Comparative Analysis of Major Mosquito Vectors Response to Seed-Derived Essential Oil and Seed Pod-Derived Extract from Acacia nilotica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Plant Materials
2.2. Preparation of Plant Extracts
2.3. Hydrodistillation of Essential Oils
2.4. Maintenance of Mosquito Larvae
2.5. Larval Bioassay
2.6. Mosquito Coil Preparation
2.7. Smoke Knockdown Test
2.8. Gas Chromatography–Mass Spectrometry (GC–MS)
2.9. Statistical Analysis
3. Results and Discussion
4. Conclusions
Acknowledgment
Author Contributions
Conflicts of Interest
References
- Gratz, N.G. Vector- and Rodent-borne Diseases in Europe and North America: Distribution, Public Health Burden and Control; Cambridge University Press: New York, NY, USA, 1994. [Google Scholar]
- Yang, T.; Liang, L.; Guiming, F.; Zhong, S.; Ding, G.; Xu, R.; Zhu, G.; Shi, N.; Fan, F.; Liu, Q. Epidemiology and vector efficiency during a dengue fever outbreak in Cixi, Zhejiang province, Chinese. J. Vector Ecol. 2009, 34, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G. Research in mosquito control: Current challenges for a brighter future. Parasitol. Res. 2015, 114, 2801–2805. [Google Scholar] [CrossRef] [PubMed]
- Ramaiah, K.D.; Das, P.K.; Michael, E.; Guyatt, H. The economic burden of lymphatic filariasis in India. Parasitol. Today 2000, 16, 251–253. [Google Scholar] [CrossRef]
- World Health Organization. A Global Brief on Vector-Borne Diseases 2014. P.no.5. March 2014. Available online: http://www.who.int/campaigns/world-health-day/2014/global-brief/en.
- Ramkumar1, G.; Shivakumar, M.S. Laboratory development of permethrin resistance and cross-resistance pattern of Culex quinquefasciatus to other insecticides. Parasitol. Res. 2015, 114, 25532–25560. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.P.; Nunes, E.P.; Nascimento, R.F.; Santiago, G.M.P.; Menezes, G.H.A.; Sharma, P.; Mohan, L.; Srivastava, C.N. Larvicidal potential of Nerium indicum and Thuja orientelis extracts against malaria and Japanese encephalitis vector. J. Env. Bio. 2006, 26, 657–660. [Google Scholar]
- Senthil-Nathan, S.; Kalaivani, K.; Sehoon, K. Effects of Dysoxylum malabaricum Bedd. (Meliaceae) extract on the malarial vector Anopheles stephensi Liston (Diptera:Culicidae). Bioresour. Technol. 2006, 97, 2077–2083. [Google Scholar] [CrossRef] [PubMed]
- Selin-Rani, S.; Senthil-Nathan, S.; Thanigaivel, A.; Vasantha-Srinivasan, P.; Edwin, E.; Ponsankar, A.; Lija-Escaline, J.; Kalaivani, K.; Abdel-Megeed, A.; Hunter, W.B.; et al. Toxicity and physiological effect of quercetin on generalist herbivore, Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Chemosphere. 2016, 165, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, N.; Shafaghat, A.; Salimi, F. Antimicrobial activity and constituents of the hexane extracts from leaf and stem of Origanumvulgare L. ssp. Viride(Boiss.) Hayek. growing wild in Northwest Iran. J. Med. Plants. Res. 2012, 13, 2681–2685. [Google Scholar]
- Vivekraj, P.; Vijayan, A.; Anandgideon, V. Analysis of Phytochemical constituents of the chloroform extracts of Abutilon hirtum (Lam.) Sweet using GC-MS Method. Int. J. Pharmacol. Res. 2015. [Google Scholar] [CrossRef]
- Soliman, B.A.; El- Sherif, L.S. Larvicidal effect of some plant oil on mosquito Culex pipiens L. (Diptera: Culicidiae). J. Egypt. Ger. Soc. Zool. 1995, 16, 161–169. [Google Scholar]
- Batish, D.R.; Singh, H.P.; Kohli, R.K.; Kaur, S. Eucalyptus essential oil as a natural pesticide. Forest Ecol. Manag. 2008, 256, 2166–2174. [Google Scholar] [CrossRef]
- Govindarajan, M.; Mathivanan, T.; Elumalai, K.; Krishnappa, K.; Anandan, A. Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera:Culicidae). Parasitol. Res. 2011, 109, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Flamini, G.; Fiore, G.; Cioni, P.L.; Conti, B. Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae). Parasitol. Res. 2013, 112, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Vivekanandhan, P.; Senthil-Nathan, S.; Shivakumar, M.S. Larvicidal, pupicidal and adult smoke toxic effects of Acanthospermum hispidum (DC) leaf crude extracts against mosquito vectors. Physiol. Mol. Plant. Pathol. 2017. [Google Scholar] [CrossRef]
