Impact of Cadmium Exposure on the Association between Lipopolysaccharide and Metabolic Syndrome
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Anthropometric and Laboratory Measurements
2.3. Metabolic Syndrome Criteria
2.4. Statistical Analyses
3. Results
Men | Women | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
No Metabolic Syndrome | Metabolic Syndrome | p | No Metabolic Syndrome | Metabolic Syndrome | p | |||||
N (%) | 67 | (69.8) | 29 | (30.2) | 87 | (83.7) | 17 | (16.4) | ||
Age, years | 48.4 | (9.1) | 50.3 | (7.6) | 0.321 | 47.8 | (49.0) | 52.0 | (7.0) | 0.042 |
Current smoking, n (%) | 24 | (35.8) | 9 | (31.0) | 0.826 | 2 | (2.3) | 0 | (0.0) | 1.000 |
Alcohol consumption, g/day | 10.9 | (30.2) | 9.4 | (36.5) | 0.825 a | 0.0 | (1.3) | 0.0 | (1.4) | 0.798 a |
Physical exercise, n (%) | ||||||||||
Low | 29 | (43.3) | 12 | (41.4) | 0.949 | 45 | (51.7) | 6 | (35.3) | 0.314 |
Moderate | 26 | (38.8) | 11 | (37.9) | 38 | (43.7) | 9 | (52.9) | ||
High | 12 | (17.9) | 6 | (20.7) | 4 | (4.6) | 2 | (11.8) | ||
BMI, kg/m2 | 24.8 | (2.1) | 27.8 | (2.6) | <0.001 | 23.1 | (2.6) | 26.0 | (2.4) | <0.001 |
Waist circumference, cm | 85.2 | (6.0) | 93.5 | (5.5) | <0.001 | 75.0 | (6.5) | 84.4 | (6.3) | <0.001 |
Systolic BP, mmHg | 121.0 | (10.1) | 126.5 | (11.2) | 0.020 | 112.2 | (15.1) | 124.1 | (19.7) | 0.006 |
Diastolic BP, mmHg | 78.5 | (8.3) | 82.4 | (7.7) | 0.035 | 71.0 | (10.8) | 78.0 | (13.3) | 0.021 |
Fasting glucose, mg/dL | 89.5 | (8.8) | 101.3 | (22.8) | 0.011 | 84.7 | (7.1) | 103.7 | (24.7) | 0.006 |
HDL cholesterol, mg/dL | 47.0 | (10.4) | 41.4 | (10.0) | 0.016 | 54.7 | (10.8) | 40.0 | (6.7) | <0.001 |
Triglycerides, mg/dL | 166.0 | (179.8) | 208.0 | (92.0) | 0.001 a | 86.0 | (64.0) | 191.0 | (80.0) | <0.001 a |
LPS, ng/mL | 36.8 | (52.2) | 69.2 | (152.8) | 0.122 a | 70.5 | (82.3) | 35.6 | (42.6) | 0.065 a |
LPS/HDL ratio, units | 0.8 | (1.3) | 1.7 | (5.7) | 0.122 a | 1.3 | (1.5) | 1.0 | (1.0) | 0.792 a |
Cd, μg/L | 1.0 | (0.3) | 1.1 | (0.4) | 0.122 | 1.4 | (0.7) | 1.5 | (0.4) | 0.464 |
Metabolic syndrome components, n (%) | ||||||||||
High waist circumference | 12 | (17.9) | 25 | (86.2) | <0.001 | 6 | (6.9) | 10 | (58.8) | <0.001 |
Low HDL cholesterol | 10 | (14.9) | 15 | (51.7) | <0.001 | 25 | (28.7) | 17 | (100.0) | <0.001 |
High TG | 21 | (31.3) | 22 | (75.9) | <0.001 | 9 | (10.3) | 13 | (76.5) | <0.001 |
High BP | 24 | (35.8) | 22 | (75.9) | 0.001 | 18 | (20.7) | 9 | (52.9) | 0.013 |
High glucose | 7 | (10.5) | 15 | (51.7) | <0.001 | 1 | (1.2) | 9 | (52.9) | <0.001 |
4. Discussion
LPS Quartiles | |||||||
---|---|---|---|---|---|---|---|
Quartile 1 (<26.7) | Quartile 2 (26.7–43.4) | Quartile 3 (43.4–1028) | Quartile 4 (≥102.8) | ||||
OR | OR | (95% CI) | OR | (95% CI) | OR | (95% CI) | |
Metabolic syndrome | |||||||
Model 1 | 1.00 | 1.19 | (0.30–4.65) | 1.14 | (0.29–4.49) | 4.32 | (1.17–15.90) |
Model 2 | 1.00 | 1.18 | (0.30–4.63) | 1.17 | (0.30–4.66) | 4.69 | (1.23–17.94) |
High waist circumference | |||||||
Model 1 | 1.00 | 0.94 | (0.27–3.31) | 1.89 | (0.57–6.33) | 2.70 | (0.80–9.09) |
Model 2 | 1.00 | 0.98 | (0.27–3.54) | 2.17 | (0.62–7.58) | 3.14 | (0.86–11.48) |
Low HDL cholesterol | |||||||
Model 1 | 1.00 | 3.06 | (0.68–13.79) | 3.13 | (0.69–14.21) | 3.29 | (0.74–14.58) |
Model 2 | 1.00 | 3.77 | (0.76–18.62) | 4.36 | (0.85–22.47) | 5.43 | (1.04–28.50) |
