Recent Advances in Antibacterial and Antiendotoxic Peptides or Proteins from Marine Resources
Abstract
:1. Introduction
2. Antibacterial/Antiendotoxic Peptides or Proteins from Various Marine Organisms
2.1. AMPs with Different Structures
2.1.1. α-Helix Peptides from Sea Snakes or Sea Breams
2.1.2. β-Sheet Peptides from Marine Lugworms
2.1.3. Cyclic Peptides from Marine Bacteria
2.2. Anti-LPS Factors (ALFs) from Crustaceans
2.3. Other Peptides or Proteins from Sea Fish
3. Heterologous Expression of Antibacterial and Antiendotoxic Marine Peptides or Proteins
4. Factors Influencing the Interaction between LPS and Antibacterial/Antiendotoxic Marine Peptides or Proteins
4.1. Hydrophobicity and Charge
4.2. Basic Amino Acid Content
4.3. Secondary Structure
4.4. Disulfide Bond
5. Mechanism of Marine Peptides or Proteins in Neutralizing with LPS
5.1. Biophysical and Chemical Interaction with LPS
5.2. Inhibition of LPS-Induced Inflammatory Response
6. Challenges and Strategies for Antibacterial and Antiendotoxic Marine Peptides or Proteins
6.1. Toxicity
6.2. Stability
6.3. Cost
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Papo, N.; Shai, Y. A molecular mechanism for lipopolysaccharide protection of Gram-negative bacteria from antimicrobial peptides. J. Biol. Chem. 2005, 280, 10378–10387. [Google Scholar] [CrossRef]
- Beutler, B.; Rietschel, E.T. Innate immune sensing and its roots: The story of endotoxin. Nat. Rev. Immunol. 2003, 3, 169–176. [Google Scholar] [CrossRef]
- Kawasaki, M.; Young, J.R.; Suon, S.; Bush, R.D.; Windsor, P.A. The socioeconomic impacts of clinically diagnosed haemorrhagic septicaemia on smallholder large ruminant farmers in Cambodia. Transbound. Emerg. Dis. 2015, 62, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Shivachandra, S.B.; Viswas, K.N.; Kumar, A.A. A review of hemorrhagic septicaemia in cattle and buffalo. Anim. Health Res. Rev. 2011, 12, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Young, J.R.; O’Reilly, R.A.; Ashley, K.; Suon, S.; Leoung, I.V.; Windsor, P.A.; Bush, R.D. Impacts on rural livelihoods in Cambodia following adoption of best practice health and husbandry interventions by smallholder cattle farmers. Transbound. Emerg. Dis. 2014, 61 (Suppl. 1), 11–24. [Google Scholar] [CrossRef]
- Uppu, D.S.; Ghosh, C.; Haldar, J. Surviving sepsis in the era of antibiotic resistance: Are there any alternative approaches to antibiotic therapy? Microb. Pathog. 2015, 80, 7–13. [Google Scholar] [CrossRef]
- Ronco, C. Endotoxin removal: History of a mission. Blood Purif. 2014, 37 (Suppl. 1), 5–8. [Google Scholar] [CrossRef]
- Domingues, M.M.; Santos, N.C.; Castanho, M.A. Antimicrobial peptide rBPI21: A translational overview from bench to clinical studies. Curr. Protein Pept. Sci. 2012, 13, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.E.; Pollack, M. Effect of antibiotic class and concentration on the release of lipopolysaccharide from Escherichia coli. J. Infect. Dis. 1993, 167, 1336–1343. [Google Scholar] [CrossRef]
- Trautmann, M.; Zick, R.; Rukavina, T.; Cross, A.S.; Marre, R. Antibiotic-induced release of endotoxin: In-vitro comparison of meropenem and other antibiotics. J. Antimicrob. Chemother. 1998, 41, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Hurley, J.C. Antibiotic-induced release of endotoxin: A reappraisal. Clin. Infect Dis. 1992, 15, 840–854. [Google Scholar] [CrossRef] [PubMed]
- Uppu, D.S.; Haldar, J. Lipopolysaccharide neutralization by cationic-amphiphilic polymers through Pseudoaggregate formation. Biomacromolecules 2016, 17, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Suphasiriroj, W.; Mikami, M.; Shimomura, H.; Sato, S. Specificity of antimicrobial peptide LL-37 to neutralize periodontopathogenic lipopolysaccharide activity in human oral fibroblasts. J. Periodontol. 2013, 84, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.G.; Vreugdenhil, A.C.; Buurman, W.A.; Hancock, R.E.; Gold, M.R. Cutting edge: Cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein. J. Immunol. 2000, 164, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Larrick, J.W.; Hirata, M.; Balint, R.F.; Lee, J.; Zhong, J.; Wright, S.C. Human CAP18: A novel antimicrobial lipopolysaccharide-binding protein. Infect. Immun. 1995, 63, 1291–1297. [Google Scholar] [PubMed]
- Kang, H.K.; Seo, C.H.; Park, Y. Marine peptides and their anti-infective activities. Mar. Drugs 2015, 13, 618–654. [Google Scholar] [CrossRef] [PubMed]
