Associations between Temperature and Hospital Admissions for Subarachnoid Hemorrhage in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Feigin, V.L.; Lawes, C.M.M.; Bennett, D.A.; Anderson, C.S. Stroke Epidemiology: A Review of Population-Based Studies of Incidence, Prevalence, and Case-Fatality in the Late 20th Century. Lancet Neurol. 2003, 2, 43–53. [Google Scholar] [CrossRef]
- Hackett, M.L.; Anderson, C.S. Health Outcomes 1 Year after Subarachnoid Hemorrhage: An International Population-Based Study. The Australian Cooperative Research on Subarachnoid Hemorrhage Study Group. Neurology 2000, 55, 658–662. [Google Scholar] [CrossRef] [PubMed]
- Linn, F.H.; Rinkel, G.J.; Algra, A.; van Gijn, J. Incidence of Subarachnoid Hemorrhage: Role of Region, Year, and Rate of Computed Tomography: A Meta-Analysis. Stroke 1996, 27, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Sandvei, M.S.; Mathiesen, E.B.; Vatten, L.J.; Müller, T.B.; Lindekleiv, H.; Ingebrigtsen, T.; Njølstad, I.; Wilsgaard, T.; Løchen, M.-L.; Vik, A.; et al. Incidence and Mortality of Aneurysmal Subarachnoid Hemorrhage in Two Norwegian Cohorts, 1984–2007. Neurology 2011, 77, 1833–1839. [Google Scholar] [CrossRef] [PubMed]
- Sandvei, M.S.; Romundstad, P.R.; Müller, T.B.; Vatten, L.; Vik, A. Risk Factors for Aneurysmal Subarachnoid Hemorrhage in a Prospective Population Study: The HUNT Study in Norway. Stroke 2009, 40, 1958–1962. [Google Scholar] [CrossRef] [PubMed]
- Broderick, J.P.; Viscoli, C.M.; Brott, T.; Kernan, W.N.; Brass, L.M.; Feldmann, E.; Morgenstern, L.B.; Wilterdink, J.L.; Horwitz, R.I.; Hemorrhagic Stroke Project Investigators. Major Risk Factors for Aneurysmal Subarachnoid Hemorrhage in the Young Are Modifiable. Stroke 2003, 34, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Longstreth, W.T.; Koepsell, T.D.; Yerby, M.S.; van Belle, G. Risk Factors for Subarachnoid Hemorrhage. Stroke 1985, 16, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.I.; Suri, M.F.; Yahia, A.M.; Suarez, J.I.; Guterman, L.R.; Hopkins, L.N.; Tamargo, R.J. Risk Factors for Subarachnoid Hemorrhage. Neurosurgery 2001, 49, 607–613. [Google Scholar] [PubMed]
- Atsumi, A.; Ueda, K.; Irie, F.; Sairenchi, T.; Iimura, K.; Watanabe, H.; Iso, H.; Ota, H.; Aonuma, K. Relationship between Cold Temperature and Cardiovascular Mortality, with Assessment of Effect Modification by Individual Characteristics: Ibaraki Prefectural Health Study. Circ. J. 2013, 77, 1854–1861. [Google Scholar] [CrossRef] [PubMed]
- Buxton, N.; Liu, C.; Dasic, D.; Moody, P.; Hope, D.T. Relationship of Aneurysmal Subarachnoid Hemorrhage to Changes in Atmospheric Pressure: Results of a Prospective Study. J. Neurosurg. 2001, 95, 391–392. [Google Scholar] [CrossRef] [PubMed]
- Field, T.S.; Hill, M.D. Weather, Chinook, and Stroke Occurrence. Stroke 2002, 33, 1751–1757. [Google Scholar] [CrossRef] [PubMed]
