Miniaturized Monitors for Assessment of Exposure to Air Pollutants: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Particulate Matter Sensors
3.2. Gas Sensors
3.3. Accessability of Data
3.4. Impact on the Assessment of Human Exposure
4. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Brienza, S.; Galli, A.; Anastasi, G.; Bruschi, P. A Low-cost sensing system for cooperative air quality monitoring in urban areas. Sensors 2015. [Google Scholar] [CrossRef] [PubMed]
- Fishbain, B.; Lerner, U.; Castell, N.; Cole-Hunter, T.; Popoola, O.; Broday, D.M.; Iñiguez, T.M.; Nieuwenhuijsen, M.; Jovasevic-Stojanovic, M.; Topalovic, D.; et al. An evaluation tool kit of air quality micro-sensing units. Sci. Total Environ. 2017, 575, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Velasco, A.; Ferrero, R.; Gandino, F.; Montrucchio, B.; Rebaudengo, M. A mobile and low-cost system for environmental monitoring: A case study. Sensor 2016. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Tang, Y.; Zhu, W. Mobile sensor network noise reduction and recalibration using a Bayesian network. Atmos. Meas. Tech. 2016, 9, 347–357. [Google Scholar] [CrossRef]
- Pokrić, B.; Krčo, S.; Drajić, D.; Pokrić, M.; Rajs, V.; Mihajlović, Z.; Knežević, P.; Jovanović, D. Augmented reality enabled IoT services for environmental monitoring utilising serious gaming concept. J. Wirel. Mob. Netw. 2015, 6, 37–55. [Google Scholar]
- Mead, M.I.; Popoola, O.A.M.; Stewart, G.B.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J.J.; McLeod, M.W.; Hodgson, T.F.; Dicks, J.; et al. The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmos. Environ. 2013, 70, 186–203. [Google Scholar] [CrossRef]
- Mooney, D.A. Guide for Local Authorities Purchasing Air Quality Monitoring Equipment; AEA Technology Plc.: Harwell, UK, 2006. [Google Scholar]
- Antonić, A.; Marjanović, M.; Pripužić, K.; Podnar, Ž.I. A mobile crowd sensing ecosystem enabled by CUPUS: Cloud-based publish/subscribe middleware for the Internet of Things. Future Gener. Comput. Syst. 2016. [Google Scholar] [CrossRef]
- Lo Re, G.; Perri, D.; Vassallo, S.D. Urban air quality monitoring using vehicular sensor networks. Adv. Intel. Syst. Comput. 2014, 2063, 311–323. [Google Scholar]
- Sîrbu, A.; Becker, M.; Caminiti, S.; De Baets, B.; Elen, B.; Francis, L.; Gravino, P.; Hotho, A.; Ingarra, S.; Loreto, V. Participatory patterns in an international air quality monitoring initiative. PLoS ONE 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magno, M.; Jelicic, V.; Chikkadi, K.; Roman, C.; Hierold, C.; Bilas, V.; Benini, L. Low-power gas sensing using carbon nanotubes in wearable devices. IEEE Sens. J. 2016, 23, 8329–8337. [Google Scholar] [CrossRef]
- Hao, F.; Jiao, M.; Min, G.; Yang, L.T. Launching efficient participatory sensing campaign: A smart mobile device-based approach. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 2015. [Google Scholar] [CrossRef] [Green Version]
- Hao, F.; Jiao, M.; Min, G.; Yang, L.T. A trajectory-based recruitment strategy of social sensors for participatory sensing. Commun. Mag. 2014. [Google Scholar] [CrossRef]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, A.; Taronna, M.; Garramone, G.; Peruzzo, C.; Schlitt, C.; Consonni, D.; Cavallo, D.M. Comparison between personal and individual exposure to urban air pollutants. Aerosol Sci. Tech. 2010. [Google Scholar] [CrossRef]
