Carotenoid Content in Organically Produced Wheat: Relevance for Human Nutritional Health on Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples
2.3. Extraction by Saponification
Genotype | Type | Class | Total Carotenoids (mg/kg) | % Lutein | % Zea-Xanthin | % β-Carotene | % β-Crypto-Xanthin |
---|---|---|---|---|---|---|---|
Aurore 2 | Spring | Old cultivar | 1.24 | 81.3 | 7.66 | 10.5 | 0.51 |
Fylgia I | Spring | Old cultivar | 0.78 | 76.7 | 19.4 | 3.69 | 0.20 |
Lv. Dal 16 brun borst I | Spring | Landrace | 1.70 | 89.2 | 9.22 | 1.52 | 0.05 |
Lv. Dal 16 vit | Spring | Landrace | 1.24 | 71.5 | 16.9 | 11.1 | 0.46 |
Lv. Gotland 2 | Spring | Spelt | 1.76 | 79.1 | 15.3 | 5.32 | 0.23 |
Lv. Gotland 6 | Spring | Spelt | 1.61 | 80.9 | 10.8 | 7.87 | 0.39 |
Rival 1 | Spring | Old cultivar | 1.33 | 72.2 | 19.7 | 7.82 | 0.34 |
Öland 5 | Spring | Landrace | 1.02 | 70.2 | 26.4 | 3.24 | 0.13 |
Öland 8 | Spring | Landrace | 4.08 | 90.7 | 3.22 | 5.70 | 0.33 |
Ölands 17 borst spelt | Spring | Spelt | 1.48 | 77.4 | 13.2 | 8.91 | 0.41 |
6356 Spelt | Winter | Spelt | 1.38 | 76.6 | 11.7 | 11.2 | 0.51 |
Aura | Winter | Old cultivar | 2.48 | 82.4 | 5.50 | 11.4 | 0.67 |
Brun spelt | Winter | Spelt | 2.02 | 84.8 | 4.48 | 10.4 | 0.41 |
Hansa | Winter | Old cultivar | 2.19 | 90.3 | 8.02 | 1.60 | 0.03 |
Holme | Winter | Old cultivar | 1.86 | 86.5 | 10.4 | 3.02 | 0.14 |
Inntaler | Winter | Old cultivar | 1.67 | 89.0 | 8.32 | 2.64 | 0.09 |
Jacoby 59 utan borst | Winter | Landrace | 1.78 | 77.2 | 7.70 | 14.6 | 0.56 |
Lysh vede brun borst | Winter | Old cultivar | 1.57 | 78.9 | 13.5 | 7.29 | 0.32 |
Mumie vete | Winter | Primitive | 1.89 | 91.8 | 7.49 | 0.70 | 0.02 |
Oberkulmer | Winter | Spelt | 2.06 | 90.4 | 4.77 | 4.69 | 0.18 |
Odin | Winter | Old cultivar | 1.77 | 84.1 | 9.93 | 5.64 | 0.30 |
Olympia | Winter | Landrace | 2.14 | 92.1 | 6.69 | 1.15 | 0.03 |
Oster burgsdorfer | Winter | Spelt | 1.62 | 83.6 | 9.65 | 6.33 | 0.39 |
Rauweizen | Winter | Primitive | 2.03 | 86.9 | 12.1 | 0.98 | 0.00 |
Robur | Winter | Old cultivar | 1.55 | 80.8 | 10.2 | 8.61 | 0.33 |
Röd Emmer | Winter | Primitive | 1.32 | 80.6 | 18.4 | 0.99 | 0.03 |
Schwaben korn | Winter | Spelt | 2.23 | 88.4 | 4.22 | 7.17 | 0.24 |
Schweiz | Winter | Spelt | 2.50 | 88.6 | 3.12 | 8.01 | 0.31 |
Spelt Ustakket | Winter | Spelt | 2.16 | 87.9 | 6.24 | 5.73 | 0.18 |
Spelt vete gotland | Winter | Spelt | 1.95 | 82.8 | 7.45 | 9.38 | 0.41 |
Svale | Winter | Old cultivar | 1.96 | 89.8 | 9.05 | 1.16 | 0.01 |
Svart emmer | Winter | Primitive | 1.80 | 89.6 | 8.42 | 1.89 | 0.08 |
T.polonicum | Winter | Primitive | 0.94 | 80.9 | 15.1 | 3.88 | 0.13 |
2.4. HPLC Analysis
2.5. Data Analysis
3. Results and Discussion
3.1. Genetic Variation in Content of Carotenoids
3.2. Variation among Genotype Groups
Genotype Group | Lutein | Zeaxantin | β-Carotene | β-Cryptoxantin | Total |
---|---|---|---|---|---|
Spelt | 1.60 b | 0.14 c | 0.14 a | 0.006 a | 1.88 b |
Landrace | 1.70 a | 0.17 b | 0.12 b | 0.005 b | 1.99 a |
Old cultivar | 1.42 c | 0.17 b | 0.09 c | 0.004 c | 1.69 c |
Primitive | 1.54 b | 0.19 a | 0.02 d | 0.001 d | 1.75 c |
3.3. Variation Between Spring and Winter Wheat
