvant Letrozole to 10 Years. J. Clin. Oncol. 2018, 36, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.; Pan, H.; Godwin, J.; Gray, R.; Arriagada, R.; Raina, V.; Abraham, M.; Alencar, V.H.; Badran, A.; Bonfill, X.; et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 2013, 381, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.M.S.; Sgroi, D.C.; Treuner, K.; Zhang, Y.; Ahmed, I.; Piper, T.; Salunga, R.; Brachtel, E.F.; Pirrie, S.J.; Schnabel, C.A.; et al. Breast Cancer Index and prediction of benefit from extended endocrine therapy in breast cancer patients treated in the Adjuvant Tamoxifen—To Offer More? (aTTom) trial. Ann. Oncol. 2019, 30, 1776–1783. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Li, Z.; Ruan, G.D.; Tu, C.; Ding, W. Efficacy and toxicity of extended aromatase inhibitors after adjuvant aromatase inhibitors-containing therapy for hormone-receptor-positive breast cancer: A literature-based meta-analysis of randomized trials. Breast Cancer Res. Treat. 2019, 179, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Erber, R.; Angeloni, M.; Stoehr, R.; Lux, M.P.; Ulbrich-Gebauer, D.; Pelz, E.; Bankfalvi, A.; Schmid, K.W.; Walter, R.F.; Vetter, M.; et al. Molecular Subtyping of Invasive Breast Cancer Using a PAM50-Based Multigene Expression Test-Comparison with Molecular-Like Subtyping by Tumor Grade/Immunohistochemistry and Influence on Oncologist’s Decision on Systemic Therapy in a Real-World Setting. Int. J. Mol. Sci. 2022, 23, 8716. [Google Scholar] [CrossRef] [PubMed]
- Litton, J.; Buzdar, A.; Mac Gregor, M.C.; Gonzalez-Angulo, A.; Hortobagyi, G. Tamoxifen therapy for patients with breast cancer. Lancet 2013, 381, 2077–2078. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, J.; Luo, W.; Ribi, K.; Colleoni, M.; Burstein, H.J.; Tondini, C.; Pinotti, G.; Spazzapan, S.; Ruhstaller, T.; Puglisi, F.; et al. Patient-reported outcomes with adjuvant exemestane versus tamoxifen in premenopausal women with early breast cancer undergoing ovarian suppression (TEXT and SOFT): A combined analysis of two phase 3 randomised trials. Lancet Oncol. 2015, 16, 848–858. [Google Scholar] [CrossRef] [PubMed]
- Reeder-Hayes, K.E.; Mayer, S.E.; Lund, J.L. Adherence to endocrine therapy including ovarian suppression: A large observational cohort study of US women with early breast cancer. Cancer 2021, 127, 1220–1227. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.R.D.; Harbeck, N.; Hegg, R.; Toi, M.; Martin, M.; Shao, Z.M.; Zhang, Q.Y.; Martinez Rodriguez, J.L.; Campone, M.; Hamilton, E.; et al. Abemaciclib Combined With Endocrine Therapy for the Adjuvant Treatment of HR1, HER22, Node-Positive, High-Risk, Early Breast Cancer (monarchE). J. Clin. Oncol. 2020, 38, 3987–3998. [Google Scholar] [CrossRef] [PubMed]
Class | Therapeutic Agents | Action Mechanism in BC | Clinical Indications | Typical Dose |
---|---|---|---|---|
SERMs | Tamoxifen, raloxifene, toremifene | Partially blocking the AF-1 domain and totally blocking the AF-2 domain of the ERα, therefore slowing cell growth in estrogen-driven BC | -ER-positive BCs; no specific predilection for menopausal status -Can be given as neoadjuvant, adjuvant, and in metastatic cases (toremifene) | -Tamoxifen: 20 mg/day oral -Raloxifene: 60 mg/day oral -Toremifene: 60 mg/day oral |