- Esmen, N.A.; Hall, T.A. Theoretical investigation of the interrelationship between stationary and personal sampling in exposure estimation. Appl. Occup. Environ. Hyg. 2000. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, A.; Garramone, G.; Taronna, M.; Peruzzo, C.; Cavallo, D.M. Personal exposure to airborne ultrafine particles in the urban area of Milan. J. Phys. Conf. Ser. 2009. [Google Scholar] [CrossRef]
- Lonati, G.; Ozgen, S.; Ripamonti, G.; Signorini, S. Variability of black carbon and ultrafine particle concentration on urban bike routes in a mid-sized city in the Po Valley (Northern Italy). Atmosphere 2017. [Google Scholar] [CrossRef]
- Peters, J.; Theunis, J.; Van Poppel, M.; Berghmans, P. Monitoring PM10 and ultrafine particles in urban environments using mobile measurements. Aerosol Air Qual. Res. 2013. [Google Scholar] [CrossRef]
- Ragettli, M.S.; Ducret-Stich, R.E.; Foraster, M.; Morelli, X.; Aguilera, I.; Basagaña, X.; Corradi, E.; Ineichen, A.; Tsai, M.Y.; Probst-Hensch, N.; et al. Spatio-temporal variation of urban ultrafine particle number concentrations. Atmos. Environ. 2014. [Google Scholar] [CrossRef]
- Ragettli, M.S.; Corradi, E.; Braun-Fahrländer, C.; Schindler, C.; de Nazelle, A.; Jerrett, M.; Ducret-Stich, R.E.; Künzli, N.; Phuleria, H.C. Commuter exposure to ultrafine particles in different urban locations, transportation modes and routes. Atmos. Environ. 2013, 77, 376–384. [Google Scholar] [CrossRef]
- Spinazzè, A.; Cattaneo, A.; Scocca, D.R.; Bonzini, M.; Cavallo, D.M. Multi-metric measurement of personal exposure to ultrafine particles in selected urban microenvironments. Atmos. Environ. 2015. [Google Scholar] [CrossRef]
- Spinazzè, A.; Cattaneo, A.; Garramone, G.; Cavallo, D.M. Temporal variation of size-fractionated particulate matter and carbon monoxide in selected microenvironments of the Milan urban area. J. Occup. Environ. Hyg. 2013. [Google Scholar] [CrossRef] [PubMed]
- Buonanno, G.; Fuoco, F.C.; Stabile, L. Influential parameters on particle exposure of pedestrians in urban microenvironments. Atmos. Environ. 2011. [Google Scholar] [CrossRef]
- Carminati, M.; Ferrari, G.; Sampietro, M. Emerging miniaturized technologies for airborne particulate matter pervasive monitoring. Measurement 2015. [Google Scholar] [CrossRef]
- Duvall, R.M.; Long, R.W.; Beaver, M.R.; Kronmiller, K.G.; Wheeler, M.L.; Szykman, J.J. Performance evaluation and community application of low-cost sensors for ozone and nitrogen dioxide. Sensors 2016. [Google Scholar] [CrossRef] [PubMed]
- Dye, T.; Graham, A.; Hafner, H. Air sensor study design details matter. Air Waste Manag. Assoc. Mag. Environ. Manag. 2016, 66, 1–5. [Google Scholar]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castell, N.; Kobernus, M.; Liu, H.Y.; Schneider, P.; Lahoz, W.; Berre, A.J.; Noll, J. Mobile technologies and services for environmental monitoring: The citi-sense-mob approach. Urban Clim. 2015. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2. Sens. Actuators B Chem 2017. [Google Scholar] [CrossRef]
- Hasenfratz, D.; Saukh, O.; Walser, C.; Hueglin, C.; Fierz, M.; Arn, T.; Beutel, J.; Thiele, L. Deriving high-resolution urban air pollution maps using mobile sensor nodes. Pervasive Mob. Comput. 2015. [Google Scholar] [CrossRef]
- Havlik, D.; Schade, S.; Sabeur, Z.A.; Mazzetti, P.; Watson, K.; Berre, A.J.; Mon, J.L. From sensor to observation web with environmental enablers in the future internet. Sensors 2011. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, A.; Brown, A.; Barzyk, T.; Williams, R. The citizen science toolbox. A one-stop resource for air sensor technology. EPA Res. Highlighs 2014, 9, 48–49. [Google Scholar]
