Personal NO2 and Volatile Organic Compounds Exposure Levels are Associated with Markers of Cardiovascular Risk in Women in the Cape Town Region of South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Ethics, Design, and Population
2.2. Air Quality and Temperature Monitoring
2.3. Study Endpoints
2.3.1. Health Questionnaire and Anthropometric Measurements
2.3.2. Biochemical Analysis
2.3.3. Urinary Analysis of Metabolites of Volatile Organic Compounds
2.3.4. Assessment of Endothelial Function, Carotid Intima Media Thickness, and Retinal Microvascular Caliber
2.4. Statistical Analysis
3. Results
3.1. Baseline Population Characteristics
3.2. Personal Ambient Exposure Variable Outcomes and Urinary Metabolites
3.3. Air Pollution Exposure and Cardiovascular Endpoints
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
NO2 | Benzene | Toluene | Ethyl-benzene | m+p-xylene | o-xylene | |
---|---|---|---|---|---|---|
Personal Exposure a | ||||||
Benzene | 0.616 *** | |||||
Toluene | 0.452 *** | 0.461 *** | ||||
Ethyl-benzene | 0.622 *** | 0.585 *** | 0.652 *** | |||
m+p-xylene | 0.642 *** | 0.595 *** | 0.658 *** | 0.983 *** | ||
o-xylene | 0.643 *** | 0.589 *** | 0.667 *** | 0.972 *** | 0.989 *** | |
Total BTEX b | 0.524 *** | 0.474 *** | 0.951 *** | 0.790 *** | 0.798 *** | 0.808 *** |
Urinary metabolites c | ||||||
HPMA | 0.081 | 0.186 * | −0.020 | −0.002 | 0.023 | 0.017 |
PMA | 0.117 | 0.011 | −0.218 * | −0.112 | −0.105 | −0.123 |
MU | 0.061 | 0.152 | −0.009 | −0.749 | −0.038 | −0.024 |
BMA | −0.051 | −0.070 | 0.120 | −0.023 | −0.018 | −0.005 |
3+4MHA | 0.273 ** | 0.341 *** | 0.218 * | 0.192 * | 0.215 * | 0.210 * |
Variable | Exposure Variable | Estimate a,b (95% CI) | p-Values |
---|---|---|---|
SBP c (mmHg) | NO2 | 2.42 (0.03; 4.80) | 0.047 |
Total BTEX | 1.54 (−1.38; 4.46) | 0.297 | |
Benzene | 2.51 (−0.21; 5.22) | 0.070 | |
Toluene | 0.92 (−2.04; 3.88) | 0.539 | |
Ethyl-benzene | 1.44 (−1.15; 4.03) | 0.272 | |
m+p-xylene | 1.62 (−1.01; 4.25) | 0.224 | |
o-Xylene | 2.12 (−0.50; 4.74) | 0.112 | |
Urinary metabolite d | |||
3+4MHA | −0.52 (−3.10; 2.05) | 0.687 | |
DBP c (mmHg) | NO2 | 1.76 (0.00; 3.52) | 0.050 |
Total BTEX | 2.07 (0.06; 4.07) | 0.043 | |
Benzene | 1.19 (−0.73; 3.10) | 0.220 | |
Toluene | 1.77 (−0.25; 3.80) | 0.086 | |
Ethyl-benzene | 1.58 (−0.20; 3.36) | 0.080 | |
m+p-xylene | 1.72 (−0.09; 3.53) | 0.062 | |
o-xylene | 2.01 (0.21; 3.80) | 0.029 | |
Urinary metabolite d | |||
3+4MHA | −0.40 (−2.28; 1.48) | 0.673 |
Variable | Exposure Variable | Estimate a,b (95% CI) | p-Values |
---|---|---|---|
CRAE c (µm) | NO2 | −0.47 (−2.25; 1.31) | 0.599 |
Total BTEX | −0.70 (−2.88; 1.47) | 0.521 | |
Benzene | −0.54 (−2.51; 1.42) | 0.582 | |
Toluene | −0.74 (−2.90; 1.43) | 0.500 | |
