Indices of Change, Expectations, and Popularity of Biological Treatments for Major Depressive Disorder between 1988 and 2017: A Scientometric Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Selection Criteria
2.2. Data Extraction
2.3. Outcomes and Statistical Analysis
2.3.1. Popularity Index (PI)
2.3.2. Index of Change
2.3.3. Index of Expectations
2.4. Ethics Statement
3. Results
3.1. Study Selection
3.2. The Indices of Popularity, Change and Expectation
3.3. The Index of Change of PI
4. Discussion
4.1. Principal Findings
4.2. Possible Explanations of Findings Related to Antidepressants
4.3. Possible Explanations of Findings Related to Neurostimulation Therapies
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lim, G.Y.; Tam, W.W. Prevalence of Depression in the Community from 30 Countries between 1994 and 2014. Sci. Rep. 2018, 8, 2861. [Google Scholar] [CrossRef] [PubMed]
- Vandeleur, C.L.; Fassassi, S.; Castelao, E.; Glaus, J.; Strippoli, M.F.; Lasserre, A.M.; Rudaz, D.; Gebreab, S.; Pistis, G.; Aubry, J.M.; et al. Prevalence and correlates of DSM-5 major depressive and related disorders in the community. Psychiatry Res. 2017, 250, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chwastiak, L.A.; Von Korff, M. Disability in depression and back pain: evaluation of the World Health Organization Disability Assessment Schedule (WHO DAS II) in a primary care setting. J. Clin. Epidemiol. 2003, 56, 507–514. [Google Scholar] [CrossRef]
- Ahola, K.; Virtanen, M.; Honkonen, T.; Isometsä, E.; Aromaa, A.; Lönnqvist, J. Common mental disorders and subsequent work disability: A population-based Health 2000 Study. J. Affect. Disord. 2011, 134, 365–372. [Google Scholar] [CrossRef] [PubMed]
- WHO. Depression. 2018. Available online: http://www.who.int/news-room/fact-sheets/detail/depression (accessed on 23 October 2018).
- Chisholm, D.; Sweeny, K.; Sheehan, P.; Rasmussen, B.; Smit, F.; Cuijpers, P.; Saxena, S. Scaling-up treatment of depression and anxiety: A global return on investment analysis. Lancet Psychiatry 2016, 3, 415–424. [Google Scholar] [CrossRef]
- Lee, J.C.; Lewis, C.P.; Daskalakis, Z.J.; Croarkin, P.E. Transcranial Direct Current Stimulation, Considerations for Research in Adolescent Depression. Front. Psychiatry 2017, 8, 91. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.H.; Tang, C.; Ng, W.W.; Ho, C.S.; Ho, R.C. Determining the quality of life of depressed patients in Singapore through a multiple mediation framework. Asian J. Psychiatry 2015, 18, 22–30. [Google Scholar] [CrossRef]
- Ho, R.C.; Mak, K.K.; Chua, A.N.; Ho, C.S.; Mak, A. The effect of severity of depressive disorder on economic burden in a university hospital in Singapore. Expert Rev. Pharm. Outcomes Res. 2013, 13, 549–559. [Google Scholar] [CrossRef]
- Puri, B.; Hall, A. Revision Notes in Psychiatry, 3rd ed.; CRC Press: New York, NY, USA, 2013. [Google Scholar]
- Cipriani, A.; Furukawa, T.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; et al. Comparative Efficacy and Acceptability of 21 Antidepressant Drugs for the Acute Treatment of Adults with Major Depressive Disorder: A Systematic Review and Network Meta-Analysis. Focus 2018, 16, 420–429. [Google Scholar] [CrossRef]