- Gill, R.S.; Hambridge, H.L.; Schneider, E.B.; Hanff, T.; Tamargo, R.J.; Nyquist, P. Falling Temperature and Colder Weather Are Associated with an Increased Risk of Aneurysmal Subarachnoid Hemorrhage. World Neurosurg. 2013, 79, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Hori, A.; Hashizume, M.; Tsuda, Y.; Tsukahara, T.; Nomiyama, T. Effects of Weather Variability and Air Pollutants on Emergency Admissions for Cardiovascular and Cerebrovascular Diseases. Int. J. Environ. Health Res. 2012, 22, 416–430. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, D.; Salomaa, V.; Sivenius, J.; Tamminen, M.; Sarti, C.; Salmi, K.; Kaarsalo, E.; Narva, V.; Immonen-Räihä, P.; Torppa, J.; et al. Seasonal Variation in the Occurrence of Stroke in a Finnish Adult Population. The FINMONICA Stroke Register. Finnish Monitoring Trends and Determinants in Cardiovascular Disease. Stroke 1996, 27, 1774–1779. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, E.; Park, M.S.; Kwon, B.Y.; Kim, H.; Jung, D.H.; Jo, K.H.; Jeong, M.H.; Rha, S.-W. Short-Term Effect of Temperature on Daily Emergency Visits for Acute Myocardial Infarction with Threshold Temperatures. PLoS ONE 2014, 9, e94070. [Google Scholar] [CrossRef] [PubMed]
- Lejeune, J.P.; Vinchon, M.; Amouyel, P.; Escartin, T.; Escartin, D.; Christiaens, J.L. Association of Occurrence of Aneurysmal Bleeding with Meteorologic Variations in the North of France. Stroke 1994, 25, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Nyquist, P.A.; Brown, R.D.; Wiebers, D.O.; Crowson, C.S.; O’Fallon, W.M. Circadian and Seasonal Occurrence of Subarachnoid and Intracerebral Hemorrhage. Neurology 2001, 56, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Turin, T.C.; Kita, Y.; Rumana, N.; Nakamura, Y.; Ueda, K.; Takashima, N.; Sugihara, H.; Morita, Y.; Ichikawa, M.; Hirose, K.; et al. Ambient Air Pollutants and Acute Case-Fatality of Cerebro-Cardiovascular Events: Takashima Stroke and AMI Registry, Japan (1988–2004). Cerebrovasc. Dis. 2012, 34, 130–139. [Google Scholar] [CrossRef] [PubMed]
- De Steenhuijsen Piters, W.A.A.; Algra, A.; Broek, M.F.M.; Dorhout Mees, S.M.; Rinkel, G.J.E. Seasonal and Meteorological Determinants of Aneurysmal Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. J. Neurol. 2013, 260, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Beseoglu, K.; Hänggi, D.; Stummer, W.; Steiger, H.-J. Dependence of Subarachnoid Hemorrhage on Climate Conditions: A Systematic Meteorological Analysis from the Dusseldorf Metropolitan Area. Neurosurgery 2008, 62, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Law, H.Y.; Wong, G.K.C.; Chan, D.T.M.; Wong, L.; Poon, W.S. Meteorological Factors and Aneurysmal Subarachnoid Haemorrhage in Hong Kong. Hong Kong Med. J. 2009, 15, 85–89. [Google Scholar] [PubMed]
- McDonald, R.J.; McDonald, J.S.; Bida, J.P.; Kallmes, D.F.; Cloft, H.J. Subarachnoid Hemorrhage Incidence in the United States Does Not Vary with Season or Temperature. AJNR Am. J. Neuroradiol. 2012, 33, 1663–1668. [Google Scholar] [CrossRef] [PubMed]
- Besoglu, K.; Steiger, H.J. The Association between Weather and Spontaneous Subarachnoid Hemorrhage: An Analysis of 155 US Hospitals. Neurosurgery 2011, 68, 132–139. [Google Scholar]