Ethyl-benzene | −0.49 (−2.24; 1.26) | 0.579 | |
m+p-xylene | −0.60 (−2.40; 1.21) | 0.511 | |
o-xylene | −0.68 (−2.53; 1.16) | 0.461 | |
Urinary metabolite d | |||
3+4MHA | −0.57 (−2.297; 1.167) | 0.517 | |
CRVE c (µm) | NO2 | −2.08 (−4.14; −0.02) | 0.048 |
Total BTEX | −0.29 (−3.00; 2.39) | 0.829 | |
Benzene | −0.67 (−3.11; 1.78) | 0.588 | |
Toluene | −0.40 (−3.11; 2.31) | 0.768 | |
Ethyl-benzene | −0.53 (−2.64; 1.58) | 0.616 | |
m+p-xylene | −0.50 (−2.62; 1.62) | 0.638 | |
o-xylene | −0.61 (−2.85; 1.63) | 0.587 | |
Urinary metabolite d | |||
3+4MHA | −0.14 (−2.19; 1.91) | 0.890 |
Variable | Exposure Variable | Estimate a,b (95% CI) | p-Values |
---|---|---|---|
Mean brachial diameter c (mm) | NO2 | −0.11 (−0.19; −0.03) | 0.005 |
Total BTEX | −0.08 (−0.17; 0.01) | 0.090 | |
Benzene | −0.01 (−0.10; 0.08) | 0.760 | |
Toluene | −0.09 (−0.17; 0.01) | 0.065 | |
Ethyl-benzene | −0.08 (−0.17; 0.00) | 0.057 | |
m+p-xylene | −0.06 (−0.15; 0.02) | 0.144 | |
o-xylene | −0.06 (−0.15; 0.03) | 0.189 | |
Urinary metabolite d | |||
3+4MHA | 0.02 (−0.07; 0.11) | 0.647 | |
% FMD e | NO2 | −0.11 (−1.00; 0.77) | 0.801 |
Total BTEX | 0.30 (−0.56; 1.15) | 0.492 | |
Benzene | −0.01 (−0.87; 0.85) | 0.982 | |
Toluene | 0.36 (−0.50; 1.22) | 0.403 | |
Ethyl-benzene | 0.35 (−0.76; 0.90) | 0.870 | |
m+p-xylene | 0.07 (−0.77; 0.92) | 0.862 | |
o-xylene | 0.16 (−0.68; 1.00) | 0.705 | |
Urinary metabolite f | |||
3+4MHA | −1.45 (−2.38; −0.51) | 0.003 |
Variable | Exposure Variable | Estimate a,b (95% CI) | p-Values |
---|---|---|---|
Carotid diameter c (mm) | NO2 | −0.06 (−0.19; 0.08) | 0.393 |
Total BTEX | −0.12 (−0.26; 0.02) | 0.082 | |
Benzene | −0.07 (−0.20; 0.07) | 0.331 | |
Toluene | −0.11 (−0.25; 0.03) | 0.132 | |
Ethyl-benzene | −0.10 (−0.22; 0.02) | 0.097 | |
m+p-xylene | −0.10 (−0.23; 0.02) | 0.109 | |
o-xylene | −0.09 (−0.22; 0.04) | 0.156 | |
Urinary metabolite d | |||
3+4MHA | −0.07 (−0.20; 0.07) | 0.325 | |
cIMT e (µm) | NO2 | 1.23 (−23.63; 26.09) | 0.921 |
Total BTEX | 12.76 (−10.55; 36.06) | 0.275 | |
Benzene | 24.88 (2.19; 47.57) | 0.032 | |
Toluene | 9.37 (−13.24; 31.99) | 0.407 | |
Ethyl-benzene | 9.10 (−14.32; 32.52) | 0.437 | |
m+p-xylene | 8.64 (−15.36; 32.64) | 0.471 | |
o-xylene | 13.06 (−10.74; 36.85) | 0.274 | |
Urinary metabolite f | |||
3+4MHA | −10.56 (−30.75; 9.63) | 0.302 |
References
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Smith, K.R. Indoor air pollution: A global health concern. Br. Med. Bull. 2003, 68, 209–225. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization: Regional Office for Europe. WHO Guidelines for Indoor Air Quality: Selected Pollutants. Available online: https://afro.who.int/publications/selected-pollutants-who-guideline-indoor-air-quality (accessed on 18 February 2019).