High TG | |||||||
Model 1 | 1.00 | 1.79 | (0.56–5.71) | 0.77 | (0.23–2.53) | 1.29 | (0.40–4.11) |
Model 2 | 1.00 | 1.95 | (0.60–6.37) | 0.82 | (0.24–2.77) | 1.43 | (0.43–4.80) |
High BP | |||||||
Model 1 | 1.00 | 1.28 | (0.39–4.22) | 1.00 | (0.30–3.33) | 4.47 | (1.25–16.00) |
Model 2 | 1.00 | 1.27 | (0.37–4.42) | 0.90 | (0.25–3.24) | 4.99 | (1.28–19.38) |
High blood glucose | |||||||
Model 1 | 1.00 | 4.34 | (0.74–25.59) | 4.83 | (0.83–28.04) | 3.77 | (0.59–24.02) |
Model 2 | 1.00 | 4.27 | (0.72–25.42) | 4.45 | (0.74–26.71) | 3.58 | (0.53–24.34) |
LPS Quartiles | |||||||
---|---|---|---|---|---|---|---|
Quartile 1 (<34.2) | Quartile 2 (34.2–63.0) | Quartile 3 (63.0–112.1) | Quartile 4 (≥112.1) | ||||
OR | OR | (95% CI) | OR | (95% CI) | OR | (95% CI) | |
Metabolic syndrome | |||||||
Model 1 | 1.00 | 0.32 | (0.08–1.32) | 0.30 | (0.07–1.35) | 0.14 | (0.03–0.81) |
Model 2 | 1.00 | 0.31 | (0.08–1.31) | 0.30 | (0.07–1.38) | 0.15 | (0.03–0.87) |
High waist circumference | |||||||
Model 1 | 1.00 | 0.77 | (0.20–2.95) | 0.44 | (0.10–2.01) | 0.27 | (0.05–1.49) |
Model 2 | 1.00 | 0.77 | (0.20–2.98) | 0.44 | (0.10–2.01) | 0.27 | (0.05–1.50) |
Low HDL cholesterol | |||||||
Model 1 | 1.00 | 0.36 | (0.11–1.21) | 0.64 | (0.21–2.02) | 1.22 | (0.40–3.73) |
Model 2 | 1.00 | 0.37 | (0.11–1.24) | 0.63 | (0.20–1.99) | 1.17 | (0.38–3.00) |
High TG | |||||||
Model 1 | 1.00 | 0.31 | (0.08–1.29) | 0.42 | (0.10–1.72) | 0.53 | (0.14–1.98) |
Model 2 | 1.00 | 0.32 | (0.08–1.33) | 0.41 | (0.10–1.68) | 0.49 | (0.13–1.80) |
High BP | |||||||
Model 1 | 1.00 | 0.82 | (0.21–3.17) | 0.65 | (0.15–2.79) | 2.20 | (0.63–7.75) |
Model 2 | 1.00 | 0.89 | (0.22–3.55) | 0.59 | (0.13–2.64) | 1.91 | (0.52–6.97) |
High blood glucose | |||||||
Model 1 | 1.00 | 0.39 | (0.06–2.42) | 0.77 | (0.15–3.99) | 0.19 | (0.02–1.85) |
Model 2 | 1.00 | 0.40 | (0.06–2.59) | 0.87 | (0.16–4.80) | 0.23 | (0.02–2.38) |
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
N (%) | OR | (95% CI) | N (%) | OR | (95% CI) | |||
Metabolic syndrome | ||||||||
Cd < 50th percentile | 11 | (22.9) | 1.00 | (0.44–2.29) | 6 | (11.5) | 1.06 | (0.42–2.00) |
Cd ≥ 50th percentile | 18 | (37.5) | 3.05 | (1.39–6.70) | 11 | (21.2) | 0.52 | (0.23–1.19) |
High waist circumference | ||||||||
Cd < 50th percentile | 17 | (35.4) | 1.37 | (0.66–2.83) | 8 | (15.4) | 1.52 | (0.63–3.71) |
Cd ≥ 50th percentile | 20 | (41.7) | 1.57 | (0.83–2.95) | 8 | (15.4) | 0.46 | (0.18–1.19) |
Low HDL cholesterol | ||||||||
Cd < 50th percentile | 8 | (16.7) | 0.98 | (0.37–2.60) | 18 | (34.6) | 1.50 | (0.79–2.87) |
Cd ≥ 50th percentile | 17 | (35.4) | 2.11 | (0.97–4.60) | 24 | (46.2) | 1.05 | (0.59–1.87) |
High TG | ||||||||
Cd < 50th percentile | 20 | (41.7) | 0.98 | (0.49–1.95) | 7 | (13.5) | 1.08 | (0.46–2.56) |
Cd ≥ 50th percentile | 23 | (47.9) | 1.50 | (0.82–2.77) | 15 | (28.9) | 0.96 | (0.51–1.79) |
High BP | ||||||||
Cd < 50th percentile | 18 | (37.5) | 1.81 | (0.85–3.85) | 12 | (23.1) | 1.71 | (0.78–3.73) |
Cd ≥ 50th percentile | 28 | (58.3) | 1.62 | (0.79–3.32) | 15 | (28.9) | 1.16 | (0.61–2.18) |
High blood glucose | ||||||||
Cd < 50th percentile | 10 | (20.8) | 1.08 | (0.45–2.57) | 4 | (7.7) | 1.27 | (0.38–4.26) |
Cd ≥ 50th percentile | 12 | (25.0) | 1.67 | (0.75–3.70) | 6 | (11.5) | 0.91 | (0.34–2.46) |
5. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interests
