Solar Radiation Exposure and Outdoor Work: An Underestimated Occupational Risk
Abstract
:1. Introduction
- (1)
- Ultraviolet radiation (UVR), composed of UV-C (wavelength; λ = 100–280 nm), UV-B (λ = 280–315 nm), and UV-A (λ = 315–400 nm);
- (2)
- Visible radiation (λ = 400–780 nm);
- (3)
- Infrared radiation (IR), further divided into IR-A (λ = 780–1400 nm), IR-B (λ = 1400–3000 nm), and IR-C (λ = 1 mm–3000 nm).
2. Solar Radiation: Mechanisms of Interaction and Pathophysiology
3. Main Factors Influencing Eye and Skin Solar Ultraviolet Radiation Exposure
3.1. Environmental Factors
- (1)
- Atmospheric composition: In addition to ozone, other gaseous and pollutants particles in the atmosphere may interact with UV rays, inducing various optic phenomena, such as absorption, reflection, refraction, and diffusion. The presence of pollutants in the troposphere usually reduces UVR exposure, but these phenomena can also increase the exposure in particular cases.
- (2)
- Angle of the sun on the horizon, which depends on:
- Hour of the day: In summer, about 20–30% of the total exposure to UVR occurs between 11:00 a.m. and 1:00 p.m., and 75% between 9:00 a.m. and 3:00 p.m. Season: In temperate countries, there are significant seasonal variations in exposure, whereas these changes are smaller closer to the equator.
- Latitude: The cumulative UVR exposure decreases with increasing distance from the Equator.
- (3)
- Altitude: UVR exposure increases with altitude. Approximately every 300 m, the solar UV ability in inducing sunburns increases 4%.
- (4)
- Clouds: Solar UVR is approximately reduced by 50% with complete cloud cover, whereas incomplete coverage is not able to adequately shield UVR, where only 10% is usually blocked by the clouds. In some cases, diffusion, refraction, and reflection phenomena can even increase the amount of UVR.
- (5)
- Reflectance: Reflection of surrounding surfaces can be relevant for individual solar UV exposure, possibly increasing the exposure of parts of the body usually protected from direct UV-rays, such as the eyes. Reflectance is high for white or clear surfaces, such as fresh snow, reaching values in the order of 0.8–0.9, whereas grass and foliage reflects only about 2% or less of the UVR, and sand reflects up to 15–20%. The reflection of water depends on various factors, including the sun angle, ranging from less than 10% to 65% or more in case of very low angle on the horizon. Another term used to describe this phenomenon is “albedo”. A particular aspect of albedo is the “Coroneo effect”: the rays coming from the temporal side of the face can be refracted by the corneal dome in the nasal corneal limbus and in the nasal and inferonasal part of the lens [4,11].
3.2. Individual Factors
3.3. Occupational Factors
4. Measures and Methods to Evaluate Solar Radiation Exposure in Workers
5. Solar Ultraviolet Radiation Exposure Levels in Outdoor Workers
6. Adverse Health Effects of Solar Radiation Exposure in Outdoor Workers
6.1. General Overview of the Adverse Health Effects Related to Solar Radiatio Exposure
6.2. Long-Term Solar Radiation Exposure and the Eye: Focus on Outdoor Work and Pterygium, Cataract, and Macular Degeneration
6.2.1. Pterygium
6.2.2. Cataract
6.2.3. Macular Degeneration
6.3. Long-Term Solar Radiation Exposure and Skin: Focus on OW and Skin Cancers (Non-Melanoma Skin Cancer, Including Actinic Keratosis and Cutaneous Malignant Melanoma)
6.3.1. Non-Melanoma Skin Cancers (Including Actinic Keratosis)
6.3.2. Malignant Melanoma
7. Prevention of Solar Radiation Exposure Risk in Outdoor Workers
- (1)
- Collective Technical/Organizational Measures. These include artificial or natural coverage and shading of the workplace; organization of specific indoor breaks, or at least breaks in UV-shielded areas during work and lunch, to reduce exposure during the central hours of the day; re-organization of working activities in order to avoid (or limit) outdoor work during the central hours of the day (e.g., organizing specific work activities in UV shielded areas, starting work earlier in the morning, prolonging lunch breaks, etc.), especially in the periods of the year with the highest UV indexes [3,4,15,16].
- (2)
- Health and safety information and training. As the risk of developing adverse effects increases with age and with the cumulative UV dose received, training and information activities should be implemented as early as possible, possibly in all schools preparing for outdoor professions and all outdoor workers. Contents of these prevention initiatives should include the mechanisms and effects of acute and chronic SR exposure, he possible preventive measures to be adopted, as well as the importance of auto-examination and health surveillance, and of periodic dermatologic and ophthalmologic examinations. The adoption of preventive materials as fact-sheets and signals, recommending, for example, to possibly avoid exposure when UVI is higher than 3 and reminding workers to protect themselves adequately with clothing, hats, UV filtered eyeglasses, and sunscreen, can be suggested. Information on the reflection indexes of the surrounding surfaces should be important, especially for the protection of the eye [3,4,15,16,17,21,22].
- (3)
- Personal protection. Sunglasses for occupational use must fulfill standard requirements in terms of both filtering power of the lenses and shape of the sunglasses. They have to be marked, reporting their technical characteristics, and their lenses need to be adequately large and adherent, with large lateral bars. Appropriate clothing should include long-sleeved shirts and trousers from light-proof fabrics (cotton wool or synthetic fibers) with high Ultraviolet Protective Factors (UPF: recommended 50+). Adequate headgear would include broad-brimmed helmets or broad-brimmed hats supplied with sun shields and neck guard. Waterproof sunscreens (recommended SPF 50+) must be applied on all uncovered skin areas (and under the clothes if they do not have a sufficient UPF). An abundant application at least 20 min before exposure is recommended, as well as frequent re-applications. A new application every two hours is recommended when UVI is above 3 [3,4,15,16,17,21,22].
- (4)
- Health surveillance. Occupational physicians should perform pre-employment medical examinations and periodic medical examinations of outdoor workers to adequately prevent adverse long-term effects to eyes and the skin. Of particular relevance is the recognition of individual conditions inducing a particular sensitivity to UV risk, such as photo-type 1 or 2, prolonged use of photosensitive drugs, wounds, suspected skin lesions, and presence of UV sensitive skin diseases (e.g., psoriasis). For the eye, lens opacities, corneal lesions, etc., would induce photosensitivity. A collaboration with dermatologists and ophthalmologists, or with other specialists, would be useful in specific cases. When UV-related diseases are diagnosed in outdoor workers, reporting these diseases to the compensation authorities is crucial, not only for the legal recognition of the disease for the individual worker, but also to uncover the real dimension of the emerging issue of UV-related occupational diseases and for the development of better prevention of this underestimated work-related risk [3,4,15,16,17].
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gobba, F.; Modenese, A.; Occhionero, V. Bernardino Ramazzini’s intuitions and modern occupational medicine. Med. Secoli 2011, 23, 443–463. [Google Scholar] [PubMed]
- Internationals Standard Organization and Commision Internationale d’Eclairage ISO 17166:1999(E) CIE S 007/E-1998. Erythema Reference Action Spectrum and Standard Erythema Dose. Spectre D’action Érythémale de Référence et Dose Érythémale Normalisée. Geneva, 1999. Available online: http://hsevi.ir/RI_Standard/File/3755 (accessed on 26 July 2018).