- Meng, Q.; Richmond-Bryant, J.; Lu, S.E.; Buckley, B.; Welsh, W.J.; Whitsel, E.A.; Hanna, A.; Yeatts, K.B.; Warren, J.; Herring, A.H.; et al. Cardiovascular outcomes and the physical and chemical properties of metal ions found in particulate matter air pollution: A QICAR study. Environ. Health Perspect. 2013, 121, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Bourdrel, T.; Bind, M.-A.; Béjot, Y.; Morel, O.; Argacha, J.-F. Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 2017, 110, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Mills, N.L.; Donaldson, K.; Hadoke, P.W.; Boon, N.A.; MacNee, W.; Cassee, F.R.; Sandstrom, T.; Blomberg, A.; Newby, D.E. Adverse cardiovascular effects of air pollution. Nat. Clin. Pract. Cardiovasc. Med. 2009, 6, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Mills, N.L.; Miller, M.R.; Lucking, A.J.; Beveridge, J.; Flint, L.; Boere, A.J.F.; Fokkens, P.H.; Boon, N.A.; Sandstrom, T.; Blomberg, A.; et al. Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation. Eur. Heart J. 2011, 32, 2660–2671. [Google Scholar] [CrossRef] [PubMed]
- Künzli, N.; Tager, I.B. Air pollution: From lung to heart. Swiss Med. Wkly. 2005, 135, 697–702. [Google Scholar] [PubMed]
- Kelly, F.J.; Fussell, J.C. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. Free Radic. Biol. Med. 2017, 110, 345–367. [Google Scholar] [CrossRef] [Green Version]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the american heart association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Nelin, T.D.; Joseph, A.M.; Gorr, M.W.; Wold, L.E. Direct and indirect effects of particulate matter on the cardiovascular system. Toxicol. Lett. 2012, 208, 293–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, J.A.; Alexis, N.; Barnes, C.; Bernstein, I.L.; Bernstein, J.A.; Nel, A.; Peden, D.; Diaz-Sanchez, D.; Tarlo, S.M.; Williams, P.B. Health effects of air pollution. J. Allergy Clin. Immunol. 2004, 114, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, P.M.; Harari, S.; Martinelli, I.; Franchini, M. Effects on health of air pollution: A narrative review. Intern. Emerg. Med. 2015, 10, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Łatka, P.; Nowakowska, D.; Nowomiejska, K.; Rejdak, R. How air pollution affects the eyes—A review. Ophthalmol. J. 2018, 3, 58–62. [Google Scholar] [CrossRef]
- Collart, P.; Dubourg, D.; Levêque, A.; Sierra, N.B.; Coppieters, Y. Short-term effects of nitrogen dioxide on hospital admissions for cardiovascular disease in Wallonia, Belgium. Int. J. Cardiol. 2018, 255, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Miri, M.; Rostami Aghdam Shendi, M.; Ghaffari, H.R.; Ebrahimi Aval, H.; Ahmadi, E.; Taban, E.; Gholizadeh, A.; Yazdani Aval, M.; Mohammadi, A.; Azari, A. Investigation of outdoor BTEX: Concentration, variations, sources, spatial distribution, and risk assessment. Chemosphere 2016, 163, 601–609. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. Available online: https://www.who.int/phe/publications/air-pollution-global-assessment/en/ (accessed on 15 March 2019).
- Bolden, A.L.; Kwiatkowski, C.F.; Colborn, T. New look at BTEX: Are ambient levels a problem. Environ. Sci. Technol. 2015, 49, 5261–5276. [Google Scholar] [CrossRef]
- Autrup, H. Ambient air pollution and adverse health effects. Procedia Soc. Behav. Sci. 2010, 2, 7333–7338. [Google Scholar] [CrossRef]
- Smith, K.R.; Mehta, S. The burden of disease from indoor air pollution in developing countries: Comparison of estimates. Int. J. Hyg. Environ. Health 2003, 206, 279–289. [Google Scholar] [CrossRef]
- Cohen, A.J.; Anderson, H.R.; Ostro, B.; Pandey, K.D.; Künzli, N.; Gutschmidt, K.; Pope, A.; Samet, J.M.; Smith, K. The global burden of disease due to outdoor air pollution. J. Toxicol. Environ. Health 2006, 68, 1301–1307. [Google Scholar] [CrossRef]
- Coker, E.; Kizito, S.; Coker, E.; Kizito, S. A narrative review on the human health effects of ambient air pollution in Sub-Saharan Africa: An urgent need for health effects studies. Int. J. Environ. Res. Public Health 2018, 15, 427. [Google Scholar] [CrossRef]
- Katoto, P.D.M.C.; Byamungu, L.; Brand, A.S.; Mokaya, J.; Strijdom, H.; Goswami, N.; De Boever, P.; Nawrot, T.S.; Nemery, B. Ambient air pollution and health in Sub-Saharan Africa: Current evidence, perspectives and a call to action. Environ. Res. 2019, 173, 174–188. [Google Scholar] [CrossRef] [PubMed]
- Strijdom, H.; De Boever, P.; Walzl, G.; Essop, M.F.; Nawrot, T.S.; Webster, I.; Westcott, C.; Mashele, N.; Everson, F.; Malherbe, S.T.; et al. Cardiovascular risk and endothelial function in people living with HIV/AIDS: Design of the multi-site, longitudinal EndoAfrica study in the Western Cape Province of South Africa. BMC Infect. Dis. 2017, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Grammer, L.C.; Harris, K.E.; Yarnold, P.R. Effect of Respiratory Protective Devices on Development of Antibody and Occupational Asthma to an Acid Anhydride. Chest 2002, 121, 1317–1322. [Google Scholar] [CrossRef] [PubMed]
- Rodes, C.E.; Lawless, P.A.; Evans, G.F.; Sheldon, L.S.; Williams, R.W.; Vette, A.F.; Creason, J.P.; Walsh, D. The relationships between personal PM exposures for elderly populations and indoor and outdoor concentrations for three retirement center scenarios. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 103–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Targa, J.; Loader, A. Diffusion Tubes for Ambient NO2 Monitoring: Practical Guidance for Laboratories and Users. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat05/0802141004_NO2_WG_PracticalGuidance_Issue1a.pdf (accessed on 6 March 2019).