- Cheung, R.C.; Ng, T.B.; Wong, J.H. Marine peptides: Bioactivities and applications. Mar. Drugs. 2015, 13, 4006–4043. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Gao, J.; Zhang, S.; Wu, S.; Xie, Z.; Ling, G.; Kuang, Y.Q.; Yang, Y.; Yu, H.; Wang, Y. Identification and characterization of the first cathelicidin from sea snakes with potent antimicrobial and anti-inflammatory activity and special mechanism. J. Biol. Chem. 2015, 290, 16633–16652. [Google Scholar] [CrossRef] [PubMed]
- Iijima, N.; Tanimoto, N.; Emoto, Y.; Morita, Y.; Uematsu, K.; Murakami, T.; Nakai, T. Purification and characterization of three isoforms of chrysophsin, a novel antimicrobial peptide in the gills of the red sea bream, Chrysophrys major. Eur. J. Biochem. 2003, 270, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.K.; Kumari, T.; Harioudh, M.K.; Yadav, P.K.; Kathuria, M.; Shukla, P.K.; Mitra, K.; Ghosh, J.K. Identification of GXXXXG motif in Chrysophsin-1 and its implication in the design of analogs with cell-selective antimicrobial and anti-endotoxin activities. Sci. Rep. 2017, 7, 3384. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.J.; Bertani, P.; Moulay, G.; Marquette, A.; Perrone, B.; Drake, A.F.; Kichler, A.; Bechinger, B. Membrane interaction of chrysophsin-1, a histidine-rich antimicrobial peptide from red sea bream. Biochemistry 2007, 46, 15175–15187. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Huang, Y.; Li, A.; Jiang, H.; Wang, J.; Li, J.; Qiu, L.; Li, K.; Lu, Y. Hydrostatin-TL1, an anti-inflammatory active peptide from the venom gland of Hydrophis cyanocinctus in the South China Sea. Int. J. Mol. Sci. 2016, 17, 1940. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Jiang, H.; Huang, Y.; Wang, J.; Qiu, L.; Hu, Z.; Ma, X.; Lu, Y. Screening of an anti-inflammatory peptide from Hydrophis cyanocinctus and analysis of its activities and mechanism in DSS-induced acute colitis. Sci. Rep. 2016, 6, 25672. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Wang, J.; Luo, P.; Li, A.; Tian, S.; Jiang, H.; Zheng, Y.; Zhu, F.; Lu, Y.; Xia, Z. Hydrostatin-SN1, a sea snake-derived bioactive peptide, reduces inflammation in a mouse model of acute lung injury. Front. Pharmacol. 2017, 8, 246. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikova, T.V.; Aleshina, G.M.; Balandin, S.V.; Krasnosdembskaya, A.D.; Markelov, M.L.; Frolova, E.I.; Leonova, Y.F.; Tagaev, A.A.; Krasnodembsky, E.G.; Kokryakov, V.N. Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta Arenicola marina. FEBS Lett. 2004, 577, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Lee, D.G. The characteristic region of arenicin-1 involved with a bacterial membrane targeting mechanism. Biochem. Biophys. Res. Commun. 2011, 405, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Lee, D.G. Synergistic effect of antimicrobial peptide arenicin-1 in combination with antibiotics against pathogenic bacteria. Res. Microbiol. 2012, 163, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, X.; Teng, D.; Zhang, Y.; Mao, R.; Xi, D.; Wang, J. Candidacidal mechanism of the arenicin-3-derived peptide NZ17074 from Arenicola marina. Appl. Microbiol. Biotechnol. 2014, 98, 7387–7398. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.U.; Kang, D.I.; Zhu, W.L.; Shin, S.Y.; Hahm, K.S.; Kim, Y. Solution structures and biological functions of the antimicrobial peptide, arenicin-1, and its linear derivative. Biopolymers 2007, 88, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Lee, D.G. Fungicidal effect of antimicrobial peptide arenicin-1. Biochim. Biophys. Acta. 2009, 1788, 1790–1796. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.L. Antimicrobial peptides stage a comeback. Nat. Biotechnol. 2013, 31, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Panteleev, P.V.; Bolosov, I.A.; Balandin, S.V.; Ovchinnikova, T.V. Design of antimicrobial peptide arenicin analogs with improved therapeutic indices. J. Pept. Sci. 2015, 21, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Panteleev, P.V.; Bolosov, I.A.; Ovchinnikova, T.V. Bioengineering and functional characterization of arenicin shortened analogs with enhanced antibacterial activity and cell selectivity. J. Pept. Sci. 2016, 22, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Panteleev, P.V.; Myshkin, M.Y.; Shenkarev, Z.O.; Ovchinnikova, T.V. Dimerization of the antimicrobial peptide arenicin plays a key role in the cytotoxicity but not in the antibacterial activity. Biochem. Biophys. Res. Commun. 2017, 482, 1320–1326. [Google Scholar] [CrossRef] [PubMed]
