Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. PM2.5 Sampling
2.2. Sampling Site
2.3. Elemental Analysis
2.4. Results Analysis
3. Results and Discussion
3.1. Concentrations of PM2.5
3.2. PM2.5-Bound Elements
3.3. Source Apportionment of PM2.5
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Englert, N. Fine particles and human health—A review of epidemiological studies. Toxicol. Lett. 2004, 149, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Paasonen, P.; Asmi, A.; Petäjä, T.; Kajos, M.K.; Äijälä, M.; Junninen, H.; Holst, T.; Abbatt, J.P.D.; Arneth, A.; Birmili, W.; et al. Warming-induced increase in aerosol number concentration likely to moderate climate change. Nat. Geosc. 2013, 6, 438–442. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Health Effects of Particulate Matter. Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia; WHO Regional Office for Europe: Copenhagen, Denmark, 2013. [Google Scholar]
- Badyda, A.J.; Dabrowiecki, P.; Lubinski, W.; Czechowski, P.O.; Majewski, G. Exposure to traffic-related air pollutants as a risk of airway obstruction. Adv. Exp. Med. Biol. 2013, 755, 35–45. [Google Scholar] [PubMed]
- Buekers, J.; Deutsch, F.; Veldeman, N.; Janssen, S.; Panis, L.I. Fine atmospheric particles from agricultural practices in Flanders: From emissions to health effects and limit values. Agriculture 2014, 43, 39–44. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Notter, D.A. Life cycle impact assessment modeling for particulate matter: A new approach based on physico-chemical particle properties. Environ. Int. 2015, 82, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Belis, C.A.; Karagulian, F.; Larsen, B.R.; Hopke, P.K. Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos. Environ. 2013, 69, 94–108. [Google Scholar] [CrossRef]
- Park, S.; Marmur, A.; Russell, A.G. Environmental risk assessment: Comparison of receptor and air quality models for source apportionment. Hum. Ecol. Risk Assess. Int. J. 2013, 19, 1385–1403. [Google Scholar] [CrossRef]
- Sofowote, U.M.; Rastogi, A.K.; Debosz, J.; Hopke, P.K. Advanced receptor modeling of near-real-time, ambient PM2.5 and associated components collected at an urban-industrial site in Toronto, Ontario. Atmos. Pollut. Res. 2014, 5, 13–23. [Google Scholar] [CrossRef]
- Clappier, A.; Pisoni, E.; Thunis, P. A new approach to design source-receptor relationships for air quality modelling. Environ. Modell. Softw. 2015, 74, 66–74. [Google Scholar] [CrossRef]
- Pirovano, G.; Colombi, C.; Balzarini, A.; Riva, G.M.; Gianelle, V.; Lonati, G. PM2.5 source apportionment in Lombardy (Italy): Comparison of receptor and chemistry-transport modelling results. Atmos. Environ. 2015, 106, 56–70. [Google Scholar] [CrossRef]
- Majewski, G.; Rogula-Kozłowska, W. The elemental composition and origin of fine ambient particles in the largest Polish conurbation: First results from the short-term winter campaign. Theor. Appl. Climatol. 2016, 125, 79–92. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Błaszczak, B.; Szopa, S.; Klejnowski, K.; Sówka, I.; Zwoździak, A.; Jabłońska, M.; Mathews, B. PM2.5 in the central part of Upper Silesia, Poland: Concentrations, elemental composition, and mobility of components. Environ. Monit. Assess. 2013, 185, 581–601. [Google Scholar] [CrossRef] [PubMed]
- Klejnowski, K.; Pastuszka, J.S.; Rogula-Kozłowska, W.; Talik, E.; Krasa, A. Mass size distribution and chemical composition of the surface layer of summer and winter airborne particles in Zabrze, Poland. Bull. Environ. Contam. Toxicol. 2012, 88, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Majewski, G.; Czechowski, P.O. The size distribution and origin of elements bound to ambient particles: A case study of a Polish urban area. Environ. Monit. Assess. 2015, 187, 240. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W. Size-segregated urban particulate matter: Chemical composition, primary and secondary matter content and mass closure. Air Qual. Atmos. Health 2015, 9, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Klejnowski, K.; Rogula-Kopiec, P.; Mathews, B.; Szopa, S. A study on the seasonal mass closure of ambient fine and coarse dusts in Zabrze, Poland. B. Environ. Contam. Toxicol. 2012, 88, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Klejnowski, K. Submicrometer aerosol in rural and urban backgrounds in Southern Poland: Primary and secondary components of PM1. Bull. Environ. Contam. Toxicol. 2013, 90, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Reizer, M.; Juda-Rezler, K. Explaining the high PM10 concentrations observed in Polish urban areas. Air Qual. Atmos. Health 2016, 9, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Sówka, I.; Zwoździak, A.; Trzepla-Nabaglo, K.; Skrętowicz, M.; Zwoździak, J. PM2.5 elemental composition and source apportionment in a residential area of Wrocław, Poland. Environ. Prot. Eng. 2012, 38, 73–79. [Google Scholar]
- Samek, L.; Zwoździak, A.; Sówka, I. Chemical characterization and source identification of particulate matter PM10 in a rural and urban site in Poland. Environ. Prot. Eng. 2013, 39, 91–103. [Google Scholar]
- Ravindra, K.; Stranger, M.; Van Grieken, R. Chemical characterization and multivariate analysis of atmospheric PM2.5 particles. J. Atmos. Chem. 2008, 59, 199–218. [Google Scholar] [CrossRef] [Green Version]
- Maenhaut, W.; Raes, N.; Chi, X.; Cafmeyer, J.; Wang, W. Chemical composition and mass closure for PM2.5 and PM10 aerosols at K-puszta, Hungary, in summer 2006. X-ray Spectrom. 2008, 37, 193–197. [Google Scholar] [CrossRef]
- Rajšić, S.; Mijić, Z.; Tasić, M.; Radenković, M.; Joksić, J. Evaluation of the levels and sources of trace elements in urban particulate matter. Environ. Chem. Lett. 2008, 6, 95–100. [Google Scholar] [CrossRef]