- Palmes, E.D.; Gunnison, A.F.; Dimattio, J.; Tomczyk, C. Personal sampler for nitrogen dioxide. Am. Ind. Hyg. Assoc. J. 1976, 37, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Akdemir, A. The creation of pollution mapping and measurement of ambient concentration of sulfur dioxide and nitrogen dioxide with passive sampler. J. Environ. Heal. Sci. Eng. 2014, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- McAlary, T.; Groenevelt, H.; Disher, S.; Arnold, J.; Seethapathy, S.; Sacco, P.; Crump, D.; Schumacher, B.; Hayes, H.; Johnson, P.; et al. Passive sampling for volatile organic compounds in indoor air-controlled laboratory comparison of four sampler types. Environ. Sci. Process. Impacts 2015, 17, 896–905. [Google Scholar] [CrossRef]
- Pegas, P.N.; Alves, C.A.; Evtyugina, M.G.; Nunes, T.; Cerqueira, M.; Franchi, M.; Pio, C.A.; Almeida, S.M.; Freitas, M.C. Indoor air quality in elementary schools of Lisbon in spring. Environ. Geochem. Health 2011, 33, 455–468. [Google Scholar] [CrossRef]
- Seedat, Y.K.; Rayner, B.L. The abridged South African hypertension guideline 2011. S. Afr. Fam. Pract. 2013, 55, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.M. From C-reactive protein to interleukin-6 to interleukin-1: Moving upstream to identify novel targets for atheroprotection. Circ. Res. 2016, 118, 145–156. [Google Scholar] [CrossRef]
- Stevens, J.F.; Maier, C.S. Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol. Nutr. Food Res. 2008, 52, 7–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, Q.; Shore, R.; Li, G.; Su, L.; Jin, X.; Melikian, A.A.; Roy, N.; Chen, L.C.; Wirgin, I.; Cohen, B.; et al. Biomarkers of benzene: Urinary metabolites in relation to individual genotype and personal exposure. Chem. Biol. Interact. 2005, 153–154, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Angerer, J.; Schildbach, M.; Krämer, A. Sp-Toluylmercapturic acid in the urine of workers exposed to toluene: A new biomarker for toluene exposure. Arch. Toxicol. 1997, 72, 119–123. [Google Scholar] [CrossRef]
- Jacobson, G.A.; McLean, S. Biological Monitoring of Low Level Occupational Xylene Exposure and the Role of Recent Exposure. Ann. Occup. Hyg. 2003, 47, 331–336. [Google Scholar] [PubMed]
- Pirkle, J.L.; De Jesus, V. Laboratory Procedure Manual: Volatile Organic Compounds (VOCs): Urine Ultra Performance Liquid Chromatography with Electro Spray Tandem Mass Spectrometry. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2011-2012/labmethods/UVOC_G_MET_VOC_Metabolites.pdf (accessed on 6 June 2019).
- Charakida, M.; Masi, S.; Luscher, T.F.; Kastelein, J.J.P.; Deanfield, J.E. Assessment of atherosclerosis: The role of flow-mediated dilatation. Eur. Heart J. 2010, 31, 2854–2861. [Google Scholar] [CrossRef] [PubMed]
- Simova, I. Intima-Media Thickness: Appropriate Evaluation and Proper Measurement, Described. Available online: https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-13/Intima-media-thickness-Appropriate-evaluation-and-proper-measurement-described (accessed on 20 April 2019).