- Hoegenhaug, H.-H.K.; Mygind, P.H.; Kruse, T.; Segura, D.R.; Sandvang, D.H.; Neve, S. Antimicrobial Peptide Variants and Polynucleotides Encoding Same. U.S. Patent 13/151,600, 2 June 2011. [Google Scholar]
- Yang, N.; Liu, X.; Teng, D.; Li, Z.; Wang, X.; Mao, R.; Wang, X.; Hao, Y.; Wang, J. Antibacterial and detoxifying activity of NZ17074 analogues with multi-layers of selective antimicrobial actions against Escherichia coli and Salmonella enteritidis. Sci. Rep. 2017, 7, 3392. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Wang, X.; Teng, D.; Mao, R.; Hao, Y.; Feng, X.; Wang, J. Deleting the first disulphide bond in an arenicin derivative enhances its expression in Pichia pastoris. Lett. Appl. Microbiol. 2017, 65, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Kozuma, S.; Hirota-Takahata, Y.; Fukuda, D.; Kuraya, N.; Nakajima, M.; Ando, O. Identification and biological activity of ogipeptins, novel LPS inhibitors produced by marine bacterium. J. Antibiot. 2017, 70, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Hirota-Takahata, Y.; Kozuma, S.; Kuraya, N.; Fukuda, D.; Nakajima, M.; Takatsu, T.; Ando, O. Ogipeptins, novel inhibitors of LPS: Physicochemical properties and structural elucidation. J. Antibiot. 2017, 70, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Morita, T.; Ohtsubo, S.; Nakamura, T.; Tanaka, S.; Iwanaga, S.; Ohashi, K.; Niwa, M. Isolation and biological activities of limulus anticoagulant (anti-LPS factor) which interacts with lipopolysaccharide (LPS). J. Biochem. 1985, 97, 1611–1620. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Nakamura, T.; Morita, T.; Iwanaga, S. Anti-LPS factor: An anticoagulant which inhibits the endotoxin-mediated activation of coagulation system. Biochem. Biophys. Res. Commun. 1982, 105, 717–723. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.; Li, F.; Dong, B.; Xiang, J. Molecular cloning and expression profile of putative antilipopolysaccharide factor in Chinese shrimp (Fenneropenaeus chinensis). Mar. Biotechnol. 2005, 7, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Somboonwiwat, K.; Marcos, M.; Tassanakajon, A.; Klinbunga, S.; Aumelas, A.; Romestand, B.; Gueguen, Y.; Boze, H.; Moulin, G.; Bachère, E. Recombinant expression and anti-microbial activity of anti-lipopolysaccharide factor (ALF) from the black tiger shrimp Penaeus monodon. Dev. Comp. Immunol. 2005, 29, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Wan, W.; Zhu, S.; Wang, S.; Wang, S.; Wen, X.; Zheng, H.; Zhang, Y.; Li, S. Characterization of a novel anti-lipopolysaccharide factor isoform (SpALF5) in mud crab, Scylla paramamosain. Mol. Immunol. 2015, 64, 262–275. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, S.; Li, F.; Lv, X.; Xiang, J. Recombinant expression and functional analysis of an isoform of anti-lipopolysaccharide factors (FcALF5) from Chinese shrimp Fenneropenaeus chinensis. Dev. Comp. Immunol. 2015, 53, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Boze, H.; Chemardin, P.; Padilla, A.; Moulin, G.; Tassanakajon, A.; Pugnière, M.; Roquet, F.; Destoumieux-Garzón, D.; Gueguen, Y.; Bachère, E.; Aumelas, A. NMR structure of rALF-Pm3, an anti-lipopolysaccharide factor from shrimp: Model of the possible lipid A-binding site. Biopolymers 2009, 91, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.G.; Wang, Y.; Hui, K.; Fang, W.H.; Zhao, S.; Zhang, J.X.; Ma, H.; Li, X.C. A novel anti-lipopolysaccharide factor SpALF6 in mud crab Scylla paramamosain exhibiting different antimicrobial activity from its single amino acid mutant. Dev. Comp. Immunol. 2017, 72, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Oren, Z.; Shai, Y. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. J. Biol. Chem. 1993, 268, 14081–14089. [Google Scholar] [CrossRef]
- Bhunia, A.; Domadia, P.N.; Torres, J.; Hallock, K.J.; Ramamoorthy, A.; Bhattacharjya, S. NMR structure of pardaxin, a pore-forming antimicrobial peptide, in lipopolysaccharide micelles: Mechanism of outer membrane permeabilization. J. Biol. Chem. 2010, 285, 3883–3895. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Shin, A.; Jeong, K.W.; Jin, B.; Jnawali, H.N.; Shin, S.; Shin, S.Y.; Kim, Y. Role of phenylalanine and valine10 residues in the antimicrobial activity and cytotoxicity of piscidin-1. PLoS ONE 2014, 9, e114453. [Google Scholar] [CrossRef] [PubMed]
- Arenicin antimicrobial peptides. In Proceedings of the 54th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC, USA, 5–9 September 2014.