- Heaviside, C.; Tsangari, H.; Paschalidou, A.; Vardoulakis, S.; Kassomenos, P.; Georgiou, K.E.; Yamasaki, E.N. Heat-Related Mortality in Cyprus for Current and Future Climate Scenarios. Sci. Total Environ. 2016, 569, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Rué, M.; Camiade, E.; Jecko, V.; Bauduer, F.; Vignes, J.-R. The Relationship between Aneurysmal Subarachnoid Hemorrhage and Meteorological Parameters Based on a Series of 236 French Patients. Neurochirurgie 2014, 60, 222–226. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Meteorological Research. Global Climate Change Report 2012 for the Corresponding IPCC Fifth Assessment Report; NIMR: Seoul, Korea, 2012; p. 77. [Google Scholar]
- Yorifuji, T.; Kawachi, I.; Sakamoto, T.; Doi, H. Associations of Outdoor Air Pollution with Hemorrhagic Stroke Mortality. J. Occup. Environ. Med. 2011, 53, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Madrigano, J.; Mittleman, M.A.; Baccarelli, A.; Goldberg, R.; Melly, S.; von Klot, S.; Schwartz, J. Temperature, Myocardial Infarction, and Mortality: Effect Modification by Individual- and Area-Level Characteristics. Epidemiology 2013, 24, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Tsangari, H.; Paschalidou, A.K.; Kassomenos, A.P.; Vardoulakis, S.; Heaviside, C.; Georgiou, K.E.; Yamasaki, E.N. Extreme Weather and Air Pollution Effects on Cardiovascular and Respiratory Hospital Admissions in Cyprus. Sci. Total Environ. 2016, 542, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Lai, P.M.R.; Dasenbrock, H.; Du, R. The Association between Meteorological Parameters and Aneurysmal Subarachnoid Hemorrhage: A Nationwide Analysis. PLoS ONE 2014, 9, e112961. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Ohde, S.; Ishimatsu, S.; Ogata, H.; Hasegawa, T.; Nakamura, T.; Tokuda, Y. Effects of Meteorological Factors on the Onset of Subarachnoid Hemorrhage: A Time-Series Analysis. J. Clin. Neurosci. 2008, 15, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.H.; Wang, X.D.; Liu, J.J.; Zhao, F.L.; Zhang, J.W.; Feng, H.L. A Community-Based Study of the Correlation of Hemorrhagic Stroke Occurrence with Meteorologic Factors. J. Stroke Cerebrovasc. Dis. 2016, 25, 2323–2330. [Google Scholar] [CrossRef] [PubMed]
- Kozák, N.; Hayashi, M. Trends in the Incidence of Subarachnoid Hemorrhage in Akita Prefecture, Japan. J. Neurosurg. 2007, 106, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Landers, A.T.; Narotam, P.K.; Govender, S.T.; van Dellen, J.R. The Effect of Changes in Barometric Pressure on the Risk of Rupture of Intracranial Aneurysms. Br. J. Neurosurg. 1997, 11, 191–195. [Google Scholar] [PubMed]
- Tarnoki, A.D.; Turker, A.; Tarnoki, D.L.; Iyisoy, M.S.; Szilagyi, B.K.; Duong, H.; Miskolczi, L. Relationship between Weather Conditions and Admissions for Ischemic Stroke and Subarachnoid Hemorrhage. Croat. Med. J. 2017, 58, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Bruce, N.; Elford, J.; Wannamethee, G.; Shaper, A.G. The Contribution of Environmental Temperature and Humidity to Geographic Variations in Blood Pressure. J. Hypertens. 1991, 9, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Keatinge, W.R.; Coleshaw, S.R.; Easton, J.C.; Cotter, F.; Mattock, M.B.; Chelliah, R. Increased Platelet and Red Cell Counts, Blood Viscosity, and Plasma Cholesterol Levels during Heat Stress, and Mortality from Coronary and Cerebral Thrombosis. Am. J. Med. 1986, 81, 795–800. [Google Scholar] [CrossRef]