- European Commission, Directorate General for Employment, Social Affairs and Inclusion, Unit B.3. Non-Binding Guide to Good Practice for Implementing Directive 2006/25/EC “Artificial Optical Radiation”. Publications Office of the European Union: Luxembourg, 2011. Available online: https://www.av.se/globalassets/filer/publikationer/foreskrifter/optisk-stralning-eu-guide-eng.pdf (accessed on 26 July 2018).
- International Commission on Non-Ionizing Radiation Protection. ICNIRP statement--Protection of workers against ultraviolet radiation. Health Phys. 2010, 99, 66–87. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). Radiation Volume 100 D. A Review of Human. Carcinogens; WHO Press: Lyon, France, 2012; Available online: http://monographs.iarc.fr/ENG/Monographs/vol100D/mono100D.pdf (accessed on 26 July 2018).
- International Commission on Non-Ionizing Radiation Protection. Guidelines on limits of exposure to incoherent visible and infrared radiation. Health Phys. 2013, 105, 74–96. Available online: https://www.icnirp.org/cms/upload/publications/ICNIRPVisible_Infrared2013.pdf (accessed on 26 July 2018).
- Bunsen, R.W.; Roscoe, H.E. Photochemical Researches—Part V. On the Measurement of the Chemical Action of Direct and Diffuse Sunlight. Proc. R. Soc. 1862, 12, 306. [Google Scholar] [CrossRef]
- Fisher, G.J.; Wang, Z.Q.; Datta, S.C.; Varani, J.; Kang, S.; Voorhees, J.J. Pathophysiology of premature skin aging induced by ultraviolet light. N. Engl. J. Med. 1997, 337, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Moan, J.; Juzeniene, A. Solar radiation and human health. J. Photochem. Photobiol. B 2010, 101, 109–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearse, A.D.; Gaskell, S.A.; Marks, R. Epidermal changes in human skin following irradiation with either UVB or UVA. J. Investig. Dermatol. 1987, 88, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Coroneo, M. Ultraviolet radiation and the anterior eye. Eye Contact Lens 2011, 37, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Sliney, D.H. How light reaches the eye and its components. Int. J. Toxicol. 2002, 21, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Tenkate, T.D. Ocular ultraviolet radiation exposure of welders. Scand. J. Work Environ. Health 2017, 43, 287–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reidenbach, H.D.; Hofmann, J.; Dollinger, K. Active Physiological Protective Reactions should be used as a Prudent Precaution Safety Means in the Application of Low-Power Laser Radiation. IFMBE Proc. 2006, 14, 2690–2691. [Google Scholar] [CrossRef]
- Alfonso, J.H.; Bauer, A.; Bensefa-Colas, L.; Boman, A.; Bubas, M.; Constandt, L.; Crepy, M.N.; Goncalo, M.; Macan, J.; Mahler, V.; et al. Minimum standards on prevention, diagnosis and treatment of occupational and work-related skin diseases in Europe–position paper of the COST Action StanDerm (TD 1206). J. Eur. Acad. Dermatol. Venereol. 2017, 31 (Suppl. 4), 31–43. [Google Scholar] [CrossRef]
- Modenese, A.; Bisegna, F.; Borra, M.; Grandi, C.; Gugliermetti, F.; Militello, A.; Gobba, F. Outdoor work and solar radiation exposure: Evaluation method for epidemiological studies. Med. Pr. 2016, 67, 577–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich, C.; Salavastru, C.; Agner, T.; Bauer, A.; Brans, R.; Crepy, M.N.; Ettler, K.; Gobba, F.; Goncalo, M.; Imko Walczuk, B.; et al. The European Status Quo in legal recognition and patient-care services of occupational skin cancer. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 46–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzpatrick, T.B. The validity and practicality of sun reactive skin types I through VI. Arch. Dermatol. 1988, 124, 869–871. [Google Scholar] [CrossRef] [PubMed]
- European Agency for Safety and Health at Work. Outlook 1. New and Emerging Risks in Occupational Safety and Health; European Risk Observatory; Office for Official Publications of the European Communities: Luxembourg, 2009; Available online: https://osha.europa.eu/en/node/6842/file_view (accessed on 26 July 2018).
- Mirabelli, D.; Kauppinen, T. Occupational exposures to carcinogens in Italy: An update of CAREX database. Int. J. Occup. Environ. Health 2005, 11, 53–63. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; World Meteorological Organization; United Nations Environment Programme and the International Commission on Non-Ionizing Radiation Protection. Global Solar UV Index: A Practical Guide. Geneva, 2002. Available online: http://www.who.int/uv/publications/en/UVIGuide.pdf (accessed on 26 July 2018).
- Gies, P.; van Deventer, E.; Green, A.C.; Sinclair, C.; Tinker, R. Review of the Global Solar UV Index 2015 Workshop Report. Health Phys. 2018, 114, 84–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commission Internationale d’Eclairage. Sensitivity of Human Skin to Ultraviolet Radiation, Expressed as Minimal Erythema Dose (MED); CIE: Vienna, Austria, 2014; ISBN 978-3-902842-34-3. [Google Scholar]
- Hermann, C. CIE publ. 125–1997, Standard erythema dose, a review and CIE DS 007.3/E Erythema reference action spectrum and standard erythema dose. Color. Res. Appl. 1998, 23, 124–125. [Google Scholar] [CrossRef]
- Rosenthal, F.S.; West, S.K.; Munoz, B.; Emmett, E.A.; Strickland, P.T.; Taylor, H.R. Ocular and facial skin exposure to ultraviolet radiation in sunlight: A personal exposure model with application to a worker population. Health Phys. 1991, 61, 77–86. [Google Scholar] [CrossRef]
- McCarty, C.A.; Lee, S.E.; Livingston, P.M.; Bissinella, M.; Taylor, H.R. Ocular exposure to UV-B in sunlight: The Melbourne visual impairment project model. Bull. World Health Organ. 1996, 74, 353–360. [Google Scholar] [PubMed]
- Wittlich, M.; Westerhausen, S.; Kleinespel, P.; Rifer, G.; Stöppelmann, W. An approximation of occupational lifetime UVR exposure: Algorithm for retrospective assessment and current measurements. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 27–33. [Google Scholar] [CrossRef] [PubMed]
- American Conference of Governmental Industrial Hygienists (ACGIH). 2014 TLVs and BEIs; ACGIH: Cincinnati, OH, USA, 2014; ISBN 978-1-607260-72-1. [Google Scholar]
- Gies, P.; Wright, J. Measured Solar Ultraviolet Radiation Exposures of Outdoor Workers in Queensland in the Building and Construction Industry. Photochem. Photobiol. 2003, 78, 342–348. [Google Scholar] [CrossRef]
- Milon, A.; Sottas, P.E.; Bulliard, J.L.; Vernez, D. Effective exposure to solar UV in building workers: Influence of local and individual factors. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.A.; Cañada, J.; Moreno, J.C. Solar UV exposure in construction workers in Valencia, Spain. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Hammond, V.; Reeder, A.I.; Gray, A. Patterns of real-time occupational ultraviolet radiation exposure among a sample of outdoor workers in New Zealand. Public Health 2009, 123, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Boniol, M.; Koechlin, A.; Boniol, M.; Valentini, F.; Chignol, M.C.; Doré, J.F.; Bulliard, J.L.; Milon, A.; Vernez, D. Occupational UV exposure in French outdoor workers. J. Occup. Environ. Med. 2015, 57, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Schmalwieser, A.W.; Cabaj, A.; Schauberger, G.; Rohn, H.; Maier, B.; Maier, H. Facial Solar UV Exposure of Austrian Farmers During Occupation. Photochem. Photobiol. 2010, 86, 1404–1413. [Google Scholar] [CrossRef] [PubMed]
- Siani, A.M.; Casale, G.R.; Sisto, R.; Colosimo, A.; Lang, C.A.; Kimlin, M.G. Occupational Exposures to Solar Ultraviolet Radiation of Vineyard Workers in Tuscany (Italy). Photochem. Photobiol. 2011, 87, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.A.; Cañada, J.; Moreno, J.C.; Solar Radiation Group. Erythemal Ultraviolet Exposure in Two Groups of Outdoor Workers in Valencia, Spain. Photochem. Photobiol. 2009, 85, 1468–1473. [Google Scholar] [CrossRef] [PubMed]
- Gies, P.; Glanz, K.; O’Riordan, D.; Elliott, T.; Nehl, E. Measured occupational solar UVR exposures of lifeguards in pool settings. Am. J. Ind. Med. 2009, 52, 645–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, R.; McMichael, T.; Smith, W.; Armstrong, B. Environmental Burden of Disease Series, No. 13. Solar Ultraviolet Radiation: Global Burden of Disease from Solar Ultraviolet Radiation; Prüss-Üstün, A., Zeeb, H., Mathers, C., Repacholi, M., Eds.; World Health Organization: Geneva, Switzerland, 2006; Available online: http://www.who.int/uv/health/solaruvradfull_180706.pdf (accessed on 26 July 2018).