Wheat Type | Lutein | Zeaxantin | β-Carotene | β-Cryptoxantin | Total |
---|---|---|---|---|---|
Spring | 1.31 b | 0.19 a | 0.10 a | 0.005 a | 1.61 b |
Winter | 1.62 a | 0.16 b | 0.10 a | 0.004 b | 1.88 a |
3.4. Human Requirement of Various Carotenoid Compounds
3.5. Importance of Organically Produced Wheat as a Source of Lutein
Genotype | Type | Class | Lutein + Zeaxanthin Intake from 200 g Wheat per Day (mg/day) |
---|---|---|---|
Aurore 2 | Spring | Old cultivar | 0.22 |
Fylgia I | Spring | Old cultivar | 0.15 |
Lv. Dal 16 brun borst I | Spring | Landrace | 0.34 |
Lv. Dal 16 vit | Spring | Landrace | 0.22 |
Lv. Gotland 2 | Spring | Spelt | 0.33 |
Lv. Gotland 6 | Spring | Spelt | 0.30 |
Rival 1 | Spring | Old cultivar | 0.24 |
Öland 5 | Spring | Landrace | 0.20 |
Öland 8 | Spring | Landrace | 0.77 |
Ölands 17 borst spelt | Spring | Spelt | 0.27 |
6356 Spelt | Winter | Spelt | 0.24 |
Aura | Winter | Old cultivar | 0.44 |
Brun spelt | Winter | Spelt | 0.36 |
Hansa | Winter | Old cultivar | 0.43 |
Holme | Winter | Old cultivar | 0.36 |
Inntaler | Winter | Old cultivar | 0.32 |
Jacoby 59 utan borst | Winter | Landrace | 0.30 |
Lysh vede brun borst | Winter | Old cultivar | 0.29 |
Mumie vete | Winter | Primitive | 0.37 |
Oberkulmer | Winter | Spelt | 0.39 |
Odin | Winter | Old cultivar | 0.33 |
Olympia | Winter | Landrace | 0.42 |
Oster burgsdorfer | Winter | Spelt | 0.30 |
Rauweizen | Winter | Primitive | 0.40 |
Robur | Winter | Old cultivar | 0.28 |
Röd Emmer | Winter | Primitive | 0.26 |
Schwaben korn | Winter | Spelt | 0.41 |
Schweiz | Winter | Spelt | 0.46 |
Spelt Ustakket | Winter | Spelt | 0.41 |
Spelt vete gotland | Winter | Spelt | 0.35 |
Svale | Winter | Old cultivar | 0.39 |
Svart emmer | Winter | Primitive | 0.35 |
T.polonicum | Winter | Primitive | 0.18 |
3.6. Proportion of Importance of Different Compounds from Organically Produced Wheat for Human Health
Compound | Genotype |
---|---|
Lutein | 79.9 |
Zeaxanthin | 92.0 |
β-Carotene | 93.1 |
β-Cryptoxanthin | 86.1 |
α-Tocopherol | 96.3 |
β-Tocopherol | 92.8 |
α -Tocotrienol | 61.9 |
β-Tocotrienol | 97.5 |
Iron | 93.6 |
Potassium | 89.8 |
Magnesium | 95.9 |
Sodium | 88.1 |
Phosphorus | 89.8 |
Zinc | 97.4 |
Copper | 98.6 |
Cadmium | 96.7 |
Cobalt | 76.5 |
Crom | 46.1 |
Nickel | 45.8 |
Pb | 62.9 |
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgements
Author Contributions
Conflicts of Interest
References
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Holt, N.E.; Zigmantas, D.; Valkunas, L.; Li, X.P.; Niyogi, K.K.; Fleming, G.R. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 2005, 307, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, H.; Faulks, R.; Fernando Granado, H.; Hirschberg, J.; Olmedilla, B.; Sandmann, G.; Southon, S.; Stahl, W. The potential for the improvement of carotenoid levels in foods and the likely systematic effects. J. Sci. Food Agric. 2000, 80, 880–912. [Google Scholar] [CrossRef]
- Zile, M.H. Vitamin A and embryonic development: An overview. J. Nutr. 1998, 128, 455S–458S. [Google Scholar] [PubMed]