- Khalili, M.; Rahimi-Movaghar, A.; Shadloo, B.; Mojtabai, R.; Mann, K.; Amin-Esmaeili, M. Global Scientific Production on Illicit Drug Addiction, A Two-Decade Analysis. Eur. Addict. Res. 2018, 24, 60–70. [Google Scholar] [CrossRef]
- Naveed, S.; Waqas, A.; Majeed, S.; Zeshan, M.; Jahan, N.; Haaris Sheikh, M. Child psychiatry, A scientometric analysis 1980–2016. F1000Research 2017, 6, 1293. [Google Scholar] [CrossRef] [PubMed]
- Vogelzang, B.H.; Scutaru, C.; Mache, S.; Vitzthum, K.; Kusma, B.; Schulte-Herbrüggen, O.; Groneberg, D.A.; Quarcoo, D.; Groneberg, D.; Schulte-Herbrggen, O. A bibliometric analysis of bipolar affective disorders using density-equalizing mapping and output benchmarking. Indian J. Psychiatry 2012, 54, 320–326. [Google Scholar] [PubMed]
- Vogelzang, B.H.; Scutaru, C.; Mache, S.; Vitzthum, K.; Quarcoo, D.; Groneberg, D.A. Depression and suicide publication analysis, using density equalizing mapping and output benchmarking. Indian J. Psychol. Med. 2011, 33, 59–65. [Google Scholar] [PubMed]
- Correll, D.J.; Vlassakov, K.V.; Kissin, I. No evidence of real progress in treatment of acute pain, 1993–2012, scientometric analysis. J. Pain Res. 2014, 7, 199–210. [Google Scholar] [PubMed]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar, strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.; Sadeghieh, T.; Adeli, K. Peer Review in Scientific Publications, Benefits, Critiques, & A Survival Guide. EJIFCC 2014, 25, 227–243. [Google Scholar] [PubMed]
- Chen, M.; Zhao, M.H.; Kallenberg, C.G. The impact factor of rheumatology J.s, an analysis of 2008 and the recent 10 years. Rheumatol. Int. 2011, 31, 1611–1615. [Google Scholar] [CrossRef] [PubMed]
- Bredan, A.; Benamer, H.T.; Bakoush, O. Why are J.s from less-developed countries constrained to low impact factors? Libyan J. Med 2014, 9, 25774. [Google Scholar] [CrossRef]
- Kissin, I. An early indicator of drug success, Top J. Selectivity Index. Drug Des. Dev. Ther. 2013, 7, 93–98. [Google Scholar] [CrossRef]
- Kissin, I. Scientometric assessment of drugs for chronic pain, 1979–2013, rapid growth of publications, paucity of successful drugs. J. Pain Res. 2014, 7, 505–514. [Google Scholar] [CrossRef]
- Kennedy, S.H.; Lam, R.W.; McIntyre, R.S.; Valérie Tourjman, S.; Bhat, V.; Blier, P.; Hasnain, M.; Jollant, F.; Levitt, A.J.; MacQueen, G.M.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder: Section 3. Pharmacological Treatments. Can. J. Psychiatry 2016, 61, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Ho, C.S.; McIntyre, R.S.; Wang, W.; Ho, R.C. Effects of vortioxetine and fluoxetine on the level of Brain Derived Neurotrophic Factors (BDNF) in the hippocampus of chronic unpredictable mild stress-induced depressive rats. Brain Res. Bull. 2018, 142, 1–7. [Google Scholar] [CrossRef]
- Lu, Y.; Ho, C.S.; Liu, X.; Chua, A.N.; Wang, W.; McIntyre, R.S.; Ho, R.C. Chronic administration of fluoxetine and pro-inflammatory cytokine change in a rat model of depression. PLoS ONE 2017, 12, e0186700. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, S.A. The advantages of paroxetine in different subgroups of depression. Int. Clin. Psychopharmacol. 1992, 6, 91–100. [Google Scholar] [CrossRef]
- Black, K.; Shea, C.; Dursun, S.; Kutcher, S. Selective serotonin reuptake inhibitor discontinuation syndrome, proposed diagnostic criteria. J. Psychiatry Neurosci. 2000, 25, 255–261. [Google Scholar]