- Gobba, F.; Dall’Olio, E.; Modenese, A.; De Maria, M.; Campi, L.; Cavallini, G.M. Work-Related Eye Injuries: A Relevant Health Problem. Main Epidemiological Data from a Highly-Industrialized Area of Northern Italy. Int. J. Environ. Res. Public Health 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Chui, J.; Di Girolamo, N.; Wakefield, D.; Coroneo, M.T. The pathogenesis of pterygium: Current concepts and their therapeutic implications. Ocul. Surf. 2008, 6, 24–43. [Google Scholar] [CrossRef]
- Hill, J.C.; Maske, R. Pathogenesis of pterygium. Eye 1989, 3, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Doughty, M.J.; Oblak, E. A clinical assessment of the anterior eye in arc welders. Clin. Exp. Optom. 2005, 88, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Taylor, H.R. The prevalence of corneal disease and cataracts in Australian aborigines in Northwestern Australia. Aust. J. Ophthalmol. 1980, 8, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Modenese, A.; Gobba, F. Occupational Exposure to Solar Radiation at Different Latitudes and Pterygium: A Systematic Review of the Last 10 Years of Scientific Literature. Int. J. Environ. Res. Public Health 2017, 15. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.B.; Kim, S.Y.; Park, Y.G.; Han, K.D.; Kim, J.W.; Chae, H.S.; Lee, Y.C. Evaluation of socioeconomic status as a risk factor of pterygium using the Korean National Health and Nutrition Examination Survey 2010 to 2011. Medicine 2017, 96, e6343. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, S.; Mai, J.; Xu, K.; Sun, Y.; Song, Z.; Jin, D.; Wang, H.; Liu, P. Prevalence of and risk factors for pterygia in a rural northern Chinese population. Ophthalmic Epidemiol. 2014, 21, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.Y.; Kim, S.H.; Chuck, R.S.; Lee, J.K.; Park, C.Y. Risk Factors for Pterygium in Korea: The Korean National Health and Nutrition Examination Survey V, 2010-2012. Medicine 2015, 94, e1258. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.E.; Kim, S.; Paik, J.S.; Kim, H.S.; Na, K.S. Association between pterygium and obesity status in a South Korean population. Medicine 2016, 95, e5664. [Google Scholar] [CrossRef] [PubMed]
- Viso, E.; Gude, F.; Rodríguez-Ares, M.T. Prevalence of pinguecula and pterygium in a general population in Spain. Eye 2011, 25, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; You, Q.S.; Xu, L.; Ma, K.; Wang, Y.X.; Yang, H.; Jonas, J.B. 10-year incidence and associations of pterygium in adult Chinese: The Beijing Eye Study. Investig. Ophthalmol. Vis. Sci. 2013, 54, 1509–1514. [Google Scholar] [CrossRef] [PubMed]
- Achigbu, E.; Ezepue, U.F. Prevalence and severity of pterygium among commercial motorcycle riders in south eastern Nigeria. Ghana Med. J. 2014, 48, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Anbesse, D.H.; Kassa, T.; Kefyalew, B.; Tasew, A.; Atnie, A.; Desta, B. Prevalence and associated factors of pterygium among adults living in Gondar city, Northwest Ethiopia. PLoS ONE 2017, 12, e0174450. [Google Scholar] [CrossRef] [PubMed]
- Ang, M.; Li, X.; Wong, W.; Zheng, Y.; Chua, D.; Rahman, A.; Saw, S.M.; Tan, D.T.; Wong, T.Y. Prevalence of and racial differences in pterygium: A multiethnic population study in Asians. Ophthalmology 2012, 119, 1509–1515. [Google Scholar] [CrossRef] [PubMed]
- Asokan, R.; Venkatasubbu, R.S.; Velumuri, L.; Lingam, V.; George, R. Prevalence and associated factors for pterygium and pinguecula in a South Indian population. Ophthalmic Physiol. Opt. 2012, 32, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Cajucom-Uy, H.; Tong, L.; Wong, T.Y.; Tay, W.T.; Saw, S.M. The prevalence of and risk factors for pterygium in an urban Malay population: The Singapore Malay Eye Study (SiMES). Br. J. Ophthalmol. 2010, 94, 977–981. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.L.; Lai, C.H.; Wu, P.L.; Wu, P.C.; Chou, T.H.; Weng, H.H. The epidemiology of patients with pterygium in southern Taiwanese adults: TheChiayi survey. Taiwan J. Ophthalmol. 2013, 3, 58–61. [Google Scholar] [CrossRef]
- Cherian, J.; Singh, Z.; Bazroy, J.; Purty, A.J.; Natesan, M.; Chavada, V.K. Study of morbidity pattern among salt workers in marakkanam, Tamil Nadu, India. J. Clin. Diagn. Res. 2015, 9, LC01-3. [Google Scholar] [CrossRef] [PubMed]
- Coutts, S.J.; Coombes, A. Pterygium: Prevalence and severity in an Amazonian ophthalmic setting, Brazil. Rev. Bras. Oftalmol. 2012, 71, 372–376. [Google Scholar] [CrossRef]
- Li, L.; Zhong, H.; Tian, E.; Yu, M.; Yuan, Y.; Yang, W.; Wei, T.; Cha, X.; Li, X.; Li, J.; et al. Five-year incidence and predictors for pterygium in a rural community in China: The yunnan minority eye study. Cornea 2015, 34, 1564–1568. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.D.; Miles, K.; Brinks, M.V. Prevalence of Pterygia in Hawaii: Examining Cumulative Surfing Hours as a Risk Factor. Ophthalmic Epidemiol. 2016, 23, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Malekifar, P.; Esfandiari, H.; Behnaz, N.; Javadi, F.; Azish, S.; Javadi, M.; Kalantarion, M. Risk factors for pterygium in Ilam Province, Iran. J. Ophthalmic Vis. Res. 2017, 12, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Marmamula, S.; Khanna, R.C.; Rao, G.N. Population-based assessment of prevalence and risk factors for pterygium in the South Indian state of Andhra Pradesh: The Andhra Pradesh eye disease study. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5359–5366. [Google Scholar] [CrossRef] [PubMed]
- Nemesure, B.; Wu, S.Y.; Hennis, A.; Leske, M.C. Nine-Year Incidence and Risk Factors for Pterygium in the Barbados Eye Studies. Ophthalmology 2008, 115, 2153–2158. [Google Scholar] [CrossRef] [PubMed]
- Rezvan, F.; Hashemi, H.; Emamian, M.H.; Kheirkhah, A.; Shariati, M.; Khabazkhoob, M.; Fotouhi, A. The prevalence and determinants of pterygium and pinguecula in an urban population in Shahroud, Iran. Acta Med. Iran. 2012, 50, 689–696. [Google Scholar] [PubMed]