- Chellappandian, M.; Thanigaivel, A.; Vasantha-Srinivasan, P.; Edwin, E.; Ponsankar, A.; Selin-Rani, S.; Kalaivani, K.; Senthil-Nathan, S.; Benelli, G. Toxicological effects of Sphaeranthus indicus Linn. (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn. and impacts on a beneficial mosquito predator. Environ. Sci. Pollut. Res 2017. [Google Scholar] [CrossRef] [PubMed]
- Senthil-Nathan, S.; Kalaivani, K.; Murugan, K.; Chung, P.G. Effects of neem limonoids on malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Acta. Trop. 2005, 96, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M.; Sivakumar, R. Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera:Culicidae). Parasitol. Res. 2012, 110, 1607–1620. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Flamini, G.; Canale, A.; Cioni, P.L.; Conti, B. Toxicity evaluation of different essential oil formulations against the Mediterranean Fruit Fly Ceratitis capitata (Wiedemann) (Diptera Tephritidae). Crop Prot. 2012, 42, 223–229. [Google Scholar] [CrossRef]
- Benelli, G.; Flamini, G.; Canale, A.; Molfetta, I.; Cioni, P.L.; Conti, B. Repellence of Hyptis suaveolens L. (Lamiaceae) whole essential oil and major constituents against adults of the granary weevil Sitophilus granarius (L.) (Coleoptera: Dryophthoridae). Bulletin Insectol. 2012, 65, 177–183. [Google Scholar]
- Elango, G.; Rahuman, A.A.; Kamaraj, C.; Bagavan, A.; Zahir, A.A. Efficacy of medicinal plant extracts against malarial vector, Anopheles subpictus Grassi. Parasitol. Res. 2011, 108, 1437–1445. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, D.; Sakthi, V.; Thajuddin, N.; Panneerselvam, A. Preliminary evaluation of Anopheles mosquito larvicidal efficacy of mangrove actinobacteria. Int. J. App. Bio. Pharm. Technol. 2010, 1, 374–381. [Google Scholar]
- Duraipandiyan, V.; Ignacimuthu, S.; Gabriel Paulraj, M. Antifeedant and larvicidal activities of Rhein isolated from the flowers of Cassia fistula L. Saudi. J. Bio. Sci. 2011, 18, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, M.; Afshan, F.; Tariq, R.M.; Siddiqui, B.S.; Gulzar, T.; Mahmood, A.; Begum, S.; Khan, B. Phytochemical studies on the seed extract of Piper nigrum Linn. Nat. Prod. Res. 2005, 19, 703–712. [Google Scholar] [PubMed]
- Amer, A.; Mehlhorn, H. Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera: Culicidae). Parasitol Res. 2006, 99, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Köse, Y.B.; Iscan, G.; Demirci, B. Antimicrobial Activity of the Essential Oils Obtained from Flowering Aerial Parts of Centaurea lycopifolia Boiss. et Kotschy and Centaurea cheirolopha (Fenzl) Wagenitz from Turkey. J. Essen. Oil. Bear. Plants. 2016. [Google Scholar] [CrossRef]
- Chaubal, R.; Pawar, P.V.; Hebbalkar, G.D.; Tungikar, V.B.; Puranik, V.G.; Deshpande, V.H.; Deshpande, N.R. Larvicidal activity of Acacia nilotica extracts and isolation of D-pinitol––A bioactive carbohydrate. Chem. Biodivers. 2005, 2, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Zaitoun, A.A.; Madkour, M.H.; Shamy, M.Y. Effect of three plants extracts on some bacterial strains and Culex pipienis L. stages. J. Eng. Sci. Technol. 2012, 5, 54–63. [Google Scholar]
- Senthil-Nathan, S. The use of Eucalyptus tereticornis Sm. (Myrtaceae) oil (leaf extract) as a natural larvicidal agent against the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour. Technol. 2007, 98, 1856–1860. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, S.M.H.; Yankov, L.K. Field trials for the evaluation of the molluscicidal activity of Acacia nilotica. Fitoterapia 1984, 55, 305–307. [Google Scholar]