- Silphaduang, U.; Noga, E.J. Peptide antibiotics in mast cells of fish. Nature 2001, 414, 268–269. [Google Scholar] [CrossRef] [PubMed]
- Sung, W.S.; Lee, J.; Lee, D.G. Fungicidal effect of piscidin on Candida albicans: Pore formation in lipid vesicles and activity in fungal membranes. Biol. Pharm. Bull. 2008, 31, 1906–1910. [Google Scholar] [CrossRef] [PubMed]
- Colorni, A.; Ullal, A.; Heinisch, G.; Noga, E.J. Activity of the antimicrobial polypeptide piscidin 2 against fish ectoparasites. J. Fish Dis. 2008, 31, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.J.; Huang, T.C.; Muthusamy, S.; Lee, J.F.; Duann, Y.F.; Lin, C.H. Piscidin-1, an antimicrobial peptide from fish (hybrid striped bass morone saxatilis x M. chrysops), induces apoptotic and necrotic activity in HT1080 cells. Zool. Sci. 2012, 29, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Tripathi, A.K.; Kathuria, M.; Shree, S.; Tripathi, J.K.; Purshottam, R.K.; Ramachandran, R.; Mitra, K.; Ghosh, J.K. Single amino acid substitutions at specific positions of the heptad repeat sequence of piscidin-1 yielded novel analogs that show low cytotoxicity and in vitro and in vivo antiendotoxin activity. Antimicrob. Agents Chemother. 2016, 60, 3687–3699. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Mahajan, M.; Awasthi, B.; Tandon, A.; Harioudh, M.K.; Shree, S.; Singh, P.; Shukla, P.K.; Ramachandran, R.; Mitra, K.; et al. Piscidin-1-analogs with double l- and d-lysine residues exhibited different conformations in lipopolysaccharide but comparable anti-endotoxin activities. Sci. Rep. 2017, 7, 39925. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, H.; Wang, Y.; Zhang, S. Endotoxin-neutralizing activity of hen egg phosvitin. Mol. Immunol. 2013, 53, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Liu, X.; Bu, L.; Li, H.; Zhang, S. Antimicrobial-immunomodulatory activities of zebrafish phosvitin-derived peptide Pt5. Peptides 2012, 37, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Sun, C.; Wang, S.; Su, F.; Zhang, S. Lipopolysaccharide neutralization by a novel peptide derived from phosvitin. Int. J. Biochem. Cell Biol. 2013, 45, 2622–2631. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Du, X.; Li, H.; Zhang, S. Identification of the zinc finger protein ZRANB2 as a novel maternal lipopolysaccharide-binding protein that protects embryos of zebrafish against Gram-negative bacterial infections. J. Biol. Chem. 2016, 291, 4019–4034. [Google Scholar] [CrossRef] [PubMed]
- Rolland, J.L.; Abdelouahab, M.; Dupont, J.; Lefevre, F.; Bachère, E.; Romestand, B. Stylicins, a new family of antimicrobial peptides from the Pacific blue shrimp Litopenaeus stylirostris. Mol. Immunol. 2010, 47, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikova, T.V.; Shenkarev, Z.O.; Nadezhdin, K.D.; Balandin, S.V.; Zhmak, M.N.; Kudelina, I.A.; Finkina, E.I.; Kokryakov, V.N.; Arseniev, A.S. Recombinant expression, synthesis, purification, and solution structure of arenicin. Biochem. Biophys. Res. Commun. 2007, 360, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Cotton, M.L. Expression, purification, and micelle reconstitution of antimicrobial piscidin 1 and piscidin 3 for NMR studies. Protein Expr. Purif. 2014, 102, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Y.; Ma, J.; Ding, Y.; Zhang, S. Phosvitin plays a critical role in the immunity of zebrafish embryos via acting as a pattern recognition receptor and an antimicrobial effector. J. Biol. Chem. 2011, 286, 22653–22664. [Google Scholar] [CrossRef] [PubMed]
- Methatham, T.; Boonchuen, P.; Jaree, P.; Tassanakajon, A.; Somboonwiwat, K. Antiviral action of the antimicrobial peptide ALFPm3 from Penaeus monodon against white spot syndrome virus. Dev. Comp. Immunol. 2017, 69, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Wang, X.M.; Teng, D.; Zhang, Y.; Mao, R.Y.; Wang, J.H. Recombinant production of the antimicrobial peptide NZ17074 in Pichia pastoris using SUMO3 as a fusion partner. Lett. Appl. Microbiol. 2014, 59, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Recombinant production of antimicrobial peptides in Escherichia coli: A review. Protein Expr. Purif. 2011, 80, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.; Magalhães, B.; Maia, S.; Gomes, P.; Nazmi, K.; Bolscher, J.G.; Rodrigues, P.N.; Bastos, M.; Gomes, M.S. Killing of Mycobacterium avium by lactoferricin peptides: Improved activity of arginine- and d-amino-acid-containing molecules. Antimicrob. Agents Chemother. 2014, 58, 3461–3467. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Shang, D. Inhibitory effects of antimicrobial peptides on lipopolysaccharide-induced inflammation. Mediat. Inflamm. 2015, 2015, 167572. [Google Scholar] [CrossRef] [PubMed]