- Mendonça, J.A.; Bisetto de Andrade, B.; Braga de Aquino, J.L.; Leandro-Merhi, V.A.; Damian, G.B.; De Andrade, B.B.; De Aquino, J.L.B.; Leandro-Merhi, V.A.; Damian, G.B. Spectral Doppler and automated software-guided ultrasound assessment of bilateral common carotid intima-media thickness in spondyloarthritis: Is there a correlation with clinical findings? Drugs Context 2018, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Knudtson, M.D.; Lee, K.E.; Hubbard, L.D.; Wong, T.Y.; Klein, R.; Klein, B.E.K. Revised formulas for summarizing retinal vessel diameters. Curr. Eye Res. 2003, 27, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Langham, M.C.; Zhou, Y.; Chirico, E.N.; Magland, J.F.; Sehgal, C.M.; Englund, E.K.; Mohler, E.R.; Guo, W.; Barhoum, S.; Wehrli, F.W. Effects of age and smoking on endothelial function assessed by quantitative cardiovascular magnetic resonance in the peripheral and central vasculature. J. Cardiovasc. Magn. Reson. 2015, 17, 19. [Google Scholar] [CrossRef] [Green Version]
- Huxley, R.; Mendis, S.; Zheleznyakov, E.; Reddy, S.; Chan, J. Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk—A review of the literature. Eur. J. Clin. Nutr. 2009, 64, 16–22. [Google Scholar] [CrossRef]
- Jerrett, M.; Burnett, R.T.; Brook, J.; Kanaroglou, P.; Giovis, C.; Finkelstein, N.; Hutchison, B. Do socioeconomic characteristics modify the short term association between air pollution and mortality? Evidence from a zonal time series in Hamilton, Canada. J. Epidemiol. Community Health 2004, 58, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Kakkoura, M.; Kouis, P.; Papatheodorou, S.I.; Paschalidou, A.Κ.; Ziogas, K.; Kakkoura, M.; Ziogas, K.; Paschalidou, A.Κ.; Papatheodorou, S.I. The effect of ambient air temperature on cardiovascular and respiratory mortality in Thessaloniki, Greece. Sci. Total Environ. 2018, 647, 1351–1358. [Google Scholar]
- Watson, N.F.; Badr, M.S.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C.; et al. Recommended Amount of Sleep for a Healthy Adult: A Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society. J. Clin. Sleep Med. 2015, 11, 591–592. [Google Scholar] [PubMed] [Green Version]
- European Environment Agency. Air Quality in Europe—2018 Report. Available online: http://www.eea.europa.eu/publications/air-quality-in-europe-2012 (accessed on 25 March 2019).
- South African Western Cape Government. Western Cape State of air Quality Management Report: 2013. Available online: https://www.westerncape.gov.za/eadp/files/atoms/files/SoAR 2014.pdf (accessed on 25 March 2019).
- World Health Organization. World Health Organization Guidelines for Indoor Air Quality: Household Fuel Combustion. Available online: http://www.who.int/indoorair/guidelines/hhfc/HHFC_guidelines.pdf (accessed on 25 March 2019).
- Davidson, A.; Naidoo, D. State of Environment Outlook Report for the Western Cape Province—Air Quality. Available online: http://eadp.westerncape.gov.za/sites/default/files/your-resource-library/WCSoEOR_07_ClimateChange.pdf (accessed on 25 March 2019).
- Degraeuwe, B.; Thunis, P.; Clappier, A.; Weiss, M.; Lefebvre, W.; Janssen, S.; Vranckx, S. Impact of passenger car NOX emissions on urban NO2 pollution—Scenario analysis for 8 European cities. Atmos. Environ. 2017, 171, 330–337. [Google Scholar] [CrossRef]
- Kuklinska, K.; Wolska, L.; Namiesnik, J. Air quality policy in the U.S. and the EU—A review. Atmos. Pollut. Res. 2014, 6, 129–137. [Google Scholar] [CrossRef]
- World Health Organization. WHO Air Quality Guidelines for Europe, 2nd ed.; Available online: https://apps.who.int/iris/handle/10665/107335 (accessed on 25 March 2019).