- Bang, L.M.; Keating, G.M. Paroxetine controlled release. CNS Drugs 2004, 18, 355–364. [Google Scholar] [CrossRef]
- Berard, A.; Ramos, E.; Rey, E.; Blais, L.; St-Andre, M.; Oraichi, D. First trimester exposure to paroxetine and risk of cardiac malformations in infants, the importance of dosage. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2007, 80, 18–27. [Google Scholar] [CrossRef]
- Nelson, J.C.; Spyker, D.A. Morbidity and Mortality Associated with Medications Used in the Treatment of Depression, An Analysis of Cases Reported to U.S. Poison Control Centers, 2000–2014. Am. J. Psychiatry 2017, 174, 438–450. [Google Scholar] [CrossRef]
- McIntyre, R.S. The role of new antidepressants in clinical practice in Canada, a brief review of vortioxetine, levomilnacipran ER, and vilazodone. Neuropsychiatr. Dis. Treat. 2017, 13, 2913–2919. [Google Scholar] [CrossRef]
- Lu, Y.; Ho, C.S.; McIntyre, R.S.; Wang, W.; Ho, R.C. Agomelatine-induced modulation of brain-derived neurotrophic factor (BDNF) in the rat hippocampus. Life Sci. 2018, 210, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Milev, R.V.; Giacobbe, P.; Kennedy, S.H.; Blumberger, D.M.; Daskalakis, Z.J.; Downar, J.; Modirrousta, M.; Patry, S.; Vila-Rodriguez, F.; Lam, R.W.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder: Section 4. Neurostimulation Treatments. Can. J. Psychiatry 2016, 61, 561–575. [Google Scholar] [CrossRef] [PubMed]
- N.I.C.E. (UK) Guidiance on the Use of Electroconvulsive Therapy 2009. Available online: https://www.nice.org.uk/guidance/ta59/chapter/4-Evidence-and-interpretation (accessed on 10 June 2019).
- Ross, E.L.; Zivin, K.; Maixner, D.F. Cost-effectiveness of Electroconvulsive Therapy vs Pharmacotherapy/Psychotherapy for Treatment-Resistant Depression in the United States. JAMA Psychiatry 2018, 75, 713–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulders, P.C.; van Eijndhoven, P.F.; Pluijmen, J.; Schene, A.H.; Tendolkar, I.; Beckmann, C.F. Default mode network coherence in treatment-resistant major depressive disorder during electroconvulsive therapy. J. Affect. Disord. 2016, 205, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.S.; Zhang, M.W.; Ho, R.C. Optical Topography in Psychiatry, A Chip Off the Old Block or a New Look Beyond the Mind-Brain Frontiers? Front. Psychiatry 2016, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.Y.; Ho, C.S.; Lim, C.R.; Ho, R.C. Functional near-infrared spectroscopy in psychiatry. BJPsych Adv. 2017, 23, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Fujita, Y.; Takebayashi, M.; Hisaoka, K.; Tsuchioka, M.; Morinobu, S.; Yamawaki, S. Asymmetric alternation of the hemodynamic response at the prefrontal cortex in patients with schizophrenia during electroconvulsive therapy, a near-infrared spectroscopy study. Brain Res. 2011, 1410, 132–140. [Google Scholar] [CrossRef]
- Fosse, R.; Read, J. Electroconvulsive Treatment, Hypotheses about Mechanisms of Action. Front. Psychiatry 2013, 4, 94. [Google Scholar] [CrossRef]
- N.I.C.E. (UK) Repetitive Transcranial Magnetic Stimulation for Depression 2015. Available online: https://www.nice.org.uk/guidance/ipg542/chapter/4-Efficacy (accessed on 10 June 2019).