- Sherwin, J.C.; Hewitt, A.W.; Kearns, L.S.; Griffiths, L.R.; Mackey, D.A.; Coroneo, M.T. The association between pterygium and conjunctival ultraviolet autofluorescence: The Norfolk Island Eye Study. Acta Ophthalmol. 2013, 91, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Shiroma, H.; Higa, A.; Sawaguchi, S.; Iwase, A.; Tomidokoro, A.; Amano, S.; Araie, M. Prevalence and Risk Factors of Pterygium in a Southwestern Island of Japan: The Kumejima Study. Am. J. Ophthalmol. 2009, 148, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Tano, T.; Ono, K.; Hiratsuka, Y.; Otani, K.; Sekiguchi, M.; Konno, S.; Kikuchi, S.; Onishi, Y.; Takegami, M.; Yamada, M.; et al. Prevalence of pterygium in a population in Northern Japan: The Locomotive Syndrome and Health Outcome in Aizu Cohort Study. Acta Ophthalmol. 2013, 91, e232–e236. [Google Scholar] [CrossRef] [PubMed]
- West, S.; Muñoz, B. Prevalence of pterygium in Latinos: Proyecto VER. Br. J. Ophthalmol. 2009, 93, 1287–1290. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Cha, X.; Wei, T.; Lin, X.; Li, X.; Li, J.; Cai, N.; Li, J.; Su, X.; Yang, Y.; et al. Prevalence of and risk factors for pterygium in rural adult Chinese populations of the Bai nationality in Dali: The Yunnan minority eye study. Investig. Ophthalmol. Vis. Sci. 2012, 53, 6617–6621. [Google Scholar] [CrossRef] [PubMed]
- Salagar, K.M.; Biradar, K.G. Conjunctival autograft in primary and recurrent pterygium: A study. J. Clin. Diagn. Res. 2013, 7, 2825–2827. [Google Scholar] [CrossRef] [PubMed]
- Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 2012, 96, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Lofgren, S. Solar ultraviolet radiation cataract. Exp. Eye Res. 2017, 156, 112–116. [Google Scholar] [CrossRef] [PubMed]
- West, S. Ocular ultraviolet B exposure and lens opacities: A review. J. Epidemiol. 1999, 9, 97–101. [Google Scholar] [CrossRef]
- Hall, A.B.; Thompson, J.R.; Deane, J.S.; Rosenthal, A.R. LOCS III versus the Oxford clinical cataract classification and grading system for the assessment of nuclear, cortical and posterior subcapsular cataract. Ophthalmic Epidemiol. 1997, 4, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Thylefors, B.; Chylack, L.T., Jr.; Konyama, K.; Sasaki, K.; Sperduto, R.; Taylor, H.R.; West, S.; WHO Cataract Grading Group. A simplified cataract grading system. Ophthalmic Epidemiol. 2002, 9, 83–95. [Google Scholar] [CrossRef] [PubMed]
- McCarty, C.A.; Taylor, H.R. A review of the epidemiologic evidence linking ultraviolet radiation and cataracts. Dev. Ophthalmol. 2002, 35, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Modenese, A.; Gobba, F. Cataract frequency and subtypes involved in workers assessed for their solar radiation exposure: A systematic review. Acta Ophthalmol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Mukesh, B.N.; Le, A.; Dimitrov, P.N.; Ahmed, S.; Taylor, H.R.; McCarty, C.A. Development of cataract and associated risk factors: The Visual Impairment Project. Arch. Ophthalmol. 2006, 124, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Neale, R.E.; Purdie, J.L.; Hirst, L.W.; Green, A.C. Sun exposure as a risk factor for nuclear cataract. Epidemiology 2003, 14, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Valero, M.; Fletcher, A.E.; de Stavola, B.L.; Chaques-Alepuz, V. Years of sunlight exposure and cataract: A case-controlstudy in a Mediterranean population. BMC Ophthalmol. 2007, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Rim, T.H.; Kim, M.H.; Kim, W.C.; Kim, T.I.; Kim, E.K. Cataract subtype risk factors identified from the Korea National Health and Nutrition Examination survey 2008–2010. BMC Ophthalmol. 2014, 14, 4. [Google Scholar] [CrossRef] [PubMed]
- Theodoropoulou, S.; Theodossiadis, P.; Samoli, E.; Vergados, I.; Lagiou, P.; Tzonou, A. The epidemiology of cataract: A study in Greece. Acta Ophthalmol. 2011, 89, e167–e173. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.M.; Yang, D.Q.; Wang, H.; Xu, J.; Gao, Q.; Hu, L.W.; Wang, F.; Wang, Y.; Yan, Q.C.; Zhang, J.S.; et al. Prevalence and risk factors of lens opacities in rural populations living at two different altitudes in China. Int. J. Ophthalmol. 2016, 9, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Athanasiov, P.A.; Casson, R.J.; Sullivan, T.; Newland, H.S.; Shein, W.K.; Muecke, J.S.; Selva, D.; Aung, T. Cataract in rural Myanmar: Prevalence and risk factors from the Meiktila Eye Study. Br. J. Ophthalmol. 2008, 92, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Athanasiov, P.A.; Edussuriya, K.; Senaratne, T.; Sennanayake, S.; Sullivan, T.; Selva, D.; Casson, R.J. Cataract in central Sri Lanka: Prevalence and risk factors from the Kandy Eye Study. Ophthalmic Epidemiol. 2010, 17, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Burton, M.; Fergusson, E.; Hart, A.; Knight, K.; Lary, D.; Liu, C. The prevalence of cataract in two villages of northern Pakistan with different levels of ultraviolet radiation. Eye 1997, 11, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Echebiri, S.I.; Odeigah, P.G.; Myers, S.N. Case-control studies and risk factors for cataract in two population studies in Nigeria. Middle East. Afr. J. Ophthalmol. 2010, 17, 303–309. [Google Scholar] [CrossRef] [PubMed]
- El Chehab, H.; Blein, J.P.; Herry, J.P.; Chave, N.; Ract-Madoux, G.; Agard, E.; Guarracino, G.; Swalduz, B.; Mourgues, G.; Dot, C. Ocular phototoxicity and altitude among mountain guides. J. Fr. Ophtalmol. 2012, 35, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Saadat, M.; Farvardin-Jahromi, M. Occupational sunlight exposure, polymorphism of glutathione S-transferase M1, and senile cataract risk. Occup. Environ. Med. 2006, 63, 503–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ughade, S.N.; Zodpey, S.P.; Khanolkar, V.A. Risk factors for cataract: A case control study. Indian J. Ophthalmol. 1998, 46, 221–227. [Google Scholar] [CrossRef]