- Vanker, A.; Barnett, W.; Nduru, P.M.; Gie, R.P.; Sly, P.D.; Zar, H.J. Home environment and indoor air pollution exposure in an African birth cohort study. Sci. Total Environ. 2015, 536, 362–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franchini, M.; Mannucci, P.M. Air pollution and cardiovascular disease. Thromb. Res. 2012, 129, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, B.; Luttmann-Gibson, H.; Cohen, A.; Zanobetti, A.; de Souza, C.; Foley, C.; Suh, H.H.; Coull, B.A.; Schwartz, J.; Mittleman, M.; et al. Opposing effects of particle pollution, ozone, and ambient temperature on arterial blood pressure. Environ. Health Perspect. 2012, 120, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Weichenthal, S.; Hatzopoulou, M.; Goldberg, M.S. Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: A cross-over study. Part. Fibre Toxicol. 2014, 11, 70. [Google Scholar] [CrossRef]
- Yang, B.; Qian, Z.; Howard, S.W.; Vaughn, M.G.; Fan, S.; Liu, K.; Dong, G. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis. Environ. Pollut. 2018, 235, 576–588. [Google Scholar] [CrossRef]
- Chan, S.H.; Van Hee, V.C.; Bergen, S.; Szpiro, A.A.; DeRoo, L.A.; London, S.J.; Marshall, J.D.; Kaufman, J.D.; Sandler, D.P.; Kaufman, J.D.; et al. Long-term air pollution exposure and blood pressure in the sister study. Environ. Health Perspect. 2015, 123, 951–958. [Google Scholar] [CrossRef]
- Chen, J.-C.; Wang, X.; Wellenius, G.A.; Serre, M.L.; Driscoll, I.; Casanova, R.; McArdle, J.J.; Manson, J.E.; Chui, H.C.; Espeland, M.A. Ambient air pollution and neurotoxicity on brain structure: Evidence from women’s health initiative memory study. Ann. Neurol. 2015, 78, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Brook, J.R.; Urch, B.; Vincent, R.; Rajagopalan, S.; Silverman, F. Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation 2002, 105, 1534–1536. [Google Scholar] [CrossRef] [PubMed]
- Adar, S.D.; Klein, R.; Klein, B.E.K.; Szpiro, A.A.; Cotch, M.F.; Wong, T.Y.; O’Neill, M.S.; Shrager, S.; Barr, R.G.; Siscovick, D.S.; et al. Air pollution and the microvasculature: A cross-sectional assessment of in vivo retinal images in the population-based multi-ethnic study of atherosclerosis (MESA). PLoS Med. 2010, 7, e1000372. [Google Scholar] [CrossRef] [PubMed]
- Langrish, J.P.; Lundbäck, M.; Mills, N.L.; Johnston, N.R.; Webb, D.J.; Sandström, T.; Blomberg, A.; Newby, D.E.; Sandström, T.; Lundbäck, M.; et al. Contribution of endothelin 1 to the vascular effects of diesel exhaust inhalation in humans. Hypertension 2009, 54, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Bots, M.L.; Hoes, A.W.; Koudstaal, P.J.; Hofman, A.; Grobbee, D.E. Common carotid intima-media thickness and risk of stroke and myocardial infarction: The Rotterdam Study. Circulation 1997, 96, 1432–1437. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, L.; Watson, K.; Budoff, M.; Sampson, P.D.; Barr, R.G.; Diez Roux, A.V.; Jacobs, D.R.; Kaufman, J.D.; Vedal, S.; Polak, J.F.; et al. Fine particulate air pollution and the progression of carotid intima-medial thickness: A prospective cohort study from the Multi-Ethnic Study of Atherosclerosis and Air Pollution. PLoS Med. 2014, 10, e1001430. [Google Scholar]
- Corn, M. Handbook of Hazardous Materials; Elsevier Science: Amsterdam, The Netherlands, 1993; ISBN 0323139558. [Google Scholar]
- Interaction Profile For: Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX). Available online: https://pdfs.semanticscholar.org/3ad5/8812c08fd4d51c7652eff236c5a88be8444a.pdf?_ga=2.123559363.973190570.1527186213-1785467536.1527186213 (accessed on 24 May 2019).