- Peri, F.; Calabrese, V.; Piazza, M.; Cighetti, R. Synthetic molecules and functionalized nanoparticles targeting the LPS-TLR4 signaling: A new generation of immunotherapeutics. Pure Appl. Chem. 2012, 84, 97–106. [Google Scholar] [CrossRef]
- Edwards, I.A.; Elliott, A.G.; Kavanagh, A.M.; Zuegg, J.; Blaskovich, M.A.; Cooper, M.A. Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of β-hairpin peptides. ACS Infect. Dis. 2016, 2, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Ried, C.; Wahl, C.; Miethke, T.; Wellnhofer, G.; Landgraf, C.; Schneider-Mergener, J.; Hoess, A. High affinity endotoxin-binding and neutralizing peptides based on the crystal structure of recombinant Limulus anti-lipopolysaccharide factor. J. Biol. Chem. 1996, 271, 28120–28127. [Google Scholar] [CrossRef] [PubMed]
- Wasiluk, K.R.; Leslie, D.B.; Vietzen, P.S.; Mayo, K.H.; Dunn, D.L. Structure/function studies of an endotoxin-neutralizing peptide derived from bactericidal/permeability-increasing protein. Surgery 2004, 136, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ni, B.; Ren, J.D.; Chen, J.H.; Tian, Z.Q.; Tang, M.; Li, D.; Xia, P. Cyclic Limulus anti-lipopolysaccharide (LPS) factor-derived peptide CLP-19 antagonizes LPS function by blocking binding to LPS binding protein. Biol. Pharm. Bull. 2011, 34, 1678–1683. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.G.; Yan, H.; Hancock, R.E. Biological properties of structurally related alpha-helical cationic antimicrobial peptides. Infect. Immun. 1999, 67, 2005–2009. [Google Scholar] [PubMed]
- Tan, N.S.; Ng, M.L.; Yau, Y.H.; Chong, P.K.; Ho, B.; Ding, J.L. Definition of endotoxin binding sites in horseshoe crab factor C recombinant sushi proteins and neutralization of endotoxin by sushi peptides. FASEB J. 2000, 14, 1801–1813. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, Y.; Lev, N.; Shai, Y. Effect of the hydrophobicity to net positive charge ratio on antibacterial and anti-endotoxin activities of structurally similar antimicrobial peptides. Biochemistry 2010, 49, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Ghosh, J.K. Introduction of a lysine residue promotes aggregation of temporin L in lipopolysaccharides and augmentation of its antiendotoxin property. Antimicrob. Agents Chemother. 2013, 57, 2457–2466. [Google Scholar] [CrossRef] [PubMed]
- Bhunia, A.; Ramamoorthy, A.; Bhattacharjya, S. Helical hairpin structure of a potent antimicrobial peptide MSI-594 in lipopolysaccharide micelles by NMR spectroscopy. Chemistry 2009, 15, 2036–2040. [Google Scholar] [CrossRef] [PubMed]
- Domadia, P.N.; Bhunia, A.; Ramamoorthy, A.; Bhattacharjya, S. Structure, interactions, and antibacterial activities of MSI-594 derived mutant peptide MSI-594F5A in lipopolysaccharide micelles: Role of the helical hairpin conformation in outer-membrane permeabilization. J. Am. Chem. Soc. 2010, 132, 18417–18428. [Google Scholar] [CrossRef] [PubMed]
- Kushibiki, T.; Kamiya, M.; Aizawa, T.; Kumaki, Y.; Kikukawa, T.; Mizuguchi, M.; Demura, M.; Kawabata, S.; Kawano, K. Interaction between tachyplesin I, an antimicrobial peptide derived from horseshoe crab, and lipopolysaccharide. Biochim. Biophys. Acta 2014, 1844, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Shagaghi, N.; Palombo, E.A.; Clayton, A.H.; Bhave, M. Archetypal tryptophan-rich antimicrobial peptides: Properties and applications. World J. Microbiol. Biotechnol. 2016, 32, 31. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Forsman, J.; Lund, M.; Woodward, C.E. Effect of arginine-rich cell penetrating peptides on membrane pore formation and life-times: A molecular simulation study. Phys. Chem. Chem. Phys. 2014, 16, 20785–20795. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.L.; Li, P.; Ho, B. The Sushi peptides: Structural characterization and mode of action against Gram-negative bacteria. Cell Mol. Life Sci. 2008, 65, 1202–1219. [Google Scholar] [CrossRef] [PubMed]
- Mozsolits, H.; Wirth, H.J.; Werkmeister, J.; Aguilar, M.I. Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance. Biochim. Biophys. Acta 2001, 1512, 64–76. [Google Scholar] [CrossRef]
- Li, P.; Wohland, T.; Ho, B.; Ding, J.L. Perturbation of lipopolysaccharide (LPS) micelles by Sushi 3 (S3) antimicrobial peptide. The importance of an intermolecular disulfide bond in S3 dimer for binding, disruption, and neutralization of LPS. J. Biol. Chem. 2004, 279, 50150–50156. [Google Scholar] [CrossRef] [PubMed]