- Michaud, D.S.; Feskanich, D.; Rimm, E.B.; Colditz, G.A.; Speizer, F.E.; Willett, W.C.; Giovannucci, E. Intake of specific carotenoids and risk of lung cancer in 2 prospective US cohorts. Am. J. Clin. Nutr. 2000, 72, 990–997. [Google Scholar] [PubMed]
- Osganian, S.K.; Stampfer, M.J.; Rimm, E.; Spiegelman, D.; Manson, J.E.; Willett, W.C. Dietary carotenoids and risk of coronay artery disease in women. Am. J. Clin. Nutr. 2003, 77, 1390–1399. [Google Scholar] [PubMed]
- Irakli, M.N.; Samanidou, V.F.; Papadoyannis, I.N. Development and validation of an HPLC method for the simultaneous determination of tocopherols, tocotrienols and carotenoids in cereals after solid-phase extraction. J. Separation Sci. 2011, 34, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Graham, R.D.; Rosser, J.M. Carotenoids in staple foods: Their potential to improve human nutrition. Food Nutr. Bull. 2000, 21, 404–409. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Young, J.C.; Wood, P.J.; Rabalski, I.; Hud, P.; Falk, D.; Frégeau-Reid, D. Einkorn: A potential candidate for developing high lutein wheat. Cereal Chem. 2002, 79, 455–457. [Google Scholar] [CrossRef]
- Humphries, J.M.; Khachik, F. Distribution of lutein, zeaxanthin, and related geometrical isomers in fruit, vegetables, wheat, and pasta products. J. Agric. Food Chem. 2003, 51, 1322–1327. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, V.; Kranl, K.; Hollmann, J.; Lindhauer, M.G.; Böhm, V.M.; Bitsch, R. Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat. J. Agric. Food Chem. 2002, 50, 6663–6668. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, E.-S.M.; Young, J.C.; Rabalski, I.; Hucl, P.; Fregeau-Reid, J. Identification and quantification of seed carotenoids in selected wheat species. J. Agric. Food Chem. 2007, 55, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Panfili, G.; Fratianni, A.; Irano, M. Improved normal-phase high-performance liquid chromatography procedure for the determination of carotenoids in cereals. J. Agric. Food Chem. 2004, 52, 6373–6377. [Google Scholar] [CrossRef] [PubMed]
- Adom, K.K.; Sorrells, M.E.; Liu, R.H. Phytochemical profiles and antioxidant activity of wheat varieties. J. Agric. Food Chem. 2003, 51, 7825–7834. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, A.; Brandolini, A.; Pompei, C.; Piscozzi, R. Carotenoids and tocols of einkorn wheat (Triticum. monococcum ssp. monococcum L.). J. Cereal Sci. 2006, 44, 182–193. [Google Scholar] [CrossRef]
- Willer, H.; Kilcher, L. The World of Organic Agriculture—Statistics and Emerging Trends 2012; Research Institute of Organic Agriculture (FiBL), International Federation of Organic Agriculture Movements (IFOAM): Bonn, Germany, 2012. [Google Scholar]
- Padel, S.; Foster, C. Exploring the gap between attitudes and behavior: Understanding why consumers buy or do not buy organic food. British Food J. 2005, 107, 606–625. [Google Scholar] [CrossRef]
- Michaelidou, N.; Hassan, L.M. The role of health consciousness, food safety concern and ethical identity on attitudes and intentions towards organic food. Int. J. Consumer Stud. 2008, 32, 163–170. [Google Scholar] [CrossRef]