- Marcazzan, G.M.; Ceriani, M.; Valli, G.; Vecchi, R. Source apportionment of PM10 and PM2.5 in Milan (Italy) using receptor modelling. Sci. Total Environ. 2003, 317, 137–147. [Google Scholar] [CrossRef]
- Toscano, G.; Moret, I.; Gambaro, A.; Barbante, C.; Capodaglio, G. Distribution and seasonal variability of trace elements in atmospheric particulate in Venice Lagoon. Chemosphere 2011, 85, 1518–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viana, M.; Querol, X.; Alastuey, A.; Gil, J.I.; Menéndez, M. Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. Chemosphere 2006, 65, 2411–2418. [Google Scholar] [CrossRef] [PubMed]
- Revuelta, M.A.; McIntosh, G.; Pey, J.; Pérez, N.; Querol, X.; Alastuey, A. Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona. Environ. Pollut. 2014, 188, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, S.; Querol, X.; Alastuey, A.; Viana, M.M.; Alcorcón, M.; Mantila, E.; Ruiz, C.R. Comparative PM10–PM2.5 source contribution study at rural urban and industrial sites during PM episodes in Eastern Spain. Sci. Total Environ. 2004, 328, 95–113. [Google Scholar] [CrossRef]
- Negral, I.; Moreno-Grau, S.; Moreno, J.; Querol, X.; Viana, M.M.; Alastuey, A. Natural and anthropogenic contributions to PM10 and PM2.5 in an urban in the western Mediterranean Coast. Water Air Soil Pollut. 2008, 192, 227–238. [Google Scholar] [CrossRef]
- Fernández-Camacho, R.; Rodríguez, S.; de la Rosa, J.; Sánchez de la Campa, A.M.; Alastuey, A.; Querol, X.; González-Castanedo, Y.; Garcia-Orellana, I.; Nava, S. Ultrafine particle and fine trace metal (As, Cd, Cu, Pb and Zn) pollution episodes induced by industrial emissions in Huelva, SW Spain. Atmos. Environ. 2012, 61, 507–517. [Google Scholar] [CrossRef]
- Almeida, S.M.; Pio, C.A.; Freitas, M.C.; Reis, M.A.; Trancoso, M.A. Source apportionment of fine and coarse particulate matter in a aub-urban area at the Western European Coast. Atmos. Environ. 2005, 39, 3127–3138. [Google Scholar] [CrossRef]
- Yatkin, S.; Bayram, A. Elemental composition and sources of particulate matter in the ambient air of a Metropolitan City. Atmos. Res. 2007, 85, 126–139. [Google Scholar] [CrossRef]
- Miller-Schulze, J.P.; Shafer, M.; Schauer, J.J.; Heo, J.; Solomon, P.A.; Lantz, J.; Artamonova, M.; Chen, B.; Imashev, S.; Sverdlik, L.; et al. Seasonal contribution of mineral dust and other major components to particulate matter at two remote sites in Central Asia. Atmos. Environ. 2015, 199, 11–20. [Google Scholar] [CrossRef]
- Khare, P.; Baruah, B.P. Elemental characterization and source identification of PM2.5 using multivariate analysis at the suburban site of North-East India. Atmos. Res. 2010, 98, 148–162. [Google Scholar] [CrossRef]
- Chakraborty, A.; Gupta, T. Chemical Characterization and Source Apportionment of Submicron (PM1) Aerosol in Kanpur Region, India. Aerosol Air Qual. Res. 2010, 10, 433–445. [Google Scholar] [CrossRef]
- Kulshrestha, A.; Satsangi, P.G.; Masih, J.; Taneja, A. Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Sci. Total Environ. 2009, 407, 6196–6204. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.S.; Wu, T.; Shi, G.L.; Fu, X.; Tian, Y.Z.; Feng, Y.C.; Wu, X.F.; Wu, G.; Bai, Z.P.; Zhang, W.Z. Potential Source Analysis for PM10 and PM2.5 in Autumn in a Northern City in China. Aerosol Air Qual. Res. 2012, 12, 39–48. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, Y.; Sun, Y.; Tian, S.; Cheng, M. Size-resolved aerosol trace elements at a rural mountainous site in Northern China: Improtance of regional transport. Sci. Total Environ. 2013, 461, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xie, S.; Zhang, Y.; Zeng, L.; Salmon, L.G.; Zheng, M. Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Sci. Total Environ. 2006, 372, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wu, Y.; Jiang, J.; Yang, L.; Cheng, Y.; Hao, J. Chemical characteristics of size-resolved PM2.5 at a roadside environment in Beijing, China. Environ. Pollut. 2012, 161, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Yuan, W.; Lu, Y.; Zhang, Y.; Wang, W. Trace metals in atmospheric fine particles in one industrial urban city: Spatial variations, sources, and health implications. J. Environ. Sci. 2014, 26, 205–213. [Google Scholar] [CrossRef]
- Tao, J.; Cheng, T.; Zhang, R.; Cao, J.; Zhu, L.; Wang, Q.; Luo, L.; Zhang, L. Chemical Composition of PM2.5 at an Urban Site of Chengdu in Southwestern China. Adv. Atmos. Sci. 2013, 30, 1070–1081. [Google Scholar] [CrossRef]
- Li, J.D.; Deng, Q.H.; Lu, C.; Huang, B.L. Chemical compositions and source apportionment of Atmospheric PM10 in suburban area of Changsha, China. J. Cent. South Univ. Technol. 2010, 17, 509–515. [Google Scholar] [CrossRef]
- Cong, Z.; Kang, S.; Luo, C.; Li, Q.; Huang, J.; Gao, S.; Li, X. Trace elements and lead isotopic composition of PM10 in Lhasa, Tibet. Atmos. Environ. 2011, 45, 6210–6215. [Google Scholar] [CrossRef]
- Fang, G.C.; Chang, C.-N.; Chu, C.-C.; Wu, Y.-S.; Fu, P.P.C.; Yang, I.L.; Chen, M.H. Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5–10 aerosols at a farm sampling site in Taiwan, Taichung. Sci. Total Environ. 2003, 308, 157–166. [Google Scholar] [CrossRef]
- Lim, J.M.; Lee, J.H.; Moon, J.H.; Chung, Y.S.; Kim, K.H. Airborne PM10 and metals from multifarious sources in an industrial complex area. Atmos. Res. 2010, 96, 53–64. [Google Scholar] [CrossRef]
- Han, Y.J.; Kim, H.W.; Cho, S.H.; Kim, P.R.; Kim, W.J. Metallic elements in PM2.5 in different functional areas of Korea: Concentrations and source identification. Atmos. Res. 2015, 153, 416–428. [Google Scholar] [CrossRef]