- Zarei, N.; Saadat, I.; Farvardin-Jahromi, M. The relationship between NQO1 C609T and CAT C-262Tgenetic polymorphisms and the risk of age-related cataracts. Mol. Biol. Res. Commun. 2015, 4, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.R. Risk factors for age-related macular degeneration. Prog. Retin. Eye Res. 2001, 20, 227–253. [Google Scholar] [CrossRef]
- Klein, R.; Peto, T.; Bird, A.; Vannewkirk, M.R. The epidemiology of age-related macular degeneration. Am. J. Ophthalmol. 2004, 137, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Clemons, T.E.; Milton, R.C.; Klein, R.; Seddon, J.M.; Ferris, F.L., 3rd. Age-Related Eye Disease Study Research Group. Risk factors for the incidence of advanced age-related macular degeneration in the Age-Related Eye Disease Study Research (AREDS) AREDS report no. 19. Ophthalmology 2005, 112, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Taylor, H.R.; Keeffe, J.E. World blindness: A 21st century perspective. Br. J. Ophthalmol. 2001, 85, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Augood, C.A.; Vingerling, J.R.; de Jong, P.T.; Chakravarthy, U.; Seland, J.; Soubrane, G.; Tomazzoli, L.; Topouzis, F.; Bentham, G.; Rahu, M.; et al. Prevalence of age-related maculopathy in older Europeans: The European Eye Study (EUREYE). Arch. Ophthalmol. 2006, 124, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Tomany, S.C.; Cruickshanks, K.J.; Klein, R.; Klein, B.E.; Knudtson, M.D. Sunlight and the 10-year incidence of age-related maculopathy: The Beaver Dam Eye Study. Arch. Ophthalmol. 2004, 122, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Gehrs, K.M.; Anderson, D.H.; Johnson, L.V.; Hageman, G.S. Age-related macular degeneration-emerging pathogenetic and therapeutic concepts. Ann. Med. 2006, 38, 450–471. [Google Scholar] [CrossRef] [PubMed]
- Nowak, J.Z. Age-related macular degeneration (AMD): Pathogenesis and therapy. Pharmacol. Rep. 2006, 58, 353–363. Available online: http://www.if-pan.krakow.pl/pjp/pdf/2006/3_353.pdf (accessed on 26 July 2018). [PubMed]
- Shaw, P.X.; Stiles, T.; Douglas, C.; Ho, D.; Fan, W.; Du, H.; Xiao, X. Oxidative stress, innate immunity, and age-related macular degeneration. AIMS Mol. Sci. 2016, 3, 196–221. [Google Scholar] [CrossRef] [PubMed]
- Sui, G.Y.; Liu, G.C.; Liu, G.Y.; Gao, Y.Y.; Deng, Y.; Wang, W.Y.; Tong, S.H.; Wang, L. Is sunlight exposure a risk factor for age-related macular degeneration? A systematic review and meta-analysis. Br. J. Ophthalmol. 2013, 97, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.L.; Lukas, T.J.; Yuan, M.; Du, N.; Tso, M.O.; Neufeld, A.H. Autophagy and exosomes in the aged retinal pigment epithelium: Possible relevance to drusen formation and age-related macular degeneration. PLoS ONE 2009, 4, e4160. [Google Scholar] [CrossRef] [PubMed]
- Cruickshanks, K.J.; Klein, R.; Klein, B.E.; Nondahl, D.M. Sunlight and the 5-year incidence of early agerelated maculopathy: The beaver dam eye study. Arch. Ophthalmol. 2001, 119, 246–250. [Google Scholar] [PubMed]
- Chakravarthy, U.; Wong, T.Y.; Fletcher, A.; Piault, E.; Evans, C.; Zlateva, G.; Buggage, R.; Pleil, A.; Mitchell, P. Clinical risk factors for age-related macular degeneration: A systematic review and meta-analysis. BMC Ophthalmol. 2010, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Chong, E.W.; Kreis, A.J.; Wong, T.Y.; Simpson, J.A.; Guymer, R.H. Alcohol consumption and the risk of age-related macular degeneration: A systematic review and meta-analysis. Am. J. Ophthalmol. 2008, 145, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Kearney, F.M.; Fagan, X.J.; Al-Qureshi, S. Review of the role of refined dietary sugars (fructose and glucose) in the genesis of retinal disease. Clin. Exp. Ophthalmol. 2008, 42, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Tomany, S.C.; Wang, J.J.; Van Leeuwen, R.; Klein, R.; Mitchell, P.; Vingerling, J.R.; Klein, B.E.; Smith, W.; De Jong, P.T. Risk factors for incident age-related macular degeneration: Pooled findings from 3 continents. Ophthalmology 2004, 111, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, N. Age-related macular degeneration and genetics. Clin. Exp. Ophthalmol. 2010, 38, 1. [Google Scholar] [CrossRef] [PubMed]
- Modenese, A.; Gobba, F. Macular degeneration and occupational risk factors: A systematic review. Int. Arch. Occup. Environ. Health 2018. [Google Scholar] [CrossRef] [PubMed]
- Caljkusić-Mance, T.; Kovacević, D.; Novak-Stroligo, M.; Alpeza-Dunato, Z. Distribution of agerelated macular degeneration in Primorsko-Goranska County. Coll. Antropol. 2010, 34, 109–111. [Google Scholar] [PubMed]
- Njirić, S.; Misljenović, T.; Mikulicić, M.; Pavicević, L. Incidence of age related macular degeneration in correlation with age, sex and occupation. Coll. Antropol. 2007, 31, 107–110. [Google Scholar] [PubMed]
- Plestina-Borjan, I.; Klinger-Lasić, M. Long-term exposure to solar ultraviolet radiation as a risk factor for age-related macular degeneration. Coll. Antropol. 2007, 31, 33–38. [Google Scholar] [PubMed]
- Saadat, I.; Vakili-Ghartavol, R.; Farvardin-Jahromi, M.; Saadat, M. Association between exudative agerelated macular degeneration and the G6721T polymorphism of XRCC7 in outdoor subjects. Korean J. Ophthalmol. 2007, 26, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.; Paudyal, G.; Shrestha, M.K.; Gurung, R.; Ruit, S. Age-related macular degeneration in Nepal. Kathmandu Univ. Med. J. (KUMJ) 2011, 9, 165–169. [Google Scholar] [CrossRef]
- Vojniković, B.; Njirić, S.; Coklo, M.; Spanjol, J. Ultraviolet sun radiation and incidence of age-related macular degeneration on Croatian Island Rab. Coll. Antropol. 2007, 31, 43–44. [Google Scholar] [PubMed]