- Brandt, K.; Mölgaard, J.P. Organic agriculture: Does it enhance or reduce the nutritional value of plant foods? J. Sci. Food Agric. 2001, 81, 924–931. [Google Scholar] [CrossRef]
- Zhao, X.; Rajashekar, C.B.; Carey, E.E.; Wang, W. Does organic production enhance phytochemical content of fruit and vegetables? Current knowledge and prospects for research. HortTechn. 2006, 16, 449–456. [Google Scholar]
- Hussain, A.; Larsson, H.; Kuktaite, R.; Johansson, E. Mineral composition of organically grown wheat genotypes: Contribution to daily minerals intake. Int. J. Environ. Res. Public Health 2010, 7, 3442–3456. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Larsson, H.; Kuktaite, R.; Johansson, E. Concentration of some heavy metals in organically grown primitive, old and modern wheat genotypes: Implications for human health. J. Environ. Sci. Health Part. B 2012, 47, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Larsson, H.; Olsson, M.E.; Kuktaite, R.; Grausgruber, H.; Johansson, E. Is organically produced wheat a source of tocopherols and tocotrienols for health food? Food Chem. 2012, 132, 1789–1795. [Google Scholar] [CrossRef]
- Hussain, A.; Larsson, H.; Kuktaite, R.; Johansson, E. Healthy food from organic wheat: Choice of genotypes for production and breeding. J. Sci. Food Agr. 2012, 92, 2826–2832. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, A.; Caboni, M.F.; Irano, M.; Panfili, G. A critical comparison between traditional methods and supercritical carbon dioxide extraction for the determination of tocochromanols in cereals. Eur. Food Res. Technol. 2002, 215, 353–358. [Google Scholar] [CrossRef]
- SAS. SAS® 9.1.2 Qualification Tools User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2004. [Google Scholar]
- Zhou, K.; Yin, J.J.; Yu, L. Phenolic acid, tocopherol and carotenoid compositions, and antioxidant functions of hard red winter wheat bran. J. Agric. Food Chem. 2005, 53, 3916–3922. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.; Hao, Z.; Zhou, K.; Luther, M.; Costa, J.; Yu, L. Carotenoid, tocopherol, phenolic acid and antioxidant properties of Maryland-grown soft wheat. J. Agric. Food Chem. 2005, 53, 6649–6657. [Google Scholar] [CrossRef] [PubMed]
- Leenhardt, F.; Lyan, B.; Rock, E.; Boussard, A.; Potus, J.; Chanliaud, E.; Remesy, C. Genetic variability of carotenoid concentration, and lipoxygenase and perioxidase activities among cultivated wheat species and bread wheat varieties. Eur. J. Agron. 2006, 25, 170–176. [Google Scholar] [CrossRef]
- Konopka, I.; Czaplicki, S.; Rotkiewicz, D. Differences in content and composition of free lipids and carotenoids in flour of spring and winter wheat cultivated in Poland. Food Chem. 2006, 95, 290–300. [Google Scholar] [CrossRef]
- Vagiri, M.; Ekholm, A.; Andersson, S.; Johansson, E.; Rumpunen, K. An optimized method for analysis of phenolic compounds in buds, leaves and fruits of black currant (Ribes. nigrum L.). J. Agric. Food Chem. 2012, 60, 10501–10510. [Google Scholar] [CrossRef] [PubMed]