- Yesavage, J.A.; Fairchild, J.K.; Mi, Z.; Biswas, K.; Davis-Karim, A.; Phibbs, C.S.; Forman, S.D.; Thase, M.; Williams, L.M.; Etkin, A.; et al. Effect of Repetitive Transcranial Magnetic Stimulation on Treatment-Resistant Major Depression in US Veterans: A Randomized Clinical Trial. JAMA Psychiatry 2018, 75, 884–893. [Google Scholar] [CrossRef]
- Fytagoridis, A.; Heard, T.; Samuelsson, J.; Zsigmond, P.; Jiltsova, E.; Skyrman, S.; Skoglund, T.; Coyne, T.; Silburn, P.; Blomstedt, P. Surgical Replacement of Implantable Pulse Generators in Deep Brain Stimulation: Adverse Events and Risk Factors in a Multicenter Cohort. Ster. Funct. Neurosurg. 2016, 94, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.W.; Harris, K.M.; Ho, R.C. Is off-label repeat prescription of ketamine as a rapid antidepressant safe? Controversies, ethical concerns, and legal implications. BMC Med. Ethics 2016, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Miller, G. Is pharma running out of brainy ideas? Science 2010, 329, 502–504. [Google Scholar] [CrossRef] [PubMed]
- Hyman, S.E. Psychiatric drug development, diagnosing a crisis. Cerebrum Dana Forum Brain Sci. 2013, 2013, 5. [Google Scholar]
- Zhang, M.W.; Ho, R.C. Ketamine’s potential as a rapid antidepressant was overplayed. BMJ Br. Med. J. 2015, 351, h4467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.W.; Ho, R.C. Ethical considerations for clinical research and off-label use of ketamine to treat mood disorders, the balance between risks and benefits. Ethics Behav. 2017, 27, 681–699. [Google Scholar] [CrossRef]
- Mahapatra, A.; Gupta, R. Role of psilocybin in the treatment of depression. Ther. Adv. Psychopharmacol. 2017, 7, 54–56. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.S.; Ong, Y.L.; Tan, G.H.; Yeo, S.N.; Ho, R.C. Profile differences between overdose and non-overdose suicide attempts in a multi-ethnic Asian society. BMC Psychiatry 2016, 16, 379. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, A.; Zhou, X.; Del Giovane, C.; Hetrick, S.E.; Qin, B.; Whittington, C.; Coghill, D.; Zhang, Y.; Hazell, P.; Leucht, S.; et al. Comparative efficacy and tolerability of antidepressants for major depressive disorder in children and adolescents: A network meta-analysis. Lancet 2016, 388, 881–890. [Google Scholar] [CrossRef]
- Masic, I. Scientometric analysis, A technical need for medical science researchers either as authors or as peer reviewers. J. Res. Pharm. Pract. 2016, 5, 1. [Google Scholar] [CrossRef]
Name | Number of Article (Total) | PI a | Index of Change (%) b | Index of Expectations c | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1988–1992 | 1993–1997 | 1998–2002 | 2003–2007 | 2008–2012 | 2013–2017 | 1988–1992 | 1993–1997 | 1998–2002 | 2003–2007 | 2008–2012 | 2013–2017 | |||