References
- Esser, N.; Legrand-Poels, S.; Piette, J.; Scheen, A.J.; Paquot, N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pract. 2014, 105, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.; Baek, J.; Bae, J.C.; Kim, K.N.; Park, M.K.; Kim, D.K.; Cho, N.H.; Lee, M.K. Sex factors in the metabolic syndrome as a predictor of cardiovascular disease. Endocrinol. Metab. Seoul 2014, 29, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Osto, M.; Geurts, L.; Everard, A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 2012, 3, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Shin, H.; Song, J.H.; Kwak, S.H.; Kang, S.M.; Won Yoon, J.; Choi, S.H.; Cho, S.I.; Park, K.S.; Lee, H.K.; et al. Increasing prevalence of metabolic syndrome in Korea: The Korean national health and nutrition examination survey for 1998–2007. Diabetes Care 2011, 34, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.Y.; Ha, K.H.; Kim, D.J. New risk factors for obesity and diabetes: Environmental chemicals. J. Diabetes Investig. 2015, 6, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Sommer, P.; Sweeney, G. Functional and mechanistic integration of infection and the metabolic syndrome. Korean Diabetes J. 2010, 34, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Allin, K.H.; Nielsen, T.; Pedersen, O. Mechanisms in endocrinology: Gut microbiota in patients with type 2 diabetes mellitus. Eur. J. Endocrinol. Eur. Fed. Endocr. Soc. 2015, 172, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Musso, G.; Gambino, R.; Cassader, M. Obesity, diabetes, and gut microbiota: The hygiene hypothesis expanded? Diabetes Care 2010, 33, 2277–2284. [Google Scholar] [CrossRef] [PubMed]
- Hamann, L.; El-Samalouti, V.; Ulmer, A.J.; Flad, H.D.; Rietschel, E.T. Components of gut bacteria as immunomodulators. Int. J. Food Microbiol. 1998, 41, 141–154. [Google Scholar] [CrossRef]
- Lassenius, M.I.; Pietilainen, K.H.; Kaartinen, K.; Pussinen, P.J.; Syrjanen, J.; Forsblom, C.; Porsti, I.; Rissanen, A.; Kaprio, J.; Mustonen, J.; et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 2011, 34, 1809–1815. [Google Scholar] [CrossRef] [PubMed]
- Wendel, M.; Paul, R.; Heller, A.R. Lipoproteins in inflammation and sepsis. II. Clinical aspects. Intensive Care Med. 2007, 33, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Pussinen, P.J.; Tuomisto, K.; Jousilahti, P.; Havulinna, A.S.; Sundvall, J.; Salomaa, V. Endotoxemia, immune response to periodontal pathogens, and systemic inflammation associate with incident cardiovascular disease events. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1433–1439. [Google Scholar] [CrossRef] [PubMed]
- Jarup, L.; Akesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Liu, K.; Shen, J. Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Breton, J.; Massart, S.; Vandamme, P.; de Brandt, E.; Pot, B.; Foligne, B. Ecotoxicology inside the gut: Impact of heavy metals on the mouse microbiome. BMC Pharmacol. Toxicol. 2013, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazeli, M.; Hassanzadeh, P.; Alaei, S. Cadmium chloride exhibits a profound toxic effect on bacterial microflora of the mice gastrointestinal tract. Hum. Exp. Toxicol. 2011, 30, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, Y.G.; Park, J.S.; Ahn, Y.H.; Ha, K.H.; Kim, D.J. Association between blood glucose level derived using the oral glucose tolerance test and hemoglobin A1C level. Korean J. Intern. Med. 2015. in Press. [Google Scholar]