- Bressler, N.M.; Munoz, B.; Maguire, M.G.; Vitale, S.E.; Schein, O.D.; Taylor, H.R.; West, S.K. Five-year incidence and disappearance of drusen and retinal pigment epithelial abnormalities. Waterman study. Arch. Ophthalmol. 1995, 113, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, A.E.; Bentham, G.C.; Agnew, M.; Young, I.S.; Augood, C.; Chakravarthy, U.; de Jong, P.T.; Rahu, M.; Seland, J.; Soubrane, G.; et al. Sunlight exposure, antioxidants, and age-related macular degeneration. Arch. Ophthalmol. 2008, 126, 1396–1403. [Google Scholar] [CrossRef] [PubMed]
- Schick, T.; Ersoy, L.; Lechanteur, Y.T.; Saksens, N.T.; Hoyng, C.B.; den Hollander, A.I.; Kirchhof, B.; Fauser, S. History of sunlight exposure is a risk factor for age-related macular degeneration. Retina 2016, 36, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Taylor, H.R.; Muñoz, B.; West, S.; Bressler, N.M.; Bressler, S.B.; Rosenthal, F.S. Visible light and risk of age-related macular degeneration. Trans. Am. Ophthalmol. Soc. 1990, 88, 163–178. [Google Scholar] [PubMed]
- Röwert-Huber, J.; Patel, M.J.; Forschner, T.; Ulrich, C.; Eberle, J.; Kerl, H.; Sterry, W.; Stockfleth, E. Actinic keratosis is an early in situ squamous cell carcinoma: A proposal for reclassification. Br. J. Dermatol. 2007, 156 (Suppl. 3), 8–12. [Google Scholar] [CrossRef]
- Karimkhani, C.; Boyers, L.N.; Dellavalle, R.P.; Weinstock, M.A. It’s time for “keratinocyte carcinoma” to replace the term “nonmelanoma skin cancer”. J. Am. Acad. Dermatol. 2015, 72, 186–187. [Google Scholar] [CrossRef] [PubMed]
- Marks, R. The epidemiology of non-melanoma skin cancer: Who, why and what can we do about it. J. Dermatol. 1995, 22, 853–857. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Cancer Facts & Figures 2016. Atlanta 2016. Available online: www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2016/cancer-facts-and-figures-2016.pdf (accessed on 26 July 2018).
- Associazione Italiana di Oncologia Medica (AIOM), Associazione Italiana Registri Tumori (AIRTUM). I Numeri del Cancro in Italia. Intermedia Editore. Rome, 2014. Available online: www.registri-tumori.it/PDF/AIOM2014/I_numeri_del_cancro_2014.pdf (accessed on 26 July 2018).
- Guy, G.P., Jr.; Machlin, S.R.; Ekwueme, D.U.; Yabroff, K.R. Prevalence and costs of skin cancer treatment in the U.S., 2002–2006 and 2007–2011. Am. J. Prev. Med. 2015, 48, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Fransen, M.; Karahalios, A.; Sharma, N.; English, D.R.; Giles, G.G.; Sinclair, R.D. Non-melanoma skin cancer in Australia. Med. J. Aust. 2012, 197, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Cooper, E.A.; Feldman, S.R.; Fleischer, A.B., Jr. A survey of office visits for actinic keratosis as reported by NAMCS, 1990-1999. National Ambulatory Medical Care Survey. Cutis 2002, 70, 8–13. [Google Scholar] [PubMed]
- Frost, C.A.; Green, A.C.; Williams, G.M. The prevalence and determinants of solar keratoses at a subtropical latitude (Queensland, Australia). Br. J. Dermatol. 1998, 139, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Berman, B.; Cockerell, C.J. Pathobiology of actinic keratosis: Ultraviolet-dependent keratinocyte proliferation. J. Am. Acad. Dermatol. 2013, 68, S10–S19. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.A.; Korgavkar, K.; Weinstock, M.A. Current perspective on actinic keratosis: A review. Br. J. Dermatol. 2017, 177, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Marks, R.; Rennie, G.; Selwood, T.S. Malignant transformation of solar keratoses to squamous cell carcinoma. Lancet 1988, 1, 795–797. [Google Scholar] [CrossRef]
- Salasche, S.J. Epidemiology of actinic keratoses and squamous cell carcinoma. J. Am. Acad. Dermatol. 2000, 42, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Guenthner, S.T.; Hurwitz, R.M.; Buckel, L.J.; Gray, H.R. Cutaneous squamous cell carcinomas consistently show histologic evidence of in situ changes: A clinicopathologic correlation. J. Am. Acad. Dermatol. 1999, 41, 443–448. [Google Scholar] [CrossRef]
- Mittelbronn, M.A.; Mullins, D.L.; Ramos-Caro, F.A.; Flowers, F.P. Frequency of pre-existing actinic keratosis in cutaneous squamous cell carcinoma. Int. J. Dermatol. 1998, 37, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Modenese, A.; Farnetani, F.; Andreoli, A.; Pellacani, G.; Gobba, F. Questionnaire-based evaluation of occupational and non-occupational solar radiation exposure in a sample of Italian patients treated for actinic keratosis and other non-melanoma skin cancers. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 21–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falanga, R.; Corradin, M.T. I tumori cutanei maligni. Il ruolo della medicina generale. I dati di Health Search e l’importanza della diagnosi precoce. SIMG 2007, 1, 9–13. [Google Scholar]
- Geller, A.C.; Annas, G.D. Epidemiology of melanoma and non melanoma skin cancer. Semin. Oncol. Nurs. 2003, 19, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.L.; Weinstock, M.A. Non melanoma skin cancer in the United States: Incidence. J. Am. Acad. Dermatol. 1994, 30, 774–778. [Google Scholar] [CrossRef]
- Weinstock, M.A. Non melanoma skin cancer mortality in the United States, 1969 through 1988. Arch. Dermatol. 1993, 129, 1286–1290. [Google Scholar] [CrossRef] [PubMed]
- Marcil, I.; Stern, R.S. Risk of developing a subsequent nonmelanoma skin cancer in patients with a history of nonmelanoma skin cancer: A critical review of the literature and meta-analysis. Arch. Dermatol. 2000, 136, 1524–1530. [Google Scholar] [CrossRef] [PubMed]
- DePry, J.L.; Vyas, R.; Lazarus, H.M.; Caimi, P.F.; Gerstenblith, M.R.; Bordeaux, J.S. Cutaneous Malignant Neoplasms in Hematopoietic Cell Transplant Recipients: A Systematic Review. JAMA Dermatol. 2015, 151, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A. Skin cancer as occupational disease. Hautarzt 2016, 67, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Mayer, J.E.; Goldman, R.H. Arsenic and skin cancer in the USA: The current evidence regarding arsenic-contaminated drinking water. Int. J. Dermatol. 2016, 55, e585–e591. [Google Scholar] [CrossRef] [PubMed]