- Johansson, E.; Hussain, A.; Kuktaite, R.; Andersson, S.C.; Olsson, M.E. Contribution of organically grown crops to human health. Int. J. Environ. Res.Public. Health 2004, 11, 3870–3893. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Vitamin and Mineral Requirements in Human Nutrition: Report of Joint FAO/WHO Expert; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Andersson, S.C.; Olsson, M.E.; Johansson, E.; Rumpunen, K. Carotenoids in Sea Buchthorn (Hippophae. rhamnoides L.) berries during ripening and use of pheophytin a as a maturity marker. J. Agric. Food Chem. 2009, 57, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Andersson, S.C.; Rumpunen, K.; Johansson, E.; Olsson, M.E. Carotenoid content and composition in rose hips (Rosa spp.) during ripening, determination of suitable maturity marker and implications for health promoting food products. Food Chem. 2011, 128, 689–696. [Google Scholar] [CrossRef]
- Granado, F.; Olmedilla, B.; Blanco, I. Nutritional and clinical relevance of lutein in human health. British J. Nutr. 2003, 90, 487–502. [Google Scholar] [CrossRef]
- Ma, L.; Lin, X.-M. Effects of lutein and zeaxanthin on aspects of eye health. J. Sci. Food Agric. 2010, 90, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Pery, A.; Rasmussen, H.; Johnson, E.J. Xantophyll (lutein, zeaxanthin) conten in fruits, vegetables and corn and egg products. J. Food Comp. Anal. 2009, 22, 9–15. [Google Scholar] [CrossRef]
- Curran-Celentano, J.; Hammond, R.; Ciulla, T.A.; Cooper, D.A.; Pratt, L.M.; Danis, R.B. Relation between dietary intake, serum concentration, and retinal concentrations of lutein ans zeaxanthin in adults in a Midwest population. Am. J. Clin. Nutr. 2001, 74, 796–802. [Google Scholar] [PubMed]
- Malik, A.H.; Kuktaite, R.; Johansson, E. Combined effect of genetic and environmental factors on the accumulation of proteins in the wheat grain and their relationship to bread-making quality. J. Cereal Sci. 2013, 57, 170–174. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, A.; Larsson, H.; Kuktaite, R.; Olsson, M.E.; Johansson, E. Carotenoid Content in Organically Produced Wheat: Relevance for Human Nutritional Health on Consumption. Int. J. Environ. Res. Public Health 2015, 12, 14068-14083. https://doi.org/10.3390/ijerph121114068
Hussain A, Larsson H, Kuktaite R, Olsson ME, Johansson E. Carotenoid Content in Organically Produced Wheat: Relevance for Human Nutritional Health on Consumption. International Journal of Environmental Research and Public Health. 2015; 12(11):14068-14083. https://doi.org/10.3390/ijerph121114068
Chicago/Turabian StyleHussain, Abrar, Hans Larsson, Ramune Kuktaite, Marie E. Olsson, and Eva Johansson. 2015. "Carotenoid Content in Organically Produced Wheat: Relevance for Human Nutritional Health on Consumption" International Journal of Environmental Research and Public Health 12, no. 11: 14068-14083. https://doi.org/10.3390/ijerph121114068
APA StyleHussain, A., Larsson, H., Kuktaite, R., Olsson, M. E., & Johansson, E. (2015). Carotenoid Content in Organically Produced Wheat: Relevance for Human Nutritional Health on Consumption. International Journal of Environmental Research and Public Health, 12(11), 14068-14083. https://doi.org/10.3390/ijerph121114068