- Hormozi, M.; Mirzaei, R.; Nakhaee, A.; Payandeh, A.; Izadi, S.; Dehghan Haghighi, J.; Rahimpoor, R. Quantification of urinary metabolites of toluene and xylene isomers as biological indices of occupational exposure in printing industry workers. Heal. Scope 2019, in press. [Google Scholar] [CrossRef]
- Langman, J.M. Xylene: Its toxicity, measurement of exposure levels, absorption, metabolism and clearance. Pathology 1994, 26, 301–309. [Google Scholar] [CrossRef]
- Bolla, K.I.; Schwartz, B.S.; Stewart, W.; Rignani, J.; Agnew, J.; Ford, D.P. Comparison of neurobehavioral function in workers exposed to a mixture of organic and inorganic lead and in workers exposed to solvents. Am. J. Ind. Med. 1995, 27, 231–246. [Google Scholar] [CrossRef]
- Celik, A.; Aydin, N.; Ozcirpici, B.; Saricicek, E.; Sezen, H.; Okumus, M.; Bozkurt, S.; Kilinc, M. Elevated red blood cell distribution width and inflammation in printing workers. Med. Sci. Monit. 2013, 19, 1001–1005. [Google Scholar]
- Croxford, J.; Viljoen, D. Alcohol consuption by pregnant women in the Western Cape. SAMJ 1999, 89, 962–965. [Google Scholar] [PubMed]
- Reddy, P.; Zuma, K.; Shisana, O.; Kim, J.; Sewpaul, R.; Jonas, K.; Sewpaul, R. Prevalence of tobacco use among adults in South Africa: Results from the first South African national health and Nutrition Examination Survey. S. Afr. Med. J. 2015, 105, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.R.; Campos Neto, A.A.; de Andrade, M.J.O.; de Medeiros, P.C.B.; dos Santos, N.A. Organic solvent exposure and contrast sensitivity: Comparing men and women. Braz. J. Med. Biol. Res. 2018, 51, e6568. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, M.S.; Breton, C.V.; Devlin, R.B.; Utell, M.J. Air pollution and health: Emerging information on susceptible populations. Air Qual. Atmos. Heal. 2012, 5, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Walton, R.T.; Mudway, I.S.; Dundas, I.; Grigg, J.; Marlin, N.; Koh, L.C.; Aitlhadj, L.; Vulliamy, T.; Jamaludin, J.B.; Wood, H.E.; et al. Air pollution, ethnicity and telomere length in east London schoolchildren: An observational study. Environ. Int. 2016, 96, 41–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Baseline |
---|---|
Age (years) | 42.5 ± 13.4 |
Smoking status | |
Current smoker (n) | 42 (69%) |
Employment | |
Unemployed (n) | 30 (49%) |
Part-time (n) | 25 (41%) |
Full-time (n) | 6 (10%) |
Hours of sleep per night | |
<3 h (n) | 1 (2%) |
3 to ≤6 h (n) | 7 (12%) |
6 to ≤9 h (n) | 37 (61%) |
>9 h (n) | 16 (25%) |
BMI, kg/m3 (n) | 27.7 ± 8.4 |
High-sensitivity C-reactive protein (mg/L) a, b | 6.3 (0.2 to 37.1) |
Elevated hsCRP (>3 mg/L) | |
Yes (n) | 35 (61%) |
No (n) | 22 (39%) |
Urine creatinine (mmol/L) | 13.5 ± 7.1 |
Variable | Baseline |
---|---|
Blood pressure | |
Systolic blood pressure (SBP); mmHg) | 122.5 ± 19.9 |
Diastolic blood pressure (DBP; mmHg) | 84.15 ± 12.0 |
Hypertension (Either SBP of >140 mmHg or DBP of >90 mmHg) | |
Yes, n | 15 (25%) |
No, n | 46 (75%) |
Flow-mediated vasodilatation a | |
Brachial diameter (mm) | 3.22 ± 0.69 |
% Flow-mediated Dilatation (% FMD) b | 5.21 (−7.93 to 23.50) |
Retinal caliber c | |
Central retinal arteriolar equivalent (CRAE; μm) | 157.9 ± 16.4 |
Central retinal venular equivalent (CRVE; μm) | 238.4 ± 20.1 |
CRAE/CRVE ratio (AVR) | 0.66 ± 0.06 |
Carotid artery | |
Carotid diameter (mm) | 7.16 ± 0.84 |
Carotid intima media thickness (cIMT; μm) | 657.2 ± 159.3 |
Variable | Baseline | Follow-Up |
---|---|---|