- Crawford, V.L.S.; McNerlan, S.E.; Stout, R.W. Seasonal Changes in Platelets, Fibrinogen and Factor VII in Elderly People. Age Ageing 2003, 32, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Halonen, J.I.; Zanobetti, A.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Associations between Outdoor Temperature and Markers of Inflammation: A Cohort Study. Environ. Health 2010, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Michelozzi, P.; de’Donato, F.; Accetta, G.; Forastiere, F.; D’Ovidio, M.; Perucci, C.; Kalkstein, L. Impact of Heat Waves on Mortality—Rome, Italy, June–August 2003. JAMA 2004, 291, 2537. [Google Scholar]
- Clark, A.M.; DesMeules, M.; Luo, W.; Duncan, A.S.; Wielgosz, A. Socioeconomic Status and Cardiovascular Disease: Risks and Implications for Care. Nat. Rev. Cardiol. 2009, 6, 712–722. [Google Scholar] [CrossRef] [PubMed]
- Langford, I.H.; Bentham, G. The Potential Effects of Climate Change on Winter Mortality in England and Wales. Int. J. Biometeorol. 1995, 38, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-C.; Lin, Y.-K.; Chuang, C.-Y.; Li, M.-H.; Chou, C.-H.; Liao, C.-H.; Sung, F.-C. Associating Emergency Room Visits with First and Prolonged Extreme Temperature Event in Taiwan: A Population-Based Cohort Study. Sci. Total Environ. 2012, 416, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Braga, A.L.; Zanobetti, A.; Schwartz, J. The Time Course of Weather-Related Deaths. Epidemiology 2001, 12, 662–667. [Google Scholar] [CrossRef] [PubMed]
Variable | Spring | Summer | Autumn | Winter | p-Value |
---|---|---|---|---|---|
Hospital admission | |||||
Total SAH | 27,891 | 26,613 | 27,490 | 29,322 | 0.2246 |
Sex | |||||
Male, % (n) | 37.88 (10,566) | 37.59 (10,004) | 37.36 (10,271) | 37.00 (10,849) | <0.001 |
Female, % (n) | 62.12 (17,325) | 62.41 (16,609) | 62.64 (17,219) | 63.00 (18,473) | |
Age | |||||
<75 years, % (n) | 89.03 (24,830) | 89.45 (23,804) | 89.42 (24,581) | 89.51 (26,247) | <0.001 |
≥75 years, % (n) | 10.97 (3061) | 10.55 (2809) | 10.58 (2909) | 10.49 (3075) | |
Insurance type | |||||
Medicaid, % (n) | 7.72 (2154) | 8.55 (2276) | 7.80 (2144) | 7.86 (2305) | <0.001 |
NHI, % (n) | 92.28 (25,737) | 91.45 (24,337) | 92.20 (25,346) | 92.14 (27,017) | |
Area | |||||
Urban a, % (n) | 66.89 (18,657) | 67.93 (18,079) | 67.95 (18,680) | 67.59 (19,820) | <0.001 |
Rural b, % (n) | 33.11 (9234) | 32.07 (8534) | 32.05 (8810) | 32.41 (9502) | |
Temperature zone | |||||
Temperate c, % (n) | 21.73 (6060) | 21.34 (5679) | 21.85 (6006) | 21.08 (6181) | 0.25 |
Hot d, % (n) | 22.80 (6359) | 23.08 (6143) | 23.06 (6338) | 23.86 (6997) | |
Temperate e, % (n) | 30.73 (8570) | 31.42 (8361) | 30.24 (8313) | 31.10 (9120) | <0.001 |
Cold f, % (n) | 44.16 (12,316) | 43.69 (11,626) | 44.43 (12,215) | 43.65 (12,800) | |
Temperature | |||||
Mean (°C) | 12.15 (5.81) | 24.32 (2.84) | 15.28 (6.32) | 0.75 (4.71) | |
Minimum (°C) | 7.23 (5.92) | 20.94 (3.1) | 10.97 (6.9) | −3.47 (5.05) | |
Maximum (°C) | 17.66 (6.47) | 28.59 (3.47) | 20.47 (6.33) | 5.58 (5.05) | |
Air pollutant | |||||
PM10 (µg/m3) | 64.72 (45.4) | 42.69 (22.01) | 46.85 (25.25) | 56.48 (28.14) | |
NO2 (ppm) | 0.03 (0.01) | 0.02 (0.01) | 0.03 (0.01) | 0.03 (0.01) |