- McKercher, G.R.; Salmond, J.A.; Vanos, J.K. Characteristics and applications of small, portable gaseous air pollution monitors. Environ. Pollut. 2017. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA statement. PLoS Med. 2009. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.D.; Hasenfratz, D.; Saukh, O.; Fierz, M.; Hueglin, C. Statistical modelling of particle number concentration in Zurich at high spatio-temporal resolution utilizing data from a mobile sensor network. Atmos. Environ. 2016. [Google Scholar] [CrossRef]
- Wong, M.S.; Yip, T.P.; Mok, E. Development of a personal integrated environmental monitoring system. Sensor 2014. [Google Scholar] [CrossRef] [PubMed]
- Al-Ali, A.R.; Zualkernan, I.; Aloul, F. A mobile GPRS-sensor array for air pollution monitoring. Sensors 2010. [Google Scholar] [CrossRef]
- Guevara, J.; Barrero, F.; Vargas, E.; Becerra, J.; Toral, S. Environmental wireless sensor network for road traffic applications. IET Intell. Trans. Syst. 2012. [Google Scholar] [CrossRef]
- Eisenman, S.B.; Miluzzo, E.; Lane, N.D.; Peterson, R.A.; Ahn, G.; Campbell, A.T. BikeNet: A mobile sensing system for cyclist experience mapping. ACM Trans. Sens. Netw. 2009. [Google Scholar] [CrossRef]
- Fu, H.; Chen, H.; Lin, P. APS: Distributed air pollution sensing system on wireless sensor and robot networks. Comput. Commun. 2012. [Google Scholar] [CrossRef]
- Gall, E.T.; Cheung, T.; Luhung, I.; Schiavon, S.; Nazaroff, W.W. Real-time monitoring of personal exposures to carbon dioxide. Build. Environ. 2016. [Google Scholar] [CrossRef]
- Hu, S.; Wang, Y.; Huang, C.; Tseng, Y. Measuring air quality in city areas by vehicular wireless sensor networks. J. Syst. Softw. 2011. [Google Scholar] [CrossRef]
- Kanjo, E.; Benford, S.; Paxton, M.; Chamberlain, A.; Stanton Fraser, D.; Woodgate, D.; Crellin, D.; Woolard, A. MobGeoSen: Facilitating personal geosensor data collection and visualization using mobile phones. Pers. Ubiquit. Comput. 2008. [Google Scholar] [CrossRef]
- Chen, C.; Driggs Campbell, K.; Negi, I.; Iglesias, R.A.; Owens, P.; Tao, N.; Tsow, F.; Forzani, E.S. A new sensor for the assessment of personal exposure to volatile organic compounds. Atmos. Environ. 2012. [Google Scholar] [CrossRef] [PubMed]
- Negi, I.; Tsow, F.; Tanwar, K.; Zhang, L.; Iglesias, R.A.; Chen, C.; Rai, A.; Forzani, E.S.; Tao, N. Novel monitor paradigm for real-time exposure assessment. J. Expo. Sci. Environ. Epidemiol. 2011. [Google Scholar] [CrossRef] [PubMed]
- Duvall, R.M.; Long, R.W.; Beaver, M.R.; Szykman, J.J.; Kronmiller, K.G.; Wheeler, M.L. Use of air quality sensors during DISCOVER-AQ. Air Waste Assoc. Mag. Environ. Manag. 2016, 8, 12–17. [Google Scholar]
- Spinazzè, A.; Fanti, G.; Borghi, F.; Del Buono, L.; Campagnolo, D.; Rovelli, S.; Cattaneo, A.; Cavallo, D.M. Field comparison of instruments for exposure assessment of airborne ultrafine particles and particulate matter. Atmos. Environ. 2017. [Google Scholar] [CrossRef]
- Knox, A.; Mykhaylova, N.; Evans, G.J.; Lee, C.J.; Karney, B.; Brook, J.R. The expanding scope of air pollution monitoring can facilitate sustainable development. Sci. Total Environ. 2013. [Google Scholar] [CrossRef] [PubMed]
- Bonney, R.; Shirk, J.L.; Phillips, T.B.; Wiggins, A.; Ballard, H.L.; Miller-Rushing, A.J.; Parrish, J.K. Next steps for citizen science. Citiz. Sci. 2014. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.; Mendez, D. Pollution spots: A novel method for air pollution monitoring. Air Pollut. 2015. [Google Scholar] [CrossRef]
- Zeiger, F.; Boufidis, Z. Towards future internet services through crowdsourcing-based sensor platforms. Int. J. Commun. Netw. Distrib. Syst. 2013. [Google Scholar] [CrossRef]