fluoxetine | 9244 | 2.60 | - | 331.3 | 52.4 | 6.6 | 9.9 | 1.3 | - | 3.60 | 4.83 | 4.55 | 4.47 | 3.97 |
paroxetine | 4349 | 1.22 | - | 322.8 | 100.9 | 35.7 | −17.0 | −14.6 | - | 1.38 | 2.61 | 3.20 | 2.31 | 1.51 |
citalopram | 3431 | 0.97 | - | 597.0 | 125.2 | 55.6 | 21.2 | −13.1 | - | 0.86 | 1.60 | 2.09 | 2.15 | 1.74 |
sertraline | 3349 | 0.94 | - | 725.7 | 121.8 | 21.8 | 1.0 | 3.0 | - | 1.09 | 1.96 | 2.15 | 1.43 | 1.31 |
amitriptyline | 3177 | 0.89 | - | 101.0 | −10.2 | −13.7 | −0.6 | −0.4 | - | 1.69 | 1.14 | 1.07 | 0.76 | 0.70 |
venlafaxine | 2849 | 0.80 | - | 314.0 | 30.1 | −3.7 | −24.7 | −31.0 | - | 1.40 | 1.64 | 1.30 | 0.84 | 0.52 |
fluvoxamine | 1944 | 0.55 | - | 1733.3 | 240.0 | 82.6 | 29.9 | −11.0 | - | 0.47 | 1.24 | 1.95 | 2.09 | 1.58 |
clomipramine | 1786 | 0.50 | - | 130.7 | −5.1 | −25.5 | −14.4 | −20.4 | - | 1.38 | 1.20 | 0.72 | 0.61 | 0.40 |
ECT | 3554 | 1.00 | - | 76.2 | 24.7 | 20.3 | 29.3 | 19.0 | - | 1.98 | 2.47 | 2.97 | 3.84 | 4.57 |
rTMS | 1371 | 0.39 | - | - | 2014.3 | 62.8 | 68.0 | 40.7 | - | 0.05 | 0.68 | 0.93 | 1.28 | 1.44 |
VNS | 552 | 0.16 | - | - | 580.0 | 250.0 | 55.5 | 13.0 | - | 0.02 | 0.21 | 0.42 | 0.50 | 0.49 |
tDCS | 438 | 0.12 | - | - | - | 600.0 | 707.1 | 173.5 | - | - | 0.01 | 0.09 | 0.44 | 0.92 |
DBS | 984 | 0.28 | - | - | 600.0 | 757.1 | 458.3 | 73.4 | - | 0.01 | 0.05 | 0.24 | 0.88 | 1.43 |
Classes of Antidepressants and Neurostimulation Therapies | PI in Psychiatry (%) | PI in Neurosciences & Neurology (%) | PI in Psychology (%) | PI in Pharmacology & Pharmacy (%) |
---|---|---|---|---|
SSRI | 11.29 | 10.31 | 3.55 | 26.23 |
SNRI | 1.36 | 1.01 | 0.43 | 3.33 |
TCA | 0.91 | 0.75 | 0.31 | 1.88 |
ECT | 2.55 | 1.40 | 0.46 | 1.09 |
rTMS | 0.61 | 1.04 | 0.23 | 0.34 |
VNS | 0.21 | 0.23 | 0.02 | 0.17 |
DBS | 0.31 | 0.56 | 0.06 | 0.25 |
tDCS | 0.14 | 0.29 | 0.03 | 0.11 |
Total number of articles related to biological treatment of MDD | 104,355 | 85,263 | 69,046 | 38,931 |
Biological Treatments for Major Depressive Disorder | Year of Approval | Number of Articles | PI % |
---|---|---|---|
Antidepressants | |||
fluoxetine | 1987 | 4182 | 4.01 |
paroxetine | 1996 | 2179 | 2.09 |
sertraline | 1990 | 1736 | 1.66 |
citalopram | 1998 | 1535 | 1.47 |
venlafaxine | 1993 | 1423 | 1.36 |
amitriptyline | 1961 | 1111 | 1.06 |
fluvoxamine | 1994 | 1042 | 1.00 |
clomipramine | 1970 | 946 | 0.91 |
escitalopram | 2002 | 861 | 0.83 |
bupropion | 1989 | 741 | 0.71 |
mirtazapine | 1994 | 633 | 0.61 |
nortriptyline | 1977 | 546 | 0.52 |
duloxetine | 2004 | 485 | 0.46 |
moclobemide | 2000 | 313 | 0.30 |
trazodone | 1981 | 298 | 0.29 |
nefazodone | 2003 | 285 | 0.27 |
reboxetine | 1997 | 283 | 0.27 |
agomelatine | 2009 | 219 | 0.21 |
milnacipran | 1996 | 182 | 0.17 |
vortioxetine | 2013 | 103 | 0.10 |
desvenlafaxine | 2007 | 87 | 0.08 |
vilazodone | 2011 | 45 | 0.04 |
levomilnacipran | 2013 | 29 | 0.03 |
Neurostimulation therapies | |||