- Kim, M.K.; Jo, W.K. Elemental composition and source characterization of airborne PM10 at residences with relative proximities to metal-industrial complex. Int. Arch. Occup. Enviorn. Health 2006, 80, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Celo, V.; Dabek-Zlotorzynska, E. Concentration and Source Origin of Trace Metals in PM2.5 Collected at Selected Canadian Sites within the Canadian National Air Pollution Surveillance Program. In Urban Airborne Particulate Matter; Zereini, F., Wiseman, C.L.S., Eds.; Environmental Science and Engineering; Springer-Verlag: New York, NY, USA, 2010; pp. 19–38. [Google Scholar]
- Saffari, A.; Daher, N.; Shafer, M.M.; Schauer, J.J.; Sioutas, C. Seasonal and spatial variation of trace elements and metals in quasi-ultrafine (PM0.25) particles in the Los Angeles metropolitan area and characterization of their sources. Environ. Pollut. 2013, 181, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Godoy, M.L.D.P.; Godoy, J.M.; Roldão, L.A.; Soluri, D.S.; Donagemma, R.A. Coarse and fine aerosol source apportionment in Rio de Janeiro, Brazil. Atmos. Environ. 2009, 43, 2366–2374. [Google Scholar] [CrossRef]
- Jasan, R.C.; Plá, R.R.; Invernizzi, R.; Dos Santos, M. Characterization of atmospheric aerosol in Buenos Aires, Argentina. J. Radioanal. Nucl. Chem. 2009, 281, 101–105. [Google Scholar] [CrossRef]
- Putaud, J.P.; Van Dingenen, R.; Alastuey, A.; Bauer, H.; Birmili, W.; Cyrys, J.; Flentje, H.; Fuzzi, S.; Gehrig, R.; Hansson, H.C.; et al. European aerosol phenomenology—3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 2010, 44, 1308–1320. [Google Scholar] [CrossRef]
- Minguillón, N.C.; Querol, X.; Baltensperger, U.; Prévôt, A.S.H. Fine and coarse PM composition and sources in rural and urban sites in Switzerland: Local or regional pollution? Sci. Total Environ. 2012, 427, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Squizzato, S.; Masiol, M.; Innocente, E.; Pecorari, E.; Rampazzo, G.; Pavoni, B. A procedure to assess local and long-range transport contributions to PM2.5 and secondary inorganic aerosol. J. Aerosol Sci. 2012, 46, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Mues, A.; Manders, A.; Schaap, M.; van Ulft, L.H.; van Meijgaard, E.; Builtjes, P. Differences in particulate matter concentrations between urban and rural regions under current and changing climate conditions. Atmos. Environ. 2013, 80, 232–247. [Google Scholar] [CrossRef]
- Borgie, M.; Ledoux, F.; Verdin, A.; Cazier, F.; Greige, H.; Shirali, P.; Courcot, D.; Dagher, Z. Genotoxic and epigenotoxic effects of fine particulate matter from rural and urban sites in Lebanon on human bronchial epithelial cells. Environ. Res. 2015, 136, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Moroni, B.; Castellini, S.; Crocchianti, S.; Piazzalunga, A.; Fermo, P.; Scardazza, F.; Cappelletti, D. Ground-based measurements of long-range transported aerosol at the rural regional background site of Monte Martano (Central Italy). Atmos. Res. 2015, 155, 26–36. [Google Scholar] [CrossRef]
- Schwarz, J.; Cusack, M.; Karban, J.; Chalupníčková, E.; Havránek, V.; Smolík, J.; Ždímal, V. PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis. Atmos. Res. 2016, 176, 108–120. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Thurston, G.D.; Spengler, J.D. A quantitative assessment of source contribution to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. 1985, 19, 9–25. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008: On Ambient Air Quality and Cleaner Air for Europe. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:en:PDF (accessed on 11 June 2008).
- WHO. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005—Summary of Risk Assessment. Available online: http://apps.who.int/iris/bitstream/10665/69477/1/WHO_SDE_PHE_OEH_06.02_eng.pdf (accessed on 7 March 2016).
- Rozbicka, K.; Rozbicki, T. Spatiotemporal variations of tropospheric ozone concentrations in the Warsaw Agglomeration (Poland). Ann. Wars. Univ. Life Sci.—SGGW Land Reclam. 2014, 46, 247–261. [Google Scholar] [CrossRef]
- Rozbicka, K.; Majewski, G.; Rozbicki, T. Seasonal variation of air pollution in Warsaw conurbation. Meteorol. Z. 2014, 23, 175–179. [Google Scholar]
- Rogula-Kozłowska, W.; Klejnowski, K.; Rogula-Kopiec, P.; Ośródka, L.; Krajny, E.; Błaszczak, B.; Mathews, B. Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air Qual. Atmos. Health 2014, 7, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Cuccia, E.; Massabò, D.; Ariola, V.; Bove, M.C.; Fermo, P.; Piazzalunga, A.; Prati, P. Size-resolved comprehensive characterization of airborne particulate matter. Atmos. Environ. 2013, 67, 14–26. [Google Scholar] [CrossRef]
- Pastuszka, J.S.; Rogula-Kozlowska, W.; Zajusz-Zubek, E. Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes. Environ. Monit. Assess. 2010, 168, 613–627. [Google Scholar] [CrossRef] [PubMed]
- Ośródka, L.; Klejnowski, K.; Wojtylak, M.; Krajny, E. Smog episodes analysis in winter season in Upper Silesia Region. In Air Protection in Theory and in Practice; Konieczynski, J., Ed.; Polish Academy of Sciences: Zabrze, Poland, 2006; pp. 197–2007. (In Polish) [Google Scholar]
- Błaszczak, B.; Reizer, M.; Juda-Rezler, K.; Krajny, E.; Mathews, B.; Klejnowski, K. Analysis of national vs. long-range transport contribution to organic and inorganic aerosol load in selected location in Poland. In Air Pollution Modeling and Its Application XXIV.; Steyn, D.G., Chaumerliac, N., Eds.; Springer International Publishing AG: Cham, Switzerland, 2016; pp. 65–70. [Google Scholar]
- EBAS. Available online: http://ebas.nilu.no (accessed on 7 March 2016).