Database | Search Query |
---|---|
ISI Web of Knowledge | (TS = (“air quality”)) and (TS = (“sensor network” or “wearable sens*” or “crowd sensing” or “participatory sensing” or “mobile sensor node” or “low cost sensor” or “citizen science”)) |
PubMed | (air quality) and ((sensor network) or (wearable sens*) or (crowd sensing) or (participatory sensing) or (mobile sensor node) or (low cost sensor) or (citizen science)) |
Scopus | (TITLE-ABS-KEY (“air quality”)) and (TITLE-ABS-KEY (“sensor network” or “wearable sens*” or “crowd sensing” or “participatory sensing” or “mobile sensor node” or “low cost sensor” or “citizen science”)) |
Publication Year | Sum of Papers | Papers Considered in This Review |
---|---|---|
(1977) | 1 | 0 |
2004 | 1 | 0 |
2005 | 0 | 0 |
2006 | 5 | 0 |
2007 | 0 | 0 |
2008 | 12 | 1 |
2009 | 6 | 1 |
2010 | 11 | 1 |
2011 | 12 | 2 |
2012 | 17 | 3 |
2013 | 26 | 0 |
2014 | 39 | 3 |
2015 | 57 | 3 |
2016 | 56 | 3 |
Reference | Study | Pollutant | Sensor/Instrument | Dimensions and Weight | Measuring Principle | Operational Range | Sensitivity |
---|---|---|---|---|---|---|---|
PM Sensors | |||||||
[37] | Wong et al., 2014 | PM2.5 | GP2Y1010AU0F (Sharp) | 89 × 113 mm | Light scattering | n.a | n.a |
Gas Sensors | |||||||
[38] | Al- Ali et al., 2010 | CO | All sensors: Alphasense | n.a | All senors: electrochemical | CO: 0–1000 ppm | CO: <1.5 ppm |
NO2 | NO2: 0–20 ppm | NO2: 0.02 ppm | |||||
SO2 | SO2: 0–20 ppm | SO2: <0.1 ppm | |||||
[29] | Castell et al., 2015 | O3 | All sensors: Alphasense (Series B) | All sensors: 32 mm (sensor diameter) | All sensors: electrochemical | All sensors: concentration typically found in urban environment | n.a |
CO | |||||||
CO2 | |||||||
NO | |||||||
NO2 | |||||||
SO2 | |||||||
[45] | Chen et al., 2012 | VOCs | n.a | Not much larger than common smartphone (<300 g) | n.a | 4 ppb–1000 ppb | Resolution < 4 ppb |
[40] | Eisenman et al., 2009 | CO2 | 7001 CO2/Temperature monitor (Telaire) | 150 × 70 mm | Absorption Infrared | 0–2500 ppm or 0–4000 ppm | ±1 ppm |
[41] | Fu et al., 2012 | CO2 | K-30 Probe (CO2 meter) | 80 × 60 × 30 mm | Non Dispersive Infrared (NDIR) | n.a | n.a |
[42] | Gall et al., 2016 | CO2 | CM-0018 (CO2 Meter) | 146 × 91 × 33 mm | Non Dispersive Infrared (NDIR) | 0–10,000 ppm | n.a |
[39] | Guevara et al., 2012 | CO | MQ-7 Carmon Monoxide Semiconductor | 16 mm (sensor diameter) | Semiconductor | 10–10,000 ppm | n.a |
[43] | Hu et al., 2011 | CO2 | H-550 EV | 38 × 32 × 12 mm (sensor) | Non Dispersive Infrared (NDIR) | 0–5000 ppm | n.a |
[44] | Kanjo et al., 2008 | CO | n.a | n.a | n.a | n.a | n.a |
[9] | Lo Re et al., 2014 | O3 | n.a | n.a | n.a | n.a | n.a |
CO | |||||||
CO2 | |||||||
NO2 | |||||||
[6] | Mead et al., 2013 | CO | CO: CO-AF (Alphasense) | All sensors: 183 × 95 × 35 mm (445 g) | All sensors: Electrochemical | n.a | n.a |
NO | NO: NO-A1 (Alphasense) | ||||||
NO2 | NO2: NO2-A1 (Alphasense) | ||||||
[46] | Negi et al., 2011 | Hydrocarbon and acid | n.a | Dimension comparable with a common smartphone (<250 g) | n.a | n.a | n.a |
PM and Gas Sensors | |||||||
[31] | Hasenfratz et al., 2015 | UFP | UFP: DiSCsMini (Matter Aerosol) | UFP: 40 × 90 × 180 mm (700 g) | UFP: unipolar charger | UFP: 103–106 particle/cm3 | n.a |
O3 | O3: MiCS-OZ-14 (e2v) | O3: n.a | O3: semiconductor | O3: 20–200 ppb | |||
CO | CO: CO-B4 (Alphasense) | CO: 32 mm(sensor’s diameter) | CO: electrochemical | CO: n.a | |||
NO2 | NO2: NO2-B4 (Alphasense) | NO2: 32 mm (sensor diameter) | NO2: electrochemical | NO2: n.a | |||