- Christenson, L.J.; Borrowman, T.A.; Vachon, C.M.; Tollefson, M.M.; Otley, C.C.; Weaver, A.L.; Roenigk, R.K. Incidence of basal cell and squamous cell carcinomas in a population younger than 40 years. JAMA 2005, 294, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Verkouteren, J.A.C.; Ramdas, K.H.R.; Wakkee, M.; Nijsten, T. Epidemiology of basal cell carcinoma: Scholarly review. Br. J. Dermatol. 2017, 177, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J.; Seidler, A.; Diepgen, T.L.; Bauer, A. Occupational ultraviolet light exposure increases the risk for the development of cutaneous squamous cell carcinoma: A systematic review and meta-analysis. Br. J. Dermatol. 2011, 164, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.; Diepgen, T.L.; Schmitt, J. Is occupational solar ultraviolet irradiation a relevant risk factor for basal cell carcinoma? A systematic review and meta-analysis of the epidemiological literature. Br. J. Dermatol 2011, 165, 612–625. [Google Scholar] [CrossRef] [PubMed]
- Linos, E.; Swetter, S.M.; Cockburn, M.G.; Colditz, G.A.; Clarke, C.A. Increasing burden of melanoma in the United States. J. Investig. Dermatol. 2009, 129, 1666–1674. [Google Scholar] [CrossRef] [PubMed]
- Karimkhani, C.; Green, A.C.; Nijsten, T.; Weinstock, M.A.; Dellavalle, R.P.; Naghavi, M.; Fitzmaurice, C. The global burden of melanoma: Results from the Global Burden of Disease Study 2015. Br. J. Dermatol. 2017, 177, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Bharath, A.K.; Turner, R.J. Impact of climate change on skin cancer. J. R. Soc. Med. 2009, 102, 215–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastrelli, M.; Tropea, S.; Rossi, C.R.; Alaibac, M. Melanoma: Epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo 2014, 28, 1005–1011. [Google Scholar] [PubMed]
- Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Zanetti, R.; Masini, C.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur. J. Cancer 2005, 41, 2040–2059. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, B.K.; Cust, A.E. Sun exposure and skin cancer, and the puzzle of cutaneous melanoma: A perspective on Fears et al. Mathematical models of age and ultraviolet effects on the incidence of skin cancer among whites in the United States. American Journal of Epidemiology 1977; 105: 420-427. Cancer Epidemiol. 2017, 48, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Grob, J.J.; Gouvernet, J.; Aymar, D.; Mostaque, A.; Romano, M.H.; Collet, A.M.; Noe, M.C.; Diconstanzo, M.P.; Bonerandi, J.J. Count of benign melanocytic nevi as a major indicator of risk for nonfamilial nodular and superficial spreading melanoma. Cancer 1990, 66, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Tenkate, T.; Kimlin, M. Occupational exposure to ultraviolet radiation--not a standard for all. Aust. N. Z. J. Public Health 2008, 32, 87–88. [Google Scholar] [CrossRef] [PubMed]
- John, S.M.; Trakatelli, M.; Ulrich, C. Non-melanoma skin cancer by solar UV: The neglected occupational threat. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 3–4. [Google Scholar] [CrossRef] [PubMed]
Reference | Population, Month/Season, Place | Results of the Measurements (SED/day) | |
---|---|---|---|
Construction Sector | [33] | 126 workers, Summer, France | 10.1 |
[29] | 493 OW September–November, Queensland (North Australia) | Pavers–Tilers 10 | |
Dogger 8.3 | |||
Roofers 7.6 | |||
Fencers 6.2 | |||
Plant operators 3.1 | |||
Painters 1.1 | |||
Cabinet makers 0.3 | |||
Laborers 5.9 | |||
Steel fixers 5.6 | |||
Inspectors 2.5 | |||
Concreters 4.7 | |||
Bricklayers 4.7 | |||
Supervisors 3.4 | |||
Carpenters 5.3 | |||
Riggers 6 | |||
Plumbers 5.7 | |||
Other Workers 4.9 | |||
All workers 4.5 | |||
[32] | 77 OW: 39 construction and 19 road workers, Summer (December), New Zealand | 5.25 for construction workers 5.31 for road workers | |
[30] | 20 workers, Switzerland, July–September, at three different altitudes: plain (500–600 m); middle (1400–1500 m); high mountain (2000–2500 m) | 11.9 in plain 21.4 at middle altitude 28.6 in high mountain | |
[31] | 8 workers, Valencia, Spain | 6.11 | |
Agricultural Sector | [33] | 23 Gardeners and 108 farmers, Summer, France | 12 for gardeners 9.5 for farmers |
[32] | 77 OW, of which 16 horticulturists, Summer (December), New Zealand | 5.61 | |
[35] | 31 vineyard workers, April, July, October, Tuscany, Italy | April: Nape = 14.5; Arm = 10.3 July: Nape = 10.0; Arm = 5.9 October: Nape 3.0; Arm 2.0 | |
[34] | 12 farmers, April and October, Austria | 2.99 | |
[36] | 4 gardeners, June–July, Valencia, Spain | 4.1 | |
Other Occupational Sectors | [33] | 741 workers with various occupations (not all OW) | Cultural, art, social workers 9.2 Industrial workers 7.9 Telecommunication workers 7.9 Transporters & mail carriers 7.7 Office workers 7.3 Commercial & service agents 6.9 Managers 6.3 Protective services workers 6.2 Engineers, researchers 6.1 Health professionals & personal care workers 6.0 Leisure and sport workers 5.9 Shopkeepers 5.4 Cleaners and service workers 4.9 Restaurant workers 4.6 Teaching professionals 3.5 Child care workers 3.3 |
[37] | 168 lifeguards, June–July in: (1) <35° N (Arizona, Texas); (2) >40° N (Nebraska, Oregon, USA) | South US 3.3 (Texas) 3.2 (Arizona) North US 6.2 (Nebraska) 1.7 (Oregon) Mean (all sites) = 3.3 | |
[36] | 5 lifeguards, summer (June–July), Valencia, Spain | 11.4 |
Target | Diseases |
---|---|
Bone system | Rickets, osteomalacia, and osteoporosis depending on reduced vitamin D production * |
Cardiovascular system | Hypertension |
Lymphopoietic system | Non-Hodgkin lymphoma |
Prostate | Cancer |
Breast. | Cancer |
Colon | Cancer |
Psychiatric disorders | Seasonal affective disorder; Schizophrenia; General well-being. |