- Kassomenos, P.; Vardoulakis, S.; Chaloulakou, A.; Grivas, G.; Borge, R.; Lumbreras, J. Levels, sources and seasonality of coarse particles (PM10–PM2.5) in three European capitals-Implications for particulate pollution control. Atmos. Environ. 2012, 54, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Marenco, F.; Bonansoni, P.; Calzolari, F.; Ceriani, M.; Chiari, M.; Cristofanelli, P.; D’Alessandro, A.; Fermo, P.; Lucarelli, F.; Mazzei, F.; et al. Characterization of atmospheric aerosols at Monte Cimone, Italy, during summer 2004: Source apportionment and transport mechanisms. J. Geophys. Res. 2006, 111, D24. [Google Scholar] [CrossRef]
- Richard, A.; Gianini, M.F.D.; Mohr, C.; Furger, M.; Bukowiecki, N.; Minguillón, M.C.; Lienemann, P.; Flechsig, U.; Appel, K.; DeCarlo, P.F.; et al. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland. Atmos. Chem. Phys. 2011, 11, 8945–8963. [Google Scholar] [CrossRef]
- Zajusz-Zubek, E.; Kaczmarek, K.; Mainka, A. Trace Elements Speciation of Submicron Particulate Matter (PM1) Collected in the Surroundings of Power Plants. Int. J. Environ. Res. Public Health 2015, 12, 13085–13103. [Google Scholar] [CrossRef] [PubMed]
- Cesari, D.; Genga, A.; Ielpo, P.; Siciliano, M.; Mascolo, G.; Grasso, F.M.; Contini, D. Source apportionment of PM2.5 in the harbor-industrial area of Brindisi (Italy): Identification and estimation of the contribution of in-port ship emissions. Sci. Total Environ. 2014, 497, 392–400. [Google Scholar] [CrossRef] [PubMed]
- The European Parliament and the Council of the European Union. Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004: Relating to Arsenic, Cadmium, Mercury, Nickel and Polycyclic Aromatic Hydrocarbons in Ambient Air. Available online: http://ebas.nilu.no (accessed on 26 January 2005).
- Manoli, E.; Voutsa, D.; Samara, C. Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos. Environ. 2002, 36, 949–961. [Google Scholar] [CrossRef]
- Vasilakos, C.; Pateraki, S.; Veros, D.; Maggos, T.; Michopoulos, J.; Saraga, D.; Helmis, C.G. Temporal determination of heavy metals in PM2.5 aerosols in a suburban site of Athens, Greece. J. Atmos. Chem. 2007, 57, 1–17. [Google Scholar] [CrossRef]
- Hüeglin, C.; Gehrig, R.; Baltensperger, U.; Gysel, M.; Monn, C.; Vonmont, H. Chemical characterization of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos. Environ. 2005, 39, 637–651. [Google Scholar] [CrossRef]
- Schleicher, N.J.; Norra, S.; Chai, F.; Chen, Y.; Wang, S.; Cen, K.; Yang, Y.; Stüben, D. Temporal variability of trace metal mobility of urban particulate matter from Beijing—A contribution to health impact assessments of aerosols. Atmos. Environ. 2011, 45, 7248–7265. [Google Scholar] [CrossRef]
- Lemos, A.T.; Coronas, M.V.; Rocha, J.A.V.; Vargas, V.M.F. Mutagenicity of particulate matter fractions in areas under the impact of urban and industrial activities. Chemosphere 2012, 89, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Pastuszka, J.S.; Wawroś, A.; Talik, E.; Paw, U.K.T. Optical and chemical characteristics of the atmospheric aerosol in four towns in southern Poland. Sci. Total Environ. 2003, 309, 237–251. [Google Scholar] [CrossRef]
- Widory, D.; Liu, X.; Dong, S. Isotopes as tracers of sources of lead and strontium in aerosols (TSP & PM2.5) in Beijing. Atmos. Eviron. 2010, 44, 3679–3687. [Google Scholar]
- Parker, G.A. Molybdenum. In Handbook of Environmental Chemistry; Hutzinger, O., Ed.; Springer-Verlag: Berlin, Germany, 1986. [Google Scholar]
- Silva, P.J.; Prather, K.A. On-line Characterization of Individual Particles from Automobile Emissions. Environ. Sci. Tech. 1997, 31, 3074–3080. [Google Scholar] [CrossRef]