[36] | Mueller et al., 2016 | UFP | UFP: DiSCsMini (Matter Aerosol) | UFP: 40 × 90 × 180 mm | UFP: Unipolar diffusion charger | UFP: 103–106 particle/cm3 | n.a |
O3 | O3: MiCS-OZ-14 (e2v) | O3: n.a | O3: electrochemical | O3: 20–200 ppb | |||
CO | CO: CO-B4 (Alphasense) | CO: 32 mm (sensor diameter) | CO: electrochemical | CO: n.a | |||
[5] | Pokrić et al., 2015 | PM | PM: OPC-N1 (Alphasense) | PM: n.a | O3: electrochemical | O3: 0–2 ppm | n.a |
O3 | O3: O3-B4 (Alphasense) | O3: 32 mm | CO: electrochemical | CO: 0–50 ppm | |||
CO | CO: CO-B4 (Alphasense) | CO: 32 mm | CO2: infrared | CO2: 0–5000 ppm | |||
CO2 | CO2: CO2-IRC-AT (Alphasense) | CO2: 20 mm | NO: electrochemical | NO: 0–20 ppm | |||
NO | NO: NO-B4 (Alphasense) | NO: 32 mm | |||||
[3] | Velasco et al., 2016 | PM10 | GPY21010AU0F (Sharp) | PM10: 46 × 30 × 17 mm | PM10: Light scattering | PM10: 0–0.5 mg/m3 | PM10: 5 V (0.1 mg/m3) |
O3 | MiCS-2610 (e2v Technologies Ltd) | O3: 9 mm | O3: n.a | O3: 10–1000 ppb | O3: 2–4 ohm |
Study | GPS | Wireless | Application |
---|---|---|---|
PM Sensors | |||
Wong et al. [37] | Yes | Yes | Yes |
Gas Sensors | |||
Al-Ali et al. [38] | Yes | Yes | Yes |
Castell et al. [29] | Yes | Yes | Yes |
Chen et al. [45] | Yes | Yes | Yes |
Eisenman et al. [40] | Yes | Yes | Yes |
Fu et al. [41] | Yes | Yes | Yes |
Gall et al. [42] | No | No | No |
Guevara et al. [39] | Yes | Yes | Yes |
Hu et al. [43] | Yes | Yes | No |
Kanjo et al. [44] | Yes | Yes | Yes |
Lo Re et al. [9] | Yes | Yes | No |
Mead et al. [6] | Yes | No | No |
Negi et al. [46] | No | Yes | Yes |
PM and Gas Sensors | |||
Hasenfratz et al. [31] | Yes | Yes | No |
Mueller et al. [36] | Yes | No | No |
Pokrić et al. [5] | Yes | Yes | Yes |
Velasco et al. [3] | Yes | Yes | No |
Disadvantages |
MMs seemed to be less accurate as compared with reference methods |
Performance and reliability of MMs have yet to be fully evaluated |
Advantages |
MMs have the capability of providing continuous and real-time data |
Data acquired via MMs are characterized by high spatial resolution |
Data acquired via MMs are characterized by high temporal resolution |
MMs can potentially be used in different application (indoor/outdoor air quality monitoring; community/individual exposure) |
MMs can adapt to different experimental designs |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borghi, F.; Spinazzè, A.; Rovelli, S.; Campagnolo, D.; Del Buono, L.; Cattaneo, A.; Cavallo, D.M. Miniaturized Monitors for Assessment of Exposure to Air Pollutants: A Review. Int. J. Environ. Res. Public Health 2017, 14, 909. https://doi.org/10.3390/ijerph14080909
Borghi F, Spinazzè A, Rovelli S, Campagnolo D, Del Buono L, Cattaneo A, Cavallo DM. Miniaturized Monitors for Assessment of Exposure to Air Pollutants: A Review. International Journal of Environmental Research and Public Health. 2017; 14(8):909. https://doi.org/10.3390/ijerph14080909
Chicago/Turabian StyleBorghi, Francesca, Andrea Spinazzè, Sabrina Rovelli, Davide Campagnolo, Luca Del Buono, Andrea Cattaneo, and Domenico M. Cavallo. 2017. "Miniaturized Monitors for Assessment of Exposure to Air Pollutants: A Review" International Journal of Environmental Research and Public Health 14, no. 8: 909. https://doi.org/10.3390/ijerph14080909
APA StyleBorghi, F., Spinazzè, A., Rovelli, S., Campagnolo, D., Del Buono, L., Cattaneo, A., & Cavallo, D. M. (2017). Miniaturized Monitors for Assessment of Exposure to Air Pollutants: A Review. International Journal of Environmental Research and Public Health, 14(8), 909. https://doi.org/10.3390/ijerph14080909