SERDs | Fluvestrant, camizestrant | Bind to the ER and degrade it through a process called ubiquination → definitive and irreversible mechanism of inhibiting estrogen’s effects | -ER-positive BCs; when resistance to other therapies has formed; -Mostly in postmenopausal women -Camizestrant (an oral SERD) is now being investigated as a more effective option in advanced HR-positive cases in comparison to tamoxifen and fluvestrant | -Fulvestrant: 500 mg IM on days 1, 15, then monthly -Camizestrant: under investigation; oral |
AIs | -Steroidal (type I inhibitors): exemestane -non-steroidal (type II inhibitors): anastrozole, letrozole | -Irreversibly/reversibly bind to the aromatase enzyme → inhibit the aromatization process in peripheral tissues | -First line of treatment in postmenopausal women, alone or in combination therapy -Adjuvant, neoadjuvant, or advanced/metastatic disease | -Exemestane: 25 mg/day oral -Anastrozole: 1 mg/day oral -Letrozole: 2.5 mg/day oral |
GNRHas /LHRHas | Goserelin (Zoladex), leuprolide (Lupron), triptorelin (Trelstar) | -Suppression of the hypothalamic–pituitary–gonadal axis -Initial stimulation of LH and FSH and then downregulation of LH and FSH →ovarian suppression | -In premenopausal women with HR-positive BC -For fertility preservation in premenopausal women during chemotherapy -Used with AIs or tamoxifen | -Goserelin: 3.6 mg SC every 28 days -Leuprolide: 3.75 mg IM monthly or 11.25 mg every 3 months -Triptorelin: 3.75 mg IM monthly |
CDK4/6 inhibitors | Palbociclib (Ibrance), ribociclib (Kisqali), abemaciclib (Verzenio) (all non-steroidal) | -Bind to the ATP-binding sites of 2 proteins involved in regulating the cell cycle—CDK4 and CDK6 → cancer cells are unable to proliferate → reduced cancerous growth | -HR-positive/HER2-negative advanced or metastatic BC in combination with endocrine therapy (in combination with AIs or fulvestrant) | -Palbociclib: 125 mg/day for 21 days + 7 off -Ribociclib: 600 mg/day for 21 days + 7 off -Abemaciclib: 150 mg twice daily continuously |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burciu, O.M.; Merce, A.-G.; Cerbu, S.; Iancu, A.; Popoiu, T.-A.; Cobec, I.M.; Sas, I.; Dimofte, G.M. Current Endocrine Therapy in Hormone-Receptor-Positive Breast Cancer: From Tumor Biology to the Rationale for Therapeutic Tunning. Medicina 2025, 61, 1280. https://doi.org/10.3390/medicina61071280
Burciu OM, Merce A-G, Cerbu S, Iancu A, Popoiu T-A, Cobec IM, Sas I, Dimofte GM. Current Endocrine Therapy in Hormone-Receptor-Positive Breast Cancer: From Tumor Biology to the Rationale for Therapeutic Tunning. Medicina. 2025; 61(7):1280. https://doi.org/10.3390/medicina61071280
Chicago/Turabian StyleBurciu, Oana Maria, Adrian-Grigore Merce, Simona Cerbu, Aida Iancu, Tudor-Alexandru Popoiu, Ionut Marcel Cobec, Ioan Sas, and Gabriel Mihail Dimofte. 2025. "Current Endocrine Therapy in Hormone-Receptor-Positive Breast Cancer: From Tumor Biology to the Rationale for Therapeutic Tunning" Medicina 61, no. 7: 1280. https://doi.org/10.3390/medicina61071280
APA StyleBurciu, O. M., Merce, A.-G., Cerbu, S., Iancu, A., Popoiu, T.-A., Cobec, I. M., Sas, I., & Dimofte, G. M. (2025). Current Endocrine Therapy in Hormone-Receptor-Positive Breast Cancer: From Tumor Biology to the Rationale for Therapeutic Tunning. Medicina, 61(7), 1280. https://doi.org/10.3390/medicina61071280