- Wojas, B.; Almquist, C. Mass concentrations and metals speciation of PM2.5, PM10, and total suspended solids in Oxford, Ohio and comparison with those from metropolitan sites in the Greater Cincinnati region. Atmos. Environ. 2007, 41, 9064–9078. [Google Scholar] [CrossRef]
- Panko, J.M.; Chu, J.A.; Kreider, M.L.; McAtee, B.L.; Unice, K.M. Quantification of tire and road wear particles in the environment. Urban Transp. 2012, 128, 59–70. [Google Scholar]
- U.S. Environmental Protection Agency. Locating and Estimating Air Emissions from Sources of Nickel; EPA-450/4-84-007f; U.S. Environmental Protection Agency: Atlanta, GA, USA, 1984. [Google Scholar]
- Yue, W.; Li, X.; Liu, J.; Li, Y.; Zhang, G.; Li, Y. Source tracing of chromium-, manganese-, nickel-and zinc-containing particles (PM10) by micro-PIXE spectrum. J. Radioanal. Nucl. Chem. 2007, 274, 115–121. [Google Scholar] [CrossRef]
Location, Station Type, Measurement Periods, PM Fraction | Factors Identified Together with Elements Included and Suggested Source Names 1 | ||||||
---|---|---|---|---|---|---|---|
Diabla Góra (PL 2), regional background (EMEP), January–March 2009, PM10 [22] 3,4 | As, Cd, Ni, Pb, Zn, SO42−, HNO3 + NO3− (MI, FA) | Cu, Ni, Zn, SO42−, NH3 + NH4+ (SA, (L)RT) | Cr, Cu (AN, TRexh, TRnonexh) | ||||
Warsaw (PL), urban, November–December 2013, PM2.5 [15] | Sc, Se, As, Pb, Br, Mg, K, Zn, Fe, S, Cl, Na, Ca, Co, Sr, Al, Mn, Si, Cu (FF, BB) | Ni, V, Mn, Ca, Si, Cu, Ti (Oil) | Cr, Sr, S (TRexh, TRnonexh) | Ti, Ni, Al, Si, Cd (MM, TRnonexh) | |||
Wrocław (PL), residential, January–April 2009, PM2.5 [23] | H, Cl, K, Ca, Cu, Zn, Br, Rb, Fe, Pb (BB, TRexh, TRnonexh) | Al, Si, Ti, Ca (MM) | V, Ni, S (Oil) | Cr, Mn, As, Pb, Se, Br, Fe (MI, FF) | |||
Zabrze (PL), urban background, 2007, PM2.5 [16] | Cl, Mn, Fe, Cu, Zn, Br, Pb (TRexh, TRnonexh, AN) | S, Ca, Ti, Sb (FF, TRexh, TRnonexh) | Al, K, Sr (MM, BB) | ||||
Katowice (PL), urban background, 2007, PM2.5 [16] | S, Cl, K, Cu, Zn, Br, Sb, Pb (TRexh, TRnonexh, AN) | Ti, Cr, Mn, Fe (MI) | S, Ca, Se (FF) | ||||
Brzezina (PL), rural, August 2009, PM10 [24] | K, Ca, Ti, Mn, Fe, Zn, Br, Pb (MM, TRexh, TRnonexh) | Cu, As (MInonfer) | |||||
Brzezina (PL), rural, February 2010, PM10 [24] | K, Ca, Cr, Mn, Fe, Cu, Zn, Br, Pb (AN) | Ca, As (MInonfer) | |||||
Krakow (PL), urban, June 2009, PM10 [24] | K, Ca, Mn, Fe, Zn (MI) | Cu, Br, As (TRexh, TRnonexh) | Ti, Cr (MM) | ||||
Krakow (PL), urban, January 2010, PM10 [24] | K, Cu, Zn, As (AN, TRexh, TRnonexh) | Ca, Cr, Mn, Fe, Br (MI) | |||||
Menen (BE), suburban, 2003, PM2.5 [25] | S, Si, Al, K, Ti, Ca, Fe (MM, TRnonexh) | Cr, Cu, Zn (TRexh, TRnonexh) | V, Mn, Ni, Pb (IN) | Br, Rb (IN/MM) | |||
K-Puszta (HU), regional background (EMEP station), May–June 2006, PM10 [26] | Mg, Al, Si, P, K, Ca, Ti, Mn, Fe (MM) | NH4+, SO42−, S, Pb (SA, AN) | EC, Cu (TRexh, TRnonexh) | Na (SS) | NO3− (SA) | Cl (SS) | Zn (AN) |
Belgrade (CS), urban background, June 2003–July 2005, PM2.5 [27] | Zn, Mn, Fe, Al (TRnonexh) | Pb, Cr (TRexh, TRnonexh, IN) | Ni, V (Oil) | Cu, Cd (TRexh, IN) | |||
Belgrade (CS), urban background, June 2003–July 2005, PM10 [27] | Zn, Mn, Fe, Al (TRnonexh) | Ni, V (Oil) | Cu, Cd, Pb (TRexh, TRnonexh) | Pb, Cr (TRexh) | |||
Milan (IT), urban background, 2001, PM10 [28] | Al, Si, Ca, Ti, Mn, Fe (MM) | K, Mn, Fe, Cu, Zn, Br, Pb (TRexh, TRnonexh) | S, K (SA) | Mn, Zn (IN, MI) | |||
Venice Lagoon (IT), industrial-urban, March 2002–July 2003, PM3.0 [29] | Cd, Cu, K, Mn, Ni, Pb, V, Zn (TRexh, TRnonexh, IN) | Al, Co, Cu, Fe, Mg, Mn, Sr (MM) | Na (SS) | ||||
Llodio (ES), urban background, January–December 2001, PM2.5 [30] | Pb, Zn, Cd, Mn, Fe, Cu (MI) | SO42−, NH4+, V, Na, K, Tl ((L)RT, AN) | Al2O3, Ti, Ba, Ca, Sr (MM) | P, OC, EC, K, Tl, NO3− (TRexh) | Cr, Ni, Mo, Co, As, Cu, Fe, OC, EC (IN) | ||