Others | Rheumatoid arthritis, Type 1 diabetes, Multiple sclerosis (for the immunomodulating role of solar UV); Tubercolosis (for the regulatory role of solar UV in Vitamin D production) |
Target | Adverse Health Effects Caused by Excessive SR Exposure |
---|---|
Immune system | Acute: Reactivation of latent viral infection—herpes labialis *; suppression of cell-mediated immunity; increased susceptibility to infection; impairment of prophylactic immunization |
Long-term: Reactivation of latent viral infection—papillomavirus | |
Eye | Acute: photokeratitis and photoconjunctivitis *; solar retinopathy * |
Long-term: Pterigyum *; cataract: cortical *, nuclear, and sub-capsular; climatic droplet keratopathy; Pinguecula; melanoma; macular degeneration; corneal and conjunctival squamous cell carcinoma * | |
Skin | Acute: Sunburn *; Photodermatoses * |
Long-term: Photo-ageing *; actinic keratosis *; basal cell carcinoma *; squamous cell carcinoma *; cutaneous malignant melanoma *; cancer of the lip |
UVI Risk Area | Reference | Pterygium Prevalence (%) | Average Pterygium Prevalence Per Area (%) | OR (95% Confidence Interval) for Pterygium and Occupational Exposure to SR vs. No Occupational Exposure | Mean OR in Risk Area |
---|---|---|---|---|---|
UVI ≤ 5 Moderate Risk | [45] | / | 4.8 | 3.1 (1.9–4.8) | 2.2 |
[46] | 2.5 | 1.8 (1.2–2.6) | |||
[47] | 6.2 | 1.5 (1.1–1.9) | |||
[48] | 7.1 | / | |||
[49] | 5.9 | 2.3 (1.0–5.0) | |||
[50] | 2.5 | 2.3 (2.5–5.4) | |||
UVI ≥ 6 High Risk | [51] | 13.3 | 19.3 | / | 2.2 |
[52] | 38.7 | 3.8 (2.2–6.5) | |||
[53] | 10.1 | 2.1 (1.1–4.0) | |||
[54] | 9.5 | / | |||
[55] | 12.3 | 2.2 (1.1–4.5) | |||
[56] | 25.2 | 1.4 (1.2–1.9) | |||
[57] | 13 | / | |||
[58] | 52 | / | |||
[59] | / | 2.5 (1.3–4.9) | |||
[60] | 11.9 | / | |||
[61] | / | 3.8 (1.0–14.7) | |||
[62] | 11.7 | 1.8 (1.5–2.2) | |||
[63] | 19.3 | 1.5 (1.1–2.2) | |||
[64] | 9.4 | / | |||
[65] | 10.9 | 2.2 (1.2–4.1 | |||
[66] | 30.8 | 1.8 (1.3–2.5) | |||
[67] | 4.4 | 1.5 (0.9–2.3) | |||
[68] | 16.2 | / | |||
[69] | 39 | 1.5 (1.1–1.9) |
Reference | Cataract Prevalence (%) | OR (95% CI) for Cataract and Occupational Exposure to Solar Radiation vs. No Occupational Exposure/Cataract Subtype Associated (If Investigated) | Notes/Other Results |
---|---|---|---|
[84] | 33.2 | No association | Higher education level vs. lower OR = 0.6 (0.4–0.9) |
[85] | 40.4 | 0.9 n.s. | / |
[86] | 40.1 | / | Significant higher prevalence in male OW |
[61] | 25.4 | / | Prevalence in a group of quite young Indian salt workers |
[87] | / | 1.8 (1.5–2.9) in urban context 5.9 (4.8–6.9) in rural context | Unadjusted OR |
[88] | 29.8 | /cortical | Prevalence in a group of French mountainers |
[78] | / | /cortical | Longitudinal study: Relative Risk in laborers = 2.2 (1.03–4.9) |
[79] | 36.8 | 2.9 (1.1–7.6)/nuclear | / |
[80] | / | 3.7 (1.5–9.0)/nuclear | OR 3.2 (1.2–8.2) when considering the use of protective equipment |
[81] | 36.3 | 1.1 (1.0–1.2) | / |
[89] | / | / | OR 5.33 (1.7–16.7) for OW with catarct and polymorphism of glutathione S-transferase M1 gene vs. OW from the control group and same gene expression |
[82] | / | 1.8 (1.1–2.8)/nuclear 2.8 (1.4–5.7)/posterior subcapsular | / |
[90] | / | 2.75 (1.5–4.5). | Unadjusted OR |
[83] | 25.8–37.2 | 2.6 (1.45–4.67) | / |
[91] | / | / | OR 2.7 (1.2–6.3) for OW with cataract and NQO1 C609T gene polymorphism vs. OW from control group without the polymorphism |
Reference, Location | Main Results: Association between Occupational SR Exposure and Macular Degeneration |
---|---|
[116], USA | Five-year incidence in Maritime workers = 50–59 years: 7%; 60–69 years: 14%; >70 years: 26%. Cumulative exposure to SR = 0.84 ± 0.63 Maryland Sun Years |
[110], Croatia | OW vs. controls: 70 vs. 30% (X2 = 17,633, p < 0.0001) |
[117], Europe | Subjects with lowest dietary intake of antioxidants and high blue light exposure in central hours of the day = OR 3.7 (95% CI 1.6–8.9) for neo-vascular MD vs. atrophic; OR 1.9 (95% CI 1.1–3.6) for MD grade 3 vs. 0 |
[111], Croatia | Three-year incidence = 1.9% in OW vs. 0.8% in indoor workers (p < 0.001) |
[112], Croatia | 113 fishermen, sea workers, and farmers with SR exposure > 8 h/day had MD, X2 186.22, p < 0.001 |
[113], Iran | Gene XRCC7 polymorphism in OW: OR 3.1 (95% CI 1.04–9.4; p = 0.04) |
[118], Europe | Prevalence = 20.3% early MD; 31.9% late MD OR: 2.6 (95% CI 1.9–3.5) after adjustment for age, sex, and smoking behavior for late MD and OW; n.a. with early MD Considering past SR exposure > 8 h/day: OR = 5.5 (95% CI 1.25–24.6) for early MD OR = 2.8 (95% CI 1.25–6.2) for late MD |
[119], USA | MD grade 4 in maritime workers = 1.2% OR = 1.35 (95% CI 1.0–1.8) for blue light exposure, n.s. for UV |
[114], Nepal | Composition of the sample = 42.6% farmers (most represented occupational group, p = 0.077) |
[115], Croatia | Two-year incidence = 18% in OW (farmers and fishers) vs. 2.5% in indoor workers |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modenese, A.; Korpinen, L.; Gobba, F. Solar Radiation Exposure and Outdoor Work: An Underestimated Occupational Risk. Int. J. Environ. Res. Public Health 2018, 15, 2063. https://doi.org/10.3390/ijerph15102063
Modenese A, Korpinen L, Gobba F. Solar Radiation Exposure and Outdoor Work: An Underestimated Occupational Risk. International Journal of Environmental Research and Public Health. 2018; 15(10):2063. https://doi.org/10.3390/ijerph15102063
Chicago/Turabian StyleModenese, Alberto, Leena Korpinen, and Fabriziomaria Gobba. 2018. "Solar Radiation Exposure and Outdoor Work: An Underestimated Occupational Risk" International Journal of Environmental Research and Public Health 15, no. 10: 2063. https://doi.org/10.3390/ijerph15102063
APA StyleModenese, A., Korpinen, L., & Gobba, F. (2018). Solar Radiation Exposure and Outdoor Work: An Underestimated Occupational Risk. International Journal of Environmental Research and Public Health, 15(10), 2063. https://doi.org/10.3390/ijerph15102063