- Mohanram, H.; Bhattacharjya, S. β-boomerang antimicrobial and antiendotoxic peptides: Lipidation and disulfide bond effects on activity and structure. Pharmaceuticals 2014, 7, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Tack, B.F.; Sawai, M.V.; Kearney, W.R.; Robertson, A.D.; Sherman, M.A.; Wang, W.; Hong, T.; Boo, L.M.; Wu, H.; Waring, A.J.; et al. SMAP-29 has two LPS-binding sites and a central hinge. Eur. J. Biochem. 2002, 269, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.J.; Surolia, N.; Surolia, A. Surface plasmon resonance studies resolve the enigmatic endotoxin neutralizing activity of polymyxin B. J. Biol. Chem. 1999, 274, 29624–29627. [Google Scholar] [CrossRef] [PubMed]
- Beale, K.M.; Towle, D.W.; Jayasundara, N.; Smith, C.M.; Shields, J.D.; Small, H.J.; Greenwood, S.J. Anti-lipopolysaccharide factors in the American lobster Homarus americanus: Molecular characterization and transcriptional response to Vibrio fluvialis challenge. Comp. Biochem. Physiol. 2008, 3, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Sun, M.; Wohland, T.; Ho, B.; Ding, J.L. The molecular mechanism of interaction between sushi peptide and Pseudomonas endotoxin. Cell Mol. Immunol. 2006, 3, 21–28. [Google Scholar] [PubMed]
- Biragyn, A.; Ruffini, P.A.; Leifer, C.A.; Klyushnenkova, E.; Shakhov, A.; Chertov, O.; Shirakawa, A.K.; Farber, J.M.; Segal, D.M.; Oppenheim, J.J.; et al. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 2002, 298, 1025–1029. [Google Scholar] [CrossRef] [PubMed]
- Grieco, P.; Carotenuto, A.; Auriemma, L.; Saviello, M.R.; Campiglia, P.; Gomez-Monterrey, I.M.; Marcellini, L.; Luca, V.; Barra, D.; Novellino, E.; et al. The effect of D-amino acid substitution on the selectivity of temporin L towards target cells: Identification of a potent anti-Candida peptide. Biochim. Biophys. Acta 2013, 1828, 652–660. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, N.H.; Labovitiadi, O.; Cushnie, T.P.T.; Matthews, K.H.; Mercer, D.K.; Lamb, A.J. Production and evaluation of an antimicrobial peptide-containing wafer formulation for topical application. Curr. Microbiol. 2013, 66, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Pennington, M.W.; Rashid, M.H.; Tajhya, R.B.; Beeton, C.; Kuyucak, S.; Norton, R.S. A C-terminally amidated analogue of ShK is a potent and selective blocker of the voltage-gated potassium channel Kv1.3. FEBS Lett. 2012, 586, 3996–4001. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.K.; Nam, B.H.; Go, H.J.; Jeong, M.; Lee, K.Y.; Cho, S.M.; Lee, I.A.; Park, N.G. Hemerythrin-related antimicrobial peptide, msHemerycin, purified from the body of the Lugworm, Marphysa sanguinea. Fish Shellfish Immunol. 2016, 57, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Chau, J.K.; Perry, N.A.; de Boer, L.; Zaat, S.A.; Vogel, H.J. Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS ONE 2010, 5, e12684. [Google Scholar] [CrossRef] [PubMed]
- Leite, N.B.; da Costa, L.C.; Dos Santos Alvares, D.; Dos Santos Cabrera, M.P.; de Souza, B.M.; Palma, M.S.; Ruggiero Neto, J. The effect of acidic residues and amphipathicity on the lytic activities of mastoparan peptides studied by fluorescence and CD spectroscopy. Amino Acids 2010, 40, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.J.; Fischer, H.; Dempster, L.; Daly, N.L.; Rosengren, K.J.; Nevin, S.T.; Meunier, F.A.; Adams, D.J.; Craik, D.J. Engineering stable peptide toxins by means of backbone cyclization: Stabilization of the alpha-conotoxin MII. Proc. Natl. Acad. Sci. USA 2005, 102, 13767–13772. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Park, Y.; Sung, W.S.; Suh, B.K.; Lee, J.; Hahm, K.S.; Lee, D.G. Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim. Biophys. Acta 2007, 1768, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, D.G. Structure-antimicrobial activity relationship between pleurocidin and its enantiomer. Exp. Mol. Med. 2008, 40, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Hilchie, A.L.; Haney, E.F.; Pinto, D.M.; Hancock, R.E.; Hoskin, D.W. Enhanced killing of breast cancer cells by a d-amino acid analog of the winter flounder-derived pleurocidin NRC-03. Exp. Mol. Pathol. 2015, 99, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.J.; Park, S.J.; Mishig-Ochir, T.; Lee, B.J. Antimicrobial peptides: Therapeutic potentials. Expert Rev. Anti-Infect. Ther. 2014, 12, 1477–1486. [Google Scholar] [CrossRef] [PubMed]
- Grosso, C.; Valentão, P.; Ferreres, F.; Andrade, P.B. Alternative and efficient extraction methods for marine-derived compounds. Mar. Drugs 2015, 13, 3182–3230. [Google Scholar] [CrossRef] [PubMed]
- Kotra, S.R. Cost effective purification of intein-based syntetic cationic antimicrobial peptide expressed in cold shock expression system using salt inducible E. coli GJ1158. J. Microbiol. Infect Dis. 2014, 4, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Agyei, D.; Ongkudon, C.M.; Wei, C.Y.; Chan, A.S.; Danquah, M.K. Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod. Process. 2016, 98, 244–256. [Google Scholar] [CrossRef]