Barcelona (ES), urban background, March–November 2007, PM1 [31] | K, Li, Cu, Zn, Ga, Rb, Fe, Ti, Mn, Sr, Sb, Ba (MM) | TC, NO3−, Cl, As, Se, Cd, Sn, W, Pb, Mn, Sb (TRexh, TRnonexh) | Al2O3, Ca, Na, Mg, La, Ce, Ti, Sr (MM) | SO42−, NH4+, V, Co, Ni (Oil) | |||
Barcelona (ES), urban background, March–November 2007, PM2.5 [31] | Al2O3, Ca, K, Mg, Fe, Li, Ti, Ga, Rb, Sr, La, Ce, Mn, Co, P (MM) | TC, NO3−, Cu, As, Se, Cd, Sn, Sb, W, Pb, Bi, Mn, Fe, P, Zn (TRexh, TRnonexh) | NH4+, V, Ni, Ba, Co (Oil) | ||||
L’Hospitalet (ES), urban-kerbside, June 1999–June 2000, PM2.5 [32] | Fe, K, Mn, Pb, Zn, Cu, Cr, Ni, V, OC + EC, Cl, NO3−, NH4+ (TRexh, TRnonexh) | Ca, Al2O3, Fe, Mg, Ti, Sr, K, Mn (MM) | K, Ni, V, nss-SO42−, NO3−, NH4+ (FA) | Al2O3, P, Na, NO3− (IN) | |||
Monagrega (ES), rural, March 1999–July 2000, PM10 [32] | Ca, Al2O3, Fe, Mg, Ti, Sr, K, Mn, V (MM) | Pb, Zn, V, OC + EC, nss-SO42−, NH4+ (FA) | Mg, Na, Cl (SS) | Pb, OC + EC, NO3− (TRexh, TRnonexh) | |||
Santa Ana (ES), suburban, January 2004–March 2005, PM2.5 [33] | Ti, Fe, Al2O3, Mn, Rb, K, Ca (MM) | OM, EC, NO3−, Cl, Sb, K, Pb, As, NH4+, Mg (TRexh, TRnonexh) | SO42−, V, Ni, As, NH4+ (SA, IN) | Na, Cl (SS) | Zn (MI) | ||
Huelva (ES), urban, April 2008–December 2009, PM2.5 [34] | nss-SO42−, NO3−, NH4+, P, As, Pb, Cd, V, Ni, Zn, Bi, Mo, Sn (IN) | OM, Al, Ca, Fe, Ti, Mn, K (TRexh, TRnonexh) | Na, Cl−, Mg (SS) | ||||
Lisbon (PT), suburban-industrial, 2001, PM2.5 [35] | Al, Si, Sc, Ti, Mn, Fe, La, Sm, Ca2+ (MM) | V, Ni, Co, Pb (Oil) | Cl−, Na+, Mg2+, Br (SS) | Se, Hg (IN) | SO42−, NH4+, Cl− (SA) | Cu, Zn, Sb, Pb (IN, TRexh, TRnonexh) | As, NO3−, K+, NH4+ (TRexh) |
Izmir (TR), suburban, June 2004–May 2005; PM2.5 [36] | Ba, Ca, Fe, Mg, Sr (MM) | Cd, Mn, Pb, V, Zn (MI, FF) | Al, Cu (TRexh, TRnonexh) | K, Na (SS) | |||
Bishkek and Teplyklouchenka (KG), remote sites, July 2008–July 2009, PM2.5 [37] | Cl, Li, B, Na, Mg, Al, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Rh, Sr, Y, Nb, Pd, Cs, Ba, La, Pr, Nd, Sm, Eu, Gd, Ho, Tm, Yb, Lu, W, Th, U (MM) | Cu, Zn, Rh, Pd, Pb (MI, AN) | OC, EC, SO42−, NO3−, NH4+, Sb (SA) | Mn, Cd, As, Tl (AN) | |||
Jorhat City (IN), urban, January 2007–January 2008, PM2.5 [38] | Al, Si, Ca, Ti (MM) | S, SO42−, Te, Mn, Cd, Sn, Sb (FF) | Co, Ni, Cu, Zn, Cd, Te (IN, TRexh, TRnonexh) | K, NH4+ (BB) | NO3−, NH4+, SO42− (SA) | ||
Kanpur City (IN), residential, July 2008–May 2009, PM1 [39] | Cu, Zn, Pb (TRexh, TRnonexh) | Ca, Mg, Zn, Cr, Fe, Pb, V (TRnonexh) | NO3−, SO42− (SA) | Cl−, Se, Cd, Pb, Ni (FF) | |||
Agra (IN), rural, May 2006–March 2008, PM2.5 [40] | Pb, Ni, Zn, Cu (IN, (L)RT) | Ni, Fe, Cr (MM) | Cr, Mn (MM, TRexh, TRnonexh) | ||||
Agra (IN), urban, May 2006–March 2008, PM2.5 [40] | Zn, Cr, Cu (IN) | Pb, Ni, Mn (TRexh, TRnonexh) | Ni, Fe (WI, WD) | ||||
Ordos (CN), urban, September 2005, PM2.5 [41] | Al, Ca, Fe, Mg, Mn, Na, P, Sr, Ti (MM) | B, Ba, Ca, Na, Sr, Cl−, OC, EC (TRexh) | K, Pb, Zn, NO3−, SO42−, OC, EC (SA) | Cr, Cu, Ni (IN, Oil) | |||
Xinglong (CN), rural mountainous site, September 2008, PM2.5 [42] | Na, Mg, Al, K, Ca, Cr, Mn, Fe, Ni, As, Mo, Ba, U (MM, FA) | K, Zn, Ag, Cd, Tl, Pb (IN, TRexh, TRnonexh, BB) | Be, Al, Mo, Ag, Cd, Th (MM) | Cr, Cu, Se (MInonfer) | Co, Sb (TRnonexh) | ||
Beijing (CN), urban, 2000, PM2.5 [43] | Al, Si, Ca, Ti, Fe, Mg (TRnonexh) | EC, Mn, Cu, Zn, As, Pb (TRexh) | OC, NO3−, Cl, K, Br (FF, BB) | NO3−, SO42−, NH4+, As (SA) | Ni, Se (IN, e.g., MI) | ||
Beijing (CN), roadside, 2008–2009, PM1.0–2.5 [44] | Al, Ti, Mg, Si, Ca, Na, K, Fe, Mn, Br, Cl, Cu (MM, TRnonexh) | Cl, Cu, Zn, Pb (IN, FF) | Br, NH4+, NO3−, SO42− (SA) | ||||
Ji’nan (CN), urban, September 2010, PM2.5 [45] | Cu, Fe, Mn, Ni, Pb, Sr, Zn (TRexh, TRnonexh, MI, FF) | Ba, Ni, Sr, Ti (MM, TRnonexh) | As, Cr (FF) | ||||