- Nymark, M.; Pussinen, P.J.; Tuomainen, A.M.; Forsblom, C.; Groop, P.H.; Lehto, M. Serum lipopolysaccharide activity is associated with the progression of kidney disease in finnish patients with type 1 diabetes. Diabetes Care 2009, 32, 1689–1693. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Park, H.S.; Kim, D.J.; Han, J.H.; Kim, S.M.; Cho, G.J.; Kim, D.Y.; Kwon, H.S.; Kim, S.R.; Lee, C.B.; et al. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res. Clin. Pract. 2007, 75, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.V.; Midtvedt, T.; Gordon, J.I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 2002, 22, 283–307. [Google Scholar] [CrossRef] [PubMed]
- Savage, D.C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 1977, 31, 107–133. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Holmes, E.; Wilson, I.D. Gut microorganisms, mammalian metabolism and personalized health care. Nat. Rev. Microbiol. 2005, 3, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Breton, J.; Daniel, C.; Dewulf, J.; Pothion, S.; Froux, N.; Sauty, M.; Thomas, P.; Pot, B.; Foligne, B. Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicol. Lett. 2013, 222, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Baker, J.R.; Reilly, P.E.; Moore, M.R.; Williams, D.J. Cadmium levels in the lung, liver, kidney cortex, and urine samples from australians without occupational exposure to metals. Arch. Environ. Health 2002, 57, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Moore, M.R. Emerging roles of cadmium and heme oxygenase in type-2 diabetes and cancer susceptibility. Tohoku J. Exp. Med. 2012, 228, 267–288. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.G.; Il’yasova, D.; Ivanova, A. Urinary cadmium, impaired fasting glucose, and diabetes in the nhanes iii. Diabetes Care 2003, 26, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Tellez-Plaza, M.; Navas-Acien, A.; Crainiceanu, C.M.; Guallar, E. Cadmium exposure and hypertension in the 1999–2004 national health and nutrition examination survey (NHANES). Environ. Health Perspect. 2008, 116, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Menke, A.; Muntner, P.; Silbergeld, E.K.; Platz, E.A.; Guallar, E. Cadmium levels in urine and mortality among U.S. Adults. Environ. Health Perspect. 2009, 117, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Sargis, R.M. The hijacking of cellular signaling and the diabetes epidemic: Mechanisms of environmental disruption of insulin action and glucose homeostasis. Diabetes Metab. J. 2014, 38, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, P.; Li, Y.H.; Hsu, D.Z.; Su, S.B.; Liu, M.Y. Ostensibly ineffectual doses of cadmium and lipopolysaccharide causes liver damage in rats. Hum. Exp. Toxicol. 2011, 30, 624–635. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Baker, J.R.; Reilly, P.E.; Esumi, H.; Moore, M.R. Evidence for a synergistic interaction between cadmium and endotoxin toxicity and for nitric oxide and cadmium displacement of metals in the kidney. Nitric Oxide Biol. Chem. Off. J. Nitric Oxide Soc. 2000, 4, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Everard, A.; Cani, P.D. Diabetes, obesity and gut microbiota. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009, 9, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Backhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef] [PubMed]