Variable | Cold Effect | Heat Effect | ||||||
---|---|---|---|---|---|---|---|---|
Mean Temperature (Threshold: −3.5 °C) | Minimum Temperature (Threshold: −13.5 °C) | Mean Temperature (Threshold: 24.5 °C) | Maximum Temperature (Threshold: 31.5 °C) | |||||
Lag | RR (95% CI) | Lag | RR (95% CI) | Lag | RR (95% CI) | Lag | RR (95% CI) | |
Total SAH | 2–3 | 1.02 (1.01, 1.03) * | 4–7 | 1.03 (1.00, 1.06) * | 15–21 | 1.01 (0.999, 1.02) | 0 | 1.02 (0.98, 1.06) |
Age | ||||||||
<75 years | 2–3 | 1.02 (1.01, 1.03) * | 4–7 | 1.03 (1.00, 1.06) * | 2–3 | 1.01 (0.99, 1.02) | 0 | 1.04 (0.99, 1.08) |
≥75 years | 2–3 | 1.01 (0.99, 1.04) | 2–3 | 1.01 (0.93, 1.11) | 1 | 1.05 (1.00, 1.10) * | 22–28 | 1.07 (1.02, 1.12) * |
Sex | ||||||||
Male | 2–3 | 1.02 (0.999, 1.03) | 4–7 | 1.09 (1.05, 1.14) * | 1 | 1.01 (0.98, 1.03) | 22–28 | 1.03 (1.00, 1.05) * |
Female | 2–3 | 1.02 (1.00, 1.03) * | 15–21 | 1.07 (1.03, 1.11) * | 2–3 | 1.01 (0.99, 1.03) | 0 | 1.02 (0.97, 1.07) |
Area | ||||||||
Urban a | 2–3 | 1.02 (1.01, 1.03) * | 2–3 | 1.05 (1.00, 1.09) * | 15–21 | 1.02 (1.01, 1.04) * | 22–28 | 1.02 (1.00, 1.03) * |
Rural b | 1 | 1.01 (0.99, 1.03) | 4–7 | 1.02 (0.99, 1.06) | 22–28 | 1.02 (1.00, 1.04) * | 8–14 | 1.04 (1.01, 1.08) * |
Insurance Type | Cold Effect | Heat Effect | ||||||
---|---|---|---|---|---|---|---|---|
Mean Temperature (Threshold: −2.5 °C) | Minimum Temperature (Threshold: −12 °C) | Mean Temperature (Threshold: 24.5 °C) | Maximum Temperature (Threshold: 31.5 °C) | |||||
Lag | RR (95% CI) | Lag | RR (95% CI) | Lag | RR (95% CI) | Lag | RR (95% CI) | |
Medicaid | 2–3 | 1.04 (1.00, 1.07) * | 15–21 | 1.11 (1.01, 1.19) * | 1 | 1.10 (1.04, 1.16) * | 1 | 1.11 (1.04, 1.19) * |
NHI | 0 | 1.01 (0.99, 1.02) | 4–7 | 1.01 (0.99, 1.03) | 2–3 | 1.01 (0.997, 1.03) | 22–28 | 1.02 (1.00, 1.03) * |
Temperate Zone | HDDs (Cold Period) (Threshold: −3.5 °C by Mean Temperature) | CDDs (Hot Period) (Threshold: 31.5 °C by Maximum Temperature) | ||
---|---|---|---|---|
Lag | RR (95% CI) | Lag | RR (95% CI) | |
0 | 1.22 (1.10, 1.35) *,a | 1 | 1.08 (1.02, 1.14) *,b | |
Cold zone c | 2–3 | 1.01 (1.00, 1.02) * | - | - |
Hot zone d | - | - | 4–7 | 1.03 (1.00, 1.06) * |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Guth, M. Associations between Temperature and Hospital Admissions for Subarachnoid Hemorrhage in Korea. Int. J. Environ. Res. Public Health 2017, 14, 449. https://doi.org/10.3390/ijerph14040449
Lee S, Guth M. Associations between Temperature and Hospital Admissions for Subarachnoid Hemorrhage in Korea. International Journal of Environmental Research and Public Health. 2017; 14(4):449. https://doi.org/10.3390/ijerph14040449
Chicago/Turabian StyleLee, Suji, and Matthias Guth. 2017. "Associations between Temperature and Hospital Admissions for Subarachnoid Hemorrhage in Korea" International Journal of Environmental Research and Public Health 14, no. 4: 449. https://doi.org/10.3390/ijerph14040449
APA StyleLee, S., & Guth, M. (2017). Associations between Temperature and Hospital Admissions for Subarachnoid Hemorrhage in Korea. International Journal of Environmental Research and Public Health, 14(4), 449. https://doi.org/10.3390/ijerph14040449