Temperature a, b (°C) | 21.6 ± 3.2 | 21.9 ± 2.7 |
Personal air pollution measurements | ||
NO2 a, c (µg/m3) | 13.6 ± 4.8 | 10.6 ± 4.7 ** |
Total BTEX c, d (µg/m3) | 43.0 (12.0 to 327.7) | 34.31 (7.1 to 405.1) |
Benzene c (µg/m3) | 3.9 (0.7 to 14.2) | 2.2 (0.5 to 9.3) * |
Toluene c (µg/m3) | 22.1 (5.6 to 189.2) | 18.0 (3.7 to 284.1) |
Ethyl-benzene c (µg/m3) | 2.8 (1.1 to 34.4) | 2.3 (0.7 to 21.4) * |
m+p-xylene c (µg/m3) | 9.2 (3.4 to 117.4) | 7.5 (2.0 to 74.8) * |
o-xylene c (µg/m3) | 3.2 (1.2 to 43.8) | 2.7 (0.7 to 24.7) * |
Urinary metabolites e | ||
HPMA f (ng/mL) | 1686 (92 to 12,793) | 1812 (120 to 12,613) |
PMA g (ng/mL) | 0.05 (0.05 to 0.34) | 0.05 (0.05 to 0.34) |
MU h (ng/mL) | 62.5 (62.5 to 498.0) | 62.5 (62.5 to 595.0) |
BMA i (ng/mL) | 14.7 (2.5 to 588.0) | 14.3 (2.5 to 699.0) |
3+4MHA j (ng/mL) | 1061 (31.8 to 9512.0) | 845 (50.0 to 32,078.0) |
Variable | Exposure Variable | Estimate a,b (95% CI) | p-Values |
---|---|---|---|
SBP c (mmHg) | NO2 | 2.42 (0.03; 4.80) | 0.047 |
Total BTEX | 1.54 (−1.38; 4.46) | 0.297 | |
DBP c (mmHg) | NO2 | 1.76 (0.00; 3.52) | 0.050 |
Total BTEX | 2.07 (0.06; 4.07) | 0.043 | |
CRAE d (µm) | NO2 | −0.47 (−2.25; 1.31) | 0.599 |
Total BTEX | −0.70 (−2.88; 1.47) | 0.521 | |
CRVE d (µm) | NO2 | −2.08 (−4.14; −0.02) | 0.048 |
Total BTEX | −0.29 (−3.00; 2.39) | 0.829 | |
Mean brachial diameter d (mm) | NO2 | −0.11 (−0.19; −0.03) | 0.005 |
Total BTEX | −0.08 (−0.17; 0.01) | 0.090 | |
% FMD e | NO2 | −0.11 (−1.00; 0.77) | 0.801 |
Total BTEX | 0.30 (−0.56; 1.15) | 0.492 | |
Carotid Diameter d (mm) | NO2 | −0.06 (−0.19; 0.08) | 0.393 |
Total BTEX | −0.12 (−0.26; 0.02) | 0.082 | |
cIMT f (µm) | NO2 | 1.23 (−23.63; 26.09) | 0.921 |
Total BTEX | 12.76 (−10.55; 36.06) | 0.275 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Everson, F.; De Boever, P.; Nawrot, T.S.; Goswami, N.; Mthethwa, M.; Webster, I.; Martens, D.S.; Mashele, N.; Charania, S.; Kamau, F.; et al. Personal NO2 and Volatile Organic Compounds Exposure Levels are Associated with Markers of Cardiovascular Risk in Women in the Cape Town Region of South Africa. Int. J. Environ. Res. Public Health 2019, 16, 2284. https://doi.org/10.3390/ijerph16132284
Everson F, De Boever P, Nawrot TS, Goswami N, Mthethwa M, Webster I, Martens DS, Mashele N, Charania S, Kamau F, et al. Personal NO2 and Volatile Organic Compounds Exposure Levels are Associated with Markers of Cardiovascular Risk in Women in the Cape Town Region of South Africa. International Journal of Environmental Research and Public Health. 2019; 16(13):2284. https://doi.org/10.3390/ijerph16132284
Chicago/Turabian StyleEverson, Frans, Patrick De Boever, Tim S. Nawrot, Nandu Goswami, Mashudu Mthethwa, Ingrid Webster, Dries S. Martens, Nyiko Mashele, Sana Charania, Festus Kamau, and et al. 2019. "Personal NO2 and Volatile Organic Compounds Exposure Levels are Associated with Markers of Cardiovascular Risk in Women in the Cape Town Region of South Africa" International Journal of Environmental Research and Public Health 16, no. 13: 2284. https://doi.org/10.3390/ijerph16132284
APA StyleEverson, F., De Boever, P., Nawrot, T. S., Goswami, N., Mthethwa, M., Webster, I., Martens, D. S., Mashele, N., Charania, S., Kamau, F., & Strijdom, H. (2019). Personal NO2 and Volatile Organic Compounds Exposure Levels are Associated with Markers of Cardiovascular Risk in Women in the Cape Town Region of South Africa. International Journal of Environmental Research and Public Health, 16(13), 2284. https://doi.org/10.3390/ijerph16132284