Peptides/Proteins | Residues | Charge (+) | PI | Structures | GRAVY | References |
---|---|---|---|---|---|---|
Hc-CATH | 30 | 12 | 12.61 | α-helix | −0.273 | [18] |
Chrysophsin-1, 2, and 3 | 25, 25, 20 | 5, 5, 4 | NN | α-helix | NN | [19] |
Chrysophsin-1 variants | 25 | 5 | NN | α-helix | NN | [20] |
ALP1, ALP2 | 17 | 6, 4 | 11.35, 9.3 a | β-sheet | −0.729, 0.094 a | [33] |
Arenicins-1, 2, and 3 | 21 | 6, 6, 4 | 10.83, 10.85, 9.25 a | β-sheet, β-turn | −0.07, −0.057, −0.048 a | [26,35] |
NZ17074 | 21 | 4 | 9.37 | β-sheet | −0.243 | [36] |
N2 | 21 | 4 | 9.38 | α-helix, β-sheet | −0.033 | [36] |
N6 | 21 | 4 | 10.72 | α-helix, β-sheet | −0.310 | [36] |
CNC, N6NH2 | 32, 21 | 12, 5 | NN, 11.64 | NN, β-sheet | NN | No publication b |
Ogipeptins A, B, C, and D | NN | NN | NN | Cyclic peptides | NN | [38] |
Pa4 | 33 | 1 | 8.59 | α-helix | 0.745 | [49] |
LALF | 101 | 9 | 10.09 | α-helix, β-sheet | −0.552 | [40] |
Piscidins-1, -2, and -3 | 22 | 3.4 | 12.01 a | Random structure | −0.59 | [50] |
Hydrostatin-TL1 and -SN1 | 9 | NN | NN | α-helix | NN | [22,23,24] |
Peptides/Proteins | Natural Products/Derivatives | Sources | Antimicrobial Spectrum | MIC (μM) | Status | References |
---|---|---|---|---|---|---|
Chrysophsins-1, -2 and -3 | Natural products | Red sea bream: Chrysophrys major | G−: E. coli, Vibrio, Aeromonas salmonicida G+: Bacillus subtilis, Lactococcus garvieae, Streptococcus iniae | 1.25~10 1.5~10 | NN | [19] |
Chrysophsin-1 variants | Derivatives | Chemical synthesis | G−: E. coli, P. aeruginosa, Klebsiella pneumonia; G+: B. subtilis, S. aureus, MRSA Fungi: Candida, Cryptococcus neoformans, Sporothrix schenckii | 3.0~27.2 0.8~6 3~27.2 | NN | [20] |
Hydrostatins-TL1 and -SN1 | Natural products | Sea snake: Hydrophis cyanocinctus; Chemical synthesis | NN | NN | Preclinical: colitis induced by LPS or dextran sodium sulfate; acute lung injury (ALI) against LPS | [22,23,24] |
Arenicins-1, -2, and -3 | Natural product | Marine lugworm: Arenicola marina | G−: E. coli, P. aeruginosa, S. typhimurium G+: S. aureus, S. epidermidis, E. faecium Fungi: C. albicans, C. parapsilosis, Malassezia furfur, Trichosporon beigelii, T. rubrum | 2~8 2~8 4.5~9 | Preclinical: UTI against E. coli; septicemia against E. coli and P. aeruginosa; thigh infections against E. coli Company: Adenium Biotech Copenhagen | [25,26,27,29,30,31,33] |
AA139 | Arenicin-3 derivative | G−: E. coli, P. aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii | FIM clinical I | [51] | ||
Arenicin-1 variants | Arenicin-1 derivatives | Recombinant expression | G−: E. coli, P. aeruginosa G+: S. aureus | 0.8~50 3.13~50 | NN | [32] |
ALP1, ALP2 | Arenicin-1 derivatives | Recombinant expression | G−: E. coli, P. aeruginosa, K. pneumoniae G+: MRSA | 0.5~4 0.06~0.12 | NN | [33] |
Arenicin-1 | Natural product | Recombinant expression | G−: E. coli, P. aeruginosa, K. pneumoniae G+: B. subtilis, S. aureus | 0.16~1.25 0.31~0.62 | NN | [34] |
Ar-1[V8R] | Arenicin-1 derivative | Recombinant expression | G−: E. coli, P. aeruginosa, K. pneumoniae G+: B. subtilis, S. aureus | 0.08~1.25 0.62 | NN | [34] |
NZ17074 | Arenicin-3 derivative | Chemical synthesis | G−: E. coli, S. typhimurium, S. pullorum, S. choleraesuis, P. aeruginosa G+: S. aureus, S. suis, B. subtilis Fungi: C. albicans | 0.01~0.16 0.01~0.65 0.65 | Preclinical: UTI against E. coli; thigh infections against E. coli; peritonitis/sepsis against E. coli | [35,37] |
N2, N6 | NZ17074 derivatives | Chemical synthesis | G−: E. coli, S. typhimurium, S. pullorum, S. choleraesuis, P. aeruginosa G+: S. aureus, S. suis, B. subtilis Fungi: C. albicans | 0.01~0.16 0.01~0.65 1.3~2.6 | Preclinical: peritonitis against E. coli; peritonitis against S. enteritidis; endotoxemia against LPS | [36,37] |
CNC, N6NH2 | Modification of N6 | Chemical synthesis | G−: S. typhimurium | 0.81~1.7 | Preclinical: peritonitis against S. enteritidis | No publication f |
Ogipeptin A, B, C and D | Natural products | Marine bacterium: Pseudoalteromonas | G−: E. coli G+: S. aureus | 0.25~1 a 8~128 a | NN | [38,39] |
ALFPm3 | Natural product | The black tiger shrimp: Penaeus monodon | G−: Vibrio, Salmonella, E. coli, Enterobacter cloacae, Erwinia carotovora G+: S. aureus, Bacillus, Micrococcus, Aerococcus Fungi: Fusarium oxysporum, B. cinerea, P. crustosum Virus: WSSV | 0.095~50 0.19~100 1.56~25 | NN | [43,66] |
SpALF6 | Natural product | Mud crab: Scylla paramamosain | G−: Vibrio, Aeromonas, E. coli G+: S. aureus, Bacillus Fungi: Pichia, Candida | <6.25 6.25~12.5 12.5~25 | NN | [47] |