ECT | 1954 | 2665 | 2.55 |
rTMS | 1985 | 637 | 0.61 |
DBS | 2009 | 327 | 0.31 |
VNS | 2005 | 215 | 0.21 |
tDCS | 2014 | 150 | 0.14 |
Years | All Journal Articles Related to Biological Treatments for MDD | All Articles in Psychiatry Journals | All Articles in Medical Journals | |||
---|---|---|---|---|---|---|
Number | IC (%) | Number | IC (%) | Number | IC (%) | |
1988–1992 | 997 | - | 4679 | - | 1140814 | - |
1993–1997 | 2864 | 65.2 | 8751 | 46.5 | 1333570 | 14.5 |
1998–2002 | 4358 | 34.3 | 11593 | 24.5 | 1571304 | 15.1 |
2003–2007 | 5658 | 23.0 | 16485 | 29.7 | 1905855 | 17.6 |
2008–2012 | 7585 | 25.4 | 24137 | 31.7 | 2702338 | 29.5 |
2013–2017 | 8621 | 12.0 | 32096 | 24.8 | 3462317 | 22.0 |
Class of Antidepressants or Neurostimulation | The Index of Change of PI of Some Antidepressants and Neurostimulation Therapy (ECT) | ||||
---|---|---|---|---|---|
(from 1988 to 2017) (%) * | |||||
1993–1997 | 1998–2002 | 2003–2007 | 2008–2012 | 2013–2017 | |
TCA | 25.6 | −4.4 | −51.6 | −74.0 | −85.0 |
MAOI | 102.2 | 44.6 | −38.8 | −71.6 | −81.3 |
ECT | −17.5 | −15.4 | −26.3 | −37.9 | −48.1 |
SSRI | 77.1 | 142.6 | 116.2 | 50.0 | −0.1 |
SNRI | 93.9 | 107.3 | 44.6 | −29.0 | −65.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, B.X.; Ha, G.H.; Vu, G.T.; Nguyen, L.H.; Latkin, C.A.; Nathan, K.; McIntyre, R.S.; Ho, C.S.; Tam, W.W.; Ho, R.C. Indices of Change, Expectations, and Popularity of Biological Treatments for Major Depressive Disorder between 1988 and 2017: A Scientometric Analysis. Int. J. Environ. Res. Public Health 2019, 16, 2255. https://doi.org/10.3390/ijerph16132255
Tran BX, Ha GH, Vu GT, Nguyen LH, Latkin CA, Nathan K, McIntyre RS, Ho CS, Tam WW, Ho RC. Indices of Change, Expectations, and Popularity of Biological Treatments for Major Depressive Disorder between 1988 and 2017: A Scientometric Analysis. International Journal of Environmental Research and Public Health. 2019; 16(13):2255. https://doi.org/10.3390/ijerph16132255
Chicago/Turabian StyleTran, Bach X., Giang H. Ha, Giang T. Vu, Long H. Nguyen, Carl A. Latkin, Kalpana Nathan, Roger S. McIntyre, Cyrus S. Ho, Wilson W. Tam, and Roger C. Ho. 2019. "Indices of Change, Expectations, and Popularity of Biological Treatments for Major Depressive Disorder between 1988 and 2017: A Scientometric Analysis" International Journal of Environmental Research and Public Health 16, no. 13: 2255. https://doi.org/10.3390/ijerph16132255
APA StyleTran, B. X., Ha, G. H., Vu, G. T., Nguyen, L. H., Latkin, C. A., Nathan, K., McIntyre, R. S., Ho, C. S., Tam, W. W., & Ho, R. C. (2019). Indices of Change, Expectations, and Popularity of Biological Treatments for Major Depressive Disorder between 1988 and 2017: A Scientometric Analysis. International Journal of Environmental Research and Public Health, 16(13), 2255. https://doi.org/10.3390/ijerph16132255