- Dua, V.K.; Pandey, A.C.; Dash, A.P. Adulticidal activity of essential oil of Lantana camara leaves against Mosquitoes. Indian J. Med. Res. 2010, 131, 434–439. [Google Scholar] [PubMed]
- World Health Organization. Guidelines for Laboratory and Field Testing of Mosquito Larvicides. Communicable Disease Control, Prevention and Eradication; WHO, Pesticide Evaluation Scheme; WHO: Geneva, Switzerland, 2005; pp. 1–219. [Google Scholar]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Eco. Entomol. 1925, 18, 265–266. [Google Scholar] [CrossRef]
- Ramkumar, G.; Karthi, S.; Muthusamy, R.; Natarajan, D.; Shivakumar, M.S. Adulticidal and smoke toxicity of Ocimum canum (Roth) plant extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. Parasitol. Res. 2015, 114, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Senthil-Nathan, S.; Hisham, A.; Jayakumar, G. Larvicidal and growth inhibition of the malaria vector Anopheles stephensi by triterpenes from Dysoxylum malabaricum and Dysoxylum beddomei. Fitoterapia 2008, 79, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Mehlhorn, H. Declining malaria, rising dengue and Zika virus: Insights for mosquito vector control. Parasitol. Res. 2016, 115, 1747–1754. [Google Scholar] [CrossRef] [PubMed]
- Kalaivani, K.; Senthil-Nathan, S.; Murugesan, A.G. Biological activity of selected Lamiaceae and Zingiberaceae plant essential oils against the dengue vector Aedes aegypti L. (Diptera: Culicidae). Parasitol. Res. 2012, 110, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Thavara, U.; Tawatsin, A.; Bhakdeenuan, P.; Wongsinkongman, P.; Boonruad, T.; Bansiddhi, J.; Chavalittumrong, P.; Komalamisra, N.; Siriyasatien, P.; Mulla, M.S. Repellent activity of essential oils against cockroaches (Dictyoptera: Blattidae, Blattellidae, and Blaberidae) in Thailand. South Asian J. Trop. Med. Pub. Health 2007, 38, 663–673. [Google Scholar]
- Berenbaum, M.R. Alchemical interactions among in plants. Recent. Ad. Phytochem. 1985, 19, 139–169. [Google Scholar]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: Review. Ind. Crop. Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Ajaegbu, E.E.; Danga, S.P.Y.; Chijoke, I.U.; Okoye, F.B.C. Mosquito adulticidal activity of the leaf extracts of Spondias mombin L. against Aedes aegypti L. and isolation of active principles. J. Vector. Borne. Dis. 2016, 53, 17–22. [Google Scholar] [PubMed]
- Mansour, S.A.; Messeha, S.S.; El-Gengaihi, S.E. Botanical biocides for mosquitocidal activity of certain Thymus capitatus constituents. J. Nat. Toxins. 2000, 9, 49–62. [Google Scholar] [PubMed]
- Murugan, K.; Babu, R.; Jeyabalan, D.; Senthil Kumar, N.; Sivaramakrishnan, S. Antipupational effect of neem oil and neem seed kernel extract against mosquito larvae of Anopheles stephensi (Liston). J. Ent. Res. 1996, 20, 37–39. [Google Scholar]
- Senthil Nathan, S.; Kalaivani, K.; Murugan, K.; Chung, P.G. The toxicity and physiological effect of neem limonoids on Cnaphalocrocis medinalis (Guene´e), the rice leaf folder. Pestic. Biochem. Physiol. 2005, 81, 113–122. [Google Scholar] [CrossRef]
- Senthil Nathan, S.; Chung, P.G.; Murugan, K. Effect of botanicals and bacterial toxin on the gut enzyme of Cnaphalocrocis medinalis. Phytoparasica. 2004, 32, 4334–4343. [Google Scholar]
- Ibrahim, N.A.; Musa, S.K.; Yassin, S.M.; Abuniama, N.H.; Awadalkareem, S.; Osama, A.; Abdalaziz, M.N. Chemical Composition and Antimicrobial Activity of Essential Oil of Belpharis linariifolia. Int. J. Sci.Technol.Soc. 2017. [Google Scholar] [CrossRef]
- Senthil Nathan, S.; Kalaivani, K.; Murugan, K.; Chung, P.G. Effects of neem limonoids on malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Acta Tropic. 2005, 96, 47–55. [Google Scholar] [CrossRef] [PubMed]
Mosquito Species | Sample | LC50 (LCL–UCL) mg/L | LC90 (LCL–UCL) mg/L | df |
---|---|---|---|---|