- Hartstra, A.V.; Bouter, K.E.; Backhed, F.; Nieuwdorp, M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 2015, 38, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, F.H.; Tremaroli, V.; Nookaew, I.; Bergstrom, G.; Behre, C.J.; Fagerberg, B.; Nielsen, J.; Backhed, F. Gut metagenome in Eropean women with normal, impaired and diabetic glucose control. Nature 2013, 498, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Yin, J.; Zhang, J.; Ward, R.E.; Martin, R.J.; Lefevre, M.; Cefalu, W.T.; Ye, J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009, 58, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Gnauck, A.; Lentle, R.G.; Kruger, M.C. Aspirin-induced increase in intestinal paracellular permeability does not affect the levels of LPS in venous blood of healthy women. Innate Immun. 2015, 21, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Casimir, G.J.; Heldenbergh, F.; Hanssens, L.; Mulier, S.; Heinrichs, C.; Lefevre, N.; Desir, J.; Corazza, F.; Duchateau, J. Gender differences and inflammation: An in vitro model of blood cells stimulation in prepubescent children. J. Inflamm. Lond. 2010, 7. [Google Scholar] [CrossRef] [PubMed]
- Santos-Galindo, M.; Acaz-Fonseca, E.; Bellini, M.J.; Garcia-Segura, L.M. Sex differences in the inflammatory response of primary astrocytes to lipopolysaccharide. Biol. Sex Differ. 2011, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soderland, P.; Lovekar, S.; Weiner, D.E.; Brooks, D.R.; Kaufman, J.S. Chronic kidney disease associated with environmental toxins and exposures. Adv. Chronic Kidney Dis. 2010, 17, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Olsson, I.M.; Bensryd, I.; Lundh, T.; Ottosson, H.; Skerfving, S.; Oskarsson, A. Cadmium in blood and urine—Impact of sex, age, dietary intake, iron status, and former smoking—Association of renal effects. Environ. Health Perspect. 2002, 110, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.J.; Ha, K.H.; Jeon, J.Y.; Kim, H.J.; Lee, K.W.; Kim, D.J. Impact of Cadmium Exposure on the Association between Lipopolysaccharide and Metabolic Syndrome. Int. J. Environ. Res. Public Health 2015, 12, 11396-11409. https://doi.org/10.3390/ijerph120911396
Han SJ, Ha KH, Jeon JY, Kim HJ, Lee KW, Kim DJ. Impact of Cadmium Exposure on the Association between Lipopolysaccharide and Metabolic Syndrome. International Journal of Environmental Research and Public Health. 2015; 12(9):11396-11409. https://doi.org/10.3390/ijerph120911396
Chicago/Turabian StyleHan, Seung Jin, Kyoung Hwa Ha, Ja Young Jeon, Hae Jin Kim, Kwan Woo Lee, and Dae Jung Kim. 2015. "Impact of Cadmium Exposure on the Association between Lipopolysaccharide and Metabolic Syndrome" International Journal of Environmental Research and Public Health 12, no. 9: 11396-11409. https://doi.org/10.3390/ijerph120911396
APA StyleHan, S. J., Ha, K. H., Jeon, J. Y., Kim, H. J., Lee, K. W., & Kim, D. J. (2015). Impact of Cadmium Exposure on the Association between Lipopolysaccharide and Metabolic Syndrome. International Journal of Environmental Research and Public Health, 12(9), 11396-11409. https://doi.org/10.3390/ijerph120911396