Chengdu (CN), urban, April 2009–January 2010, PM2.5 [46] | NH4+, K+, Cl−, NO3−, SO42−, OC, EC, Cr, Zn, As, Br, Pb, Cu, Mn, Rb, Mo (AN) | Al, Si, Ca, Ti, Fe, Mn, Ba (MM) | Na, Mg2+, Ca2+ (MM) | Sr, Cd (MI) | |||
Changsha (CN), suburban, July and October 2008, PM10 [47] | Al, Si, Ti, Mg, Fe, Cl, Ca, Na (MM) | Zn, Pb (TRexh, TRnonexh) | S, P, K (FF, SA) | Mn, K, Ca, Na (BB, WI) | Ni (Oil) | Cu (IN) | |
Lhasa (CN), urban, September 2007–August 2008, PM10 [48] | Na, Mg, Al, K, Ca, Sc, Ti, V, Mn, Fe, As, Ba, Pb ((L)RT, MM, TRnonexh) | Na, Ni, Cu, Zn, As, Pb (AN) | V, Cr, Co, As, Cd (WI) | ||||
Tunghai University (TW), rural, July 2001–April 2002, PM2.5 [49] | Fe, Mg, Cd (MM) | Pb (TRexh, TRnonexh) | Cr, Cu (MI) | ||||
Jeongwang (KR), residential, May 2004–January 2006, PM10 [50] | Al, Ba, Cr, Fe, K, Na, Sb, Ti, V (MM, TRnonexh) | Al, As, Cd, Mn, Ni, Pb, Se, V, Zn (AN) | As, Cr, Pb, Sb, Se, V, Zn (IN) | Cd, Pb, Sb, V (IN) | K, Na (SS) | ||
Yeongwoi (KR), urban, April 2012–October 2013, PM2.5 [51] | Al, Si, K, Ca, Mn, Fe, As, Pb (MM) | Cr, Ni (IN) | Zn, Cd (IN) | ||||
Pohang (KR), residential, 2003–2004, PM10 [52] | Ba, Cd, Co, Fe, Mn, Ni, Pb, Sb, V, Zn (WI) | Al, Ca, Co, Fe, Mn, Si, Ti (MM) | K, Mg, Na (SS) | Cr, Ni (FF, Oil) | Cu, Tl (IN, MI) | ||
NAPS network sampling sites (CA), urban and rural sites, May 2004–December 2006, PM2.5 [53] | Mn, Fe, Zn, Mo, Sb (MM, TRnonexh) | Se, Sn, Cd, Pb (FF) | V, Ni (IN, Oil) | Sr, Ba, Sb (TRnonexh) | As, Cu, Sb, Cd, Zn (IN) | ||
Los Angeles (USA), 10 sampling sites, April 2008–March 2009, PM0.25 [54] | Rb, Mg, Al, K, Mn, Ca, Ti, Na, Li, Fe, Sr, Co (TRexh, TRnonexh) | Fe, Sr, Rh, Ba, Sb, Cu, Mo, As, Pb (TRnonexh) | S, La, V (Oil) | Cd, Ag, Pb (MI) | Cr, Ni (MI) | ||
Rio de Janeiro (BR), different locations, September 2003–December 2005, PM2.5 [55] | Al, Fe, Ce (MM) | BC, Cu, Cd (TRexh, TRnonexh) | Ni, V, SO42− (Oil, SA) | Na, Mg (SS) | |||
Buenos Aires (AR), urban, October 2005–October 2006, PM10 [56] | Sc, Sm, Ce, Fe, Cs, Cr (MM) | Fe, BC, Zn, As, Ba, Sb (TRexh, TRnonexh) | Zn, Br, Sb (MInonfer, WI) | Eu, Co, La (AN) | Na (SS) |
Element | Cold/Heating Season (n = 147) | Warm/Non-Heating Season (n = 173) | Concentration Ratio 1 | ||||
---|---|---|---|---|---|---|---|
Mean ± SD 2 | Min | Max | Mean ± SD | Min | Max | ||
PM2.5 | 48.7 ± 39.4 | 3.6 | 209.5 | 13.9 ± 8.0 | 3.2 | 42.6 | 3.5 |
Na | 201.3 ± 109.1 | - | 644.5 | 95.0 ± 46.6 | - | 237.5 | 2.1 |
Mg | 44.6 ± 35.6 | - | 201.7 | 10.3 ± 13.7 | - | 49.1 | 4.3 |
Al | 37.5 ± 33.7 | - | 198.1 | 47.4 ± 250.5 | - | 3296.4 | 0.8 |
Si | 73.0 ± 63.4 | 12.4 | 363.3 | 163.8 ± 148.0 | 28.2 | 1073.0 | 0.5 |
S | 1528.0 ± 1152.2 | 186.1 | 6812.9 | 924.4 ± 399.3 | 243.1 | 2283.5 | 1.6 |
Cl | 2364.3 ± 2274.3 | 24.1 | 13,801.1 | 206.3 ± 279.3 | 15.2 | 1525.3 | 11.5 |
K | 384.8 ± 307.4 | 38.5 | 2360.8 | 138.0 ± 89.6 | 20.9 | 505.3 | 2.8 |
Ca | 56.3 ± 41.7 | 8.9 | 277.4 | 71.3 ± 64.7 | 7.9 | 678.9 | 0.8 |
Cs | 3.3 ± 2.8 | - | 18.8 | 7.5 ± 11.8 | 0.5 | 145.0 | 0.4 |
Ti | 2.4 ± 1.9 | - | 9.4 | 3.7 ± 3.8 | 0.2 | 28.3 | 0.6 |
V | 0.9 ± 0.8 | 0.2 | 4.4 | 0.7 ± 0.8 | - | 5.3 | 1.3 |
Cr | 3.6 ± 5.5 | 0.5 | 38.3 | 7.4 ± 7.2 | 0.5 | 45.4 | 0.5 |
Mn | 8.0 ± 6.6 | - | 41.2 | 7.0 ± 4.1 | 1.4 | 19.3 | 1.1 |
Fe | 135.5 ± 136.7 | 10.9 | 722.9 | 159.1 ± 114.7 | 15.6 | 496.8 | 0.8 |
Co | 1.6 ± 2.0 | - | 10.8 | 0.9 ± 1.4 | - | 6.2 | 1.8 |
Ni | 5.5 ± 9.3 | 0.2 | 55.8 | 10.8 ± 12.1 | 0.2 | 85.0 | 0.5 |
Cu | 9.3 ± 24.1 | 1.0 | 289.3 | 3.8 ± 1.8 | 1.0 | 13.5 | 2.5 |
Zn | 99.9 ± 90.1 | 6.5 | 544.4 | 32.9 ± 27.3 | 2.7 | 158.6 | 3.0 |
As | 11.3 ± 11.5 | 0.5 | 70.9 | 4.2 ± 2.8 | 0.2 | 15.0 | 2.9 |
Se | 0.8 ± 1.1 | - | 6.9 | 0.3 ± 0.5 | - | 2.2 | 2.3 |
Br | 21.6 ± 20.0 | 2.9 | 111.6 | 4.3 ± 2.9 | 0.5 | 17.4 | 5.1 |
Rb | 3.9 ± 3.9 | 0.2 | 22.6 | 0.9 ± 0.6 | - | 3.6 | 4.5 |