An. stephensi | Acetone | 110.00 (108.82–112.11) | 171.18 (169.28–174.89) | 3 |
Ethyl acetate | 48.32 (44.11–51.82) | 58.63 (56.11–60.82) | 3 | |
Hexane | 121.11 (119.96–128.08) | 188.88 (186.16–92.82) | 3 | |
Chloroform | 118.80 (112.23–120.16) | 163.8270 (159.11–165.11) | 3 | |
Petroleum Benzene | 51.10 (49.80–55.26) | 59.62 (57.62–61.82) | 3 | |
Essential oil * | 5.23 * (3.42–6.83) | 9.71 * (7.73–10.83) | 3 |
Mosquito Species | Sample | LC50 (LCL–UCL) mg/L | LC90 (LCL–UCL) mg/L | df |
---|---|---|---|---|
Ae. aegypti | Acetone | 103.68 (101.11–105.82) | 162.03 (159.03–165.81) | 3 |
Ethyl acetate | 59.12 (57.16–61.11) | 75.8216 (73.28–79.28) | 3 | |
Hexane | 169.25 (165.98–172.90) | 201.6231 (200.11–203.82) | 3 | |
Chloroform | 158.13 (156.82–160.11) | 198.2361 (193.98–203.72) | 3 | |
Petroleum Benzene | 45.32 (43.96–47.82) | 99.3216 (77.12–81.12) | 3 | |
Essential oil * | 3.17 * (2.10–4.67) | 11.73 * (9.93–12.90) | 3 |
Mosquito Species | Sample | LC50 (LCL–UCL) mg/L | LC90 (LCL–UCL) mg/L | df |
---|---|---|---|---|
Cx. quinquefasciatus | Acetone | 62.86 (59.32–64) | 90.80 (83.28–91.99) | 3 |
Ethyl acetate | 61.9861 (59.63–63.11) | 73.26 (71.71–75.11) | 3 | |
Hexane | 152.36 (147.82–161.32) | 201.11 (200.86–203.60) | 3 | |
Chloroform | 116.00 (114.11–117.02) | 186.13 (185.01–190.11) | 3 | |
Petroleum Benzene | 48.08 (47.96–50.62) | 65.32 (63.06–67.162) | 3 | |
Essential oil * | 4.11 * (3.23–5.44) | 12.32 * (11.32–14.01) | 3 |
Mosquito Species | Observation (in Minutes) | % Mortality from A. nilotica Powder Mosquitoes Coil | % Mortality from Commercial Mosquito Coil | % Control Mortality |
---|---|---|---|---|
Cx. quinquefasciatus | 10 | 00 | 00 | 0 |
20 | 20 | 10 | 1 | |
30 | 28 | 50 | 1 | |
40 | 82 | 100 | 0 | |
Ae. aegypti | 10 | 0 | 0 | 0 |
20 | 0 | 10 | 1 | |
30 | 10 | 50 | 1 | |
40 | 90 | 100 | 0 | |
An. stephensi | 10 | 3 | 0 | 1 |
20 | 12 | 18 | 0 | |
30 | 28 | 50 | 0 | |
40 | 80 | 100 | 1 |
S.No | RT a (min) | Area | Area % | Compound Name | Activity |
---|---|---|---|---|---|
1 | 20.330 | 1,293,815.8 | 4.394 | Hexadecane | Antimicrobial [10] |
2 | 21.131 | 3,105,857.5 | 10.548 | Sulfurous acid, butyl tridecyl ester | Antioxidant [11] |
3 | 21.911 | 4,685,758.0 | 15.914 | Heptacosane | No reports |
4 | 22.331 | 3,055,476.2 | 10.377 | 1,2-Benzenedicarboxylic acid, isodecyl octyl ester | Antimicrobial and antifouling [27] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivekanandhan, P.; Venkatesan, R.; Ramkumar, G.; Karthi, S.; Senthil-Nathan, S.; Shivakumar, M.S. Comparative Analysis of Major Mosquito Vectors Response to Seed-Derived Essential Oil and Seed Pod-Derived Extract from Acacia nilotica. Int. J. Environ. Res. Public Health 2018, 15, 388. https://doi.org/10.3390/ijerph15020388
Vivekanandhan P, Venkatesan R, Ramkumar G, Karthi S, Senthil-Nathan S, Shivakumar MS. Comparative Analysis of Major Mosquito Vectors Response to Seed-Derived Essential Oil and Seed Pod-Derived Extract from Acacia nilotica. International Journal of Environmental Research and Public Health. 2018; 15(2):388. https://doi.org/10.3390/ijerph15020388
Chicago/Turabian StyleVivekanandhan, Perumal, Raji Venkatesan, Govindaraju Ramkumar, Sengodan Karthi, Sengottayan Senthil-Nathan, and Muthugoundar Subramanian Shivakumar. 2018. "Comparative Analysis of Major Mosquito Vectors Response to Seed-Derived Essential Oil and Seed Pod-Derived Extract from Acacia nilotica" International Journal of Environmental Research and Public Health 15, no. 2: 388. https://doi.org/10.3390/ijerph15020388
APA StyleVivekanandhan, P., Venkatesan, R., Ramkumar, G., Karthi, S., Senthil-Nathan, S., & Shivakumar, M. S. (2018). Comparative Analysis of Major Mosquito Vectors Response to Seed-Derived Essential Oil and Seed Pod-Derived Extract from Acacia nilotica. International Journal of Environmental Research and Public Health, 15(2), 388. https://doi.org/10.3390/ijerph15020388