Hc-CATH | Natural product | Sea snake: Hydrophis cyanocinctus | G−: E. coli, Klebsiella, Shigella, Pseudomonas, Salmonella, Proteus, Vibrio, Edwarsiella, Aeromonas G+: S. aureus, Bacillus, Enterococcus, Nocardia Fungi: Candida, Arcyria | 0.16~10.33 1.29~20.67 1.29~2.59 | [18] | |
Pardaxin | Natural product | Moses sole fish: Pardachirus marmoratus and P. pavoninus | G−: E. coli, S. typhimurium, A. calcoaceticus, P. aeruginosa G+: S. aureus, S. epidermidis, B. megaterium, M. luteus, B. subtilis | 1~40 1~10 | NN | [48,50] |
Piscidins-1, -2, and -3 | Natural product | Fish: hybrid striped bass | G−: E. coli, P. aeruginosa, S. typhimurium, K. pneumonia, Aeromonas, Shigella G+: S. aureus, S. epidermidis, B. subtilis, Lactococcu, Streptococcus Fungus: C. albicans, M. furfur, T. beigelii Parasites: ciliates, dinoflagellate Cancer: HeLa, HT1080 cells | 0.8~25 1~12.5 1.56~12.5 | Preclinical: peritonitis against LPS | [50,52,53,54,55,56,57] |
Piscidin-1 analogues | Piscidin-1 derivatives | Chemical synthesis | G−: E. coli, S. typhimurium, P. aeruginosa, K. pneumoniae G+: S. aureus, S. epidermidis, B. subtilis | 1~24 1~16 | Preclinical: peritonitis against LPS | [50,56,57] |
Phosvitin (Pv) | Natural product | Fish: D. rerio | G−: E. coli, A. hydrophila G+: S. aureus | 3~3.1 b 3 b | Preclinical: sepsis against LPS | [58,65] |
Pt5 | Pv derivative | Recombinant expression | G−: A. hydrophila | NN | Preclinical: zebrafish against A. hydrophila c | [59] |
Pt5e | Pt5 derivative | Recombinant expression | G−: E. coli G+: S. aureus | 1.2 1.8 | Preclinical: sepsis against LPS | [60] |
ZRANB2 | Natural product | Zebrafish D. rerio; recombinant expression | G−: E. coli, V. anguillarum, A. hydrophila | 9.7 d | Preclinical: embryos challenged with A. hydrophila e | [61] |
Z1/37, Z11/37, Z38/198 | ZRANB2 derivatives | Chemical synthesis; recombinant expression | G−: E. coli, V. anguillarum, A. hydrophila | 8.5~9.3 d | Preclinical: embryos challenged with A. hydrophila e | [61] |
Ls-Stylicin1 | Natural product | The Pacific blue shrimp: L. stylirostris; recombinant expression | G−: Vibrio splendidus LGP, Vibrio penaecidae, Vibrio nigripulchritudo Fungi: F. oxysporum | 40~80 1.25~2.5 | NN | [62] |
Peptides/Proteins | Expression | Carrier proteins | Vectors | Yields (mg/L) | Purity (%) | References |
---|---|---|---|---|---|---|
Arenicin-2 | E. coli | KSI, CBD, and TrxA | pET-32a(+) | 5 | NN | [63] |
Arenicin-1 variants | E. coli | Modified TrxA (M37L) | pDNA | 1~4 | NN | [32] |
ALP1, ALP2 | E. coli | TrxL | pBR322 | 7.5~9 | NN | [33] |
Arenicin-1 | E. coli | Modified TrxA (M37L) | pDNA | 4.2 | NN | [34] |
Ar-1[V8R] | E. coli | Modified TrxA (M37L) | pDNA | 8.5 | NN | [34] |
Piscidin 1, piscidin 3 | E. coli | TrpLE | TrpLE | 1 | >90 | [64] |
Pv | E. coli | Thioredoxin | pET28a | NN | NN | [65] |
Pt5 | E. coli | Thioredoxin | pET28a | NN | NN | [59] |
Pt5e | E. coli | Thioredoxin | pET28a | NN | NN | [60] |
ZRANB2, Z38/198 | E. coli | NN | pET28a | NN | NN | [61] |
Ls-Stylicin1 | E. coli | His6 | pET-28b(+) | NN | NN | [62] |
SpALF6 | E. coli | His6 | pET30a | NN | NN | [47] |
ALFm3 | P. pastoris | NN | pPIC9K | 118.4 | NN | [43] |
NZ17074 | P. pastoris | SUMO3 | pPICZaA | 4.1 | 90 | [67] |
N6 | P. pastoris | SUMO3 | pPICZaA | 9.7 | NN | [37] |
Challenges | Strategies | References |
---|---|---|
Toxicity | Amino acids substitution (including D-amino acids) or deletion; truncation | [20,21,32,37,94] |
Fusion expression | [37] | |
Reducing hydrophobicity | [32,34] | |
Topical application | [95] | |
Stability | Amidation, acetylation and cyclization | [96,97,99] |
D-amino acids substitution | [101,102,103] | |
Cost | New fusion expression system | [37,67] |
Improvement in solvent extraction technique | [17,105] | |
Cost-effective purification method | [106,107] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, X.; Wang, J. Recent Advances in Antibacterial and Antiendotoxic Peptides or Proteins from Marine Resources. Mar. Drugs 2018, 16, 57. https://doi.org/10.3390/md16020057
Wang Z, Wang X, Wang J. Recent Advances in Antibacterial and Antiendotoxic Peptides or Proteins from Marine Resources. Marine Drugs. 2018; 16(2):57. https://doi.org/10.3390/md16020057
Chicago/Turabian StyleWang, Zhenlong, Xiumin Wang, and Jianhua Wang. 2018. "Recent Advances in Antibacterial and Antiendotoxic Peptides or Proteins from Marine Resources" Marine Drugs 16, no. 2: 57. https://doi.org/10.3390/md16020057
APA StyleWang, Z., Wang, X., & Wang, J. (2018). Recent Advances in Antibacterial and Antiendotoxic Peptides or Proteins from Marine Resources. Marine Drugs, 16(2), 57. https://doi.org/10.3390/md16020057