Sr | 4.3 ± 2.5 | 0.5 | 18.8 | 3.5 ± 1.7 | 0.5 | 14.0 | 1.2 |
Mo | 3.0 ± 1.9 | - | 12.6 | 2.5 ± 3.5 | - | 44.5 | 1.2 |
Cd | 5.2 ± 2.5 | 1.4 | 17.3 | 3.7 ± 1.2 | 1.4 | 7.0 | 1.4 |
Sb | 6.0 ± 8.1 | 0.2 | 58.0 | 2.8 ± 1.9 | - | 10.9 | 2.2 |
Ba | 5.1 ± 3.4 | - | 22.6 | 5.3 ± 4.1 | - | 48.8 | 0.9 |
Pb | 34.0 ± 34.2 | - | 204.9 | 13.5 ± 9.2 | - | 54.5 | 2.5 |
Location City (Country), Site Type | Measurement Period | PM Fraction | Concentrations (ng·m−3) | |||
---|---|---|---|---|---|---|
As | Cd | Ni | Pb | |||
Racibórz (Poland), suburban (this study) a | January 2011–December 2012 | PM2.5 | 11.3/4.2 | 5.2/3.7 | 5.5/10.8 | 34.0/13.5 |
Flanders (Belgium), suburban [81] | September 2006–September 2007 | PM10 | 3.8 | - | 3.6 | 21.0 |
Thessaloniki (Greece), residential-commercial [82] a | June 1994–May 1995 | PM2.5 | 1.5/1.4 | 0.71/1.3 | 15/21 | 122/141 |
PM2.5–10 | 0.59/0.47 | 0.12/0.10 | 6.4/5.2 | 29/29 | ||
Athens (Greece), suburban [83] | August–November 2003 | PM2.5 | 5.78 | 0.58 | 2.19 | 10.4 |
Bobadela (Spain), suburban-industrial [35] | 2001 | PM2.5 | 0.31 | - | 2.6 | 8.6 |
PM2.5–10 | 0.16 | - | 1.6 | 6.0 | ||
Huelva (Spain), urban background [34] | April 2008–December 2009 | PM2.5 | 5.1 | 0.6 | 2.3 | 10.8 |
PM2.5–10 | 1.1 | 0.1 | 1.4 | 3.6 | ||
Venice (Italy), urban-industrial [29] | March 2002–June 2003 | PM10 | 3.0 | 2.0 | 14 | 19 |
Zurich-Kaserne (Switzerland), urban [84] | April 1998–March 1999 | PM2.5 | 0.47 | 0.31 | 3.1 | 21 |
PM2.5–10 | 0.10 | 0.03 | 0.11 | 5.9 | ||
Basel (Switzerland), suburban [84] | April 1998–March 1999 | PM2.5 | 0.40 | 0.48 | 1.7 | 19 |
PM2.5–10 | 0.11 | 0.04 | 0.46 | 4.4 | ||
Chaumont (Switzerland), rural [84] | April 1998–March 1999 | PM2.5 | 0.16 | 0.12 | 1.3 | 4.7 |
PM2.5–10 | 0.02 | 1.00 | 0.04 | 0.8 | ||
Beijing (China), urban [85] | February 2005–September 2007 | PM2.5 | 13 | 2.5 | 1.6 | 32 |
Rio Grande (Brazil), urban-industrial [86] b | October 2009–January 2010 | PM2.5 | bld. | bld. | 0.79/0.86 | 0.40/bld. |
Component | Element Factor Loading 1 | Source/%Variance | Mean Source Contributions (%) to PM2.5 Concentrations in Sampling Period (Results from MLRA) 2 |
---|---|---|---|
PC1 | Zn0.96, K0.95, Br0.93, Rb0.94, As0.91, Pb0.90, Cl0.87, S0.82, Na0.69, Cd0.65, Mn0.64, Co0.64, Se0.60, V0.58, Sb0.54, Mg0.53, Fe0.52 | FF_BB_WI 3/37.9 | 22.0 |
PC2 | Cr0.86, Ni0.84, Si0.71, Mg0.70, Na0.62, Sc0.58, Ca0.55, Ti0.42, Ba0.42 | IN_MI 4/19.4 | 16.2 |
PC3 | Sr0.63, Mo0.49, V0.43 | FF_FA 5/10.1 | 17.2 |
PC4 | Co0.47, Al0.42 | TRnonexh_TRexh_MM 6/7.1 | 13.5 |
PC5 | Cu0.85, Mo0.46 | TRnonexh_TRexh/4.7 | 15.7 |
Total variance | 79.3 | 84.6% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogula-Kozłowska, W.; Majewski, G.; Błaszczak, B.; Klejnowski, K.; Rogula-Kopiec, P. Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions. Int. J. Environ. Res. Public Health 2016, 13, 715. https://doi.org/10.3390/ijerph13070715
Rogula-Kozłowska W, Majewski G, Błaszczak B, Klejnowski K, Rogula-Kopiec P. Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions. International Journal of Environmental Research and Public Health. 2016; 13(7):715. https://doi.org/10.3390/ijerph13070715
Chicago/Turabian StyleRogula-Kozłowska, Wioletta, Grzegorz Majewski, Barbara Błaszczak, Krzysztof Klejnowski, and Patrycja Rogula-Kopiec. 2016. "Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions" International Journal of Environmental Research and Public Health 13, no. 7: 715. https://doi.org/10.3390/ijerph13070715
APA StyleRogula-Kozłowska, W., Majewski, G., Błaszczak, B., Klejnowski, K., & Rogula-Kopiec, P. (2016). Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions. International Journal of Environmental Research and Public Health, 13(7), 715. https://doi.org/10.3390/ijerph13070715