The Evaluation of IDEAL-REACH Program to Improve Nutrition among Asian American Community Members in the Philadelphia Metropolitan Area
Abstract
:1. Introduction
1.1. Dietary Factors and Cardiovascular Disease
1.2. Multi-Level, Community Led Interventions
2. Materials and Methods
2.1. IDEAL-REACH Program
2.2. Measurements
2.3. Data Collection Procedures
2.4. Data Analysis
3. Results
4. Discussion
4.1. Food Purchases and Preparation Practices
4.2. Ethnic and Gender Considerations
4.3. Community and Policy Implications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chunming, C. Fat intake and nutritional status of children in China. Am. J. Clin. Nutr. 2000, 72, 1368s–1372s. [Google Scholar] [CrossRef]
- Yoon, K.-H.; Lee, J.-H.; Kim, J.-W.; Cho, J.H.; Choi, Y.-H.; Ko, S.-H.; Zimmet, P.; Son, H.-Y. Epidemic obesity and type 2 diabetes in Asia. Lancet 2006, 368, 1681–1688. [Google Scholar]
- Ramachandran, A.; Snehalatha, C. Rising Burden of Obesity in Asia. J. Obes. 2010, 2010, 868573. [Google Scholar]
- Woo, J.; Woo, K.S.; Leung, S.; Chook, P.; Liu, B.; Ip, R.; Ho, S.C.; Chan, S.W.; Feng, J.Z.; Celermajer, D.S. The Mediterranean score of dietary habits in Chinese populations in four different geographical areas. Eur. J. Clin. Nutr. 2001, 55, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Ursua, R.A.; Aguilar, D.E.; Wyatt, L.C.; Katigbak, C.; Islam, N.S.; Tandon, S.D.; Nur, P.R.M.Q.; Van Devanter, N.; Rey, M.J.; Trinh-Shevrin, C. A Community Health Worker Intervention to Improve Management of Hypertension among Filipino Americans in New York and New Jersey: A Pilot Study. Ethn. Dis. 2014, 24, 67–76. [Google Scholar]
- Firestone, M.J.; Beasley, J.M.; Kwon, S.C.; Ahn, J.; Trinh-Shevrin, C.; Yi, S.S. Asian American Dietary Sources of Sodium and Salt Behaviors Compared with Other Racial/ethnic Groups, NHANES, 2011–2012. Ethn. Dis. 2017, 27, 241–248. [Google Scholar] [CrossRef]
- Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef]
- Satia, J.A. Diet-Related Disparities Understanding the Problem and Accelerating Solutions. J. Am. Diet. Assoc. 2009, 109, 610–615. [Google Scholar] [CrossRef]
- Park, S.-Y.; Paik, H.-Y.; Skinner, J.D.; Spindler, A.A.; Park, H.-R. Nutrient intake of Korean-American, Korean, and American adolescents. J. Am. Diet. Assoc. 2004, 104, 242–245. [Google Scholar] [CrossRef]
- Guerrero, A.D.; Chung, P.J. Racial and Ethnic Disparities in Dietary Intake among California Children. J. Acad. Nutr. Diet. 2016, 116, 439–448. [Google Scholar] [CrossRef]
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Blaha, M.J.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; et al. Heart Disease and Stroke Statistics—2014 Update. Circulation 2014, 129, e28–e292. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.S.; Dixon, L.B.; Gilbride, J.A.; Chin, W.W.; Kwan, T.W. Diet, Physical Activity, and Cardiovascular Disease Risk Factors Among Older Chinese Americans Living in New York City. J. Community Health 2011, 36, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Ton, T.G.N.; Steinman, L.; Yip, M.-P.; Ly, K.A.; Sin, M.-K.; Fitzpatrick, A.L.; Tu, S.-P. Knowledge of Cardiovascular Health Among Chinese, Korean and Vietnamese Immigrants to the US. J. Immigr. Minor. Health 2011, 13, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Ndanuko, R.N.; Tapsell, L.C.; Charlton, K.E.; Neale, E.P.; O’Donnell, K.M.; Batterham, M.J. Relationship between sodium and potassium intake and blood pressure in a sample of overweight adults. Nutrition 2017, 33, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Truswell, A.S. ABC of nutrition. Diet and hypertension. Br. Med. J. Clin. Res. Ed. 1985, 291, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Brown, I.J.; Tzoulaki, I.; Candeias, V.; Elliott, P. Salt intakes around the world: Implications for public health. Int. J. Epidemiol. 2009, 38, 791–813. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.C.N.; Malik, V.; Jia, W.; Kadowaki, T.; Yajnik, C.S.; Yoon, K.-H.; Hu, F.B. Diabetes in Asia: Epidemiology, Risk Factors, and Pathophysiology. JAMA 2009, 301, 2129–2140. [Google Scholar] [CrossRef] [PubMed]
- Willcox, D.C.; Willcox, B.J.; Todoriki, H.; Suzuki, M. The Okinawan Diet: Health Implications of a Low-Calorie, Nutrient-Dense, Antioxidant-Rich Dietary Pattern Low in Glycemic Load. J. Am. Coll. Nutr. 2009, 28, 500S–516S. [Google Scholar] [CrossRef]
- Hu, E.A.; Pan, A.; Malik, V.; Sun, Q. White rice consumption and risk of type 2 diabetes: Meta-analysis and systematic review. BMJ 2012, 344, e1454. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care 2011, 34, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Giacco, R.; Costabile, G.; Della Pepa, G.; Anniballi, G.; Griffo, E.; Mangione, A.; Cipriano, P.; Viscovo, D.; Clemente, G.; Landberg, R.; et al. A whole-grain cereal-based diet lowers postprandial plasma insulin and triglyceride levels in individuals with metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Harland, J.I.; Garton, L.E. Whole-grain intake as a marker of healthy body weight and adiposity. Public Health Nutr. 2008, 11, 554–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karanja, N.; Erlinger, T.P.; Pao-Hwa, L.; Miller, E.R.; Bray, G.A. The DASH diet for high blood pressure: From clinical trial to dinner table. Clevel. Clin. J. Med. 2004, 71, 745–753. [Google Scholar] [CrossRef]
- Bibbins-Domingo, K.; Chertow, G.M.; Coxson, P.G.; Moran, A.E.; Lightwood, J.M.; Pletcher, M.J.; Goldman, L. Reductions in Cardiovascular Disease Projected from Modest Reductions in Dietary Salt. N. Engl. J. Med. 2010, 362, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.R. Salt intake, blood pressure and clinical outcomes. Curr. Opin. Nephrol. Hypertens. 2008, 17, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Christoforou, A.; Trieu, K.; Land, M.-A.; Bolam, B.; Webster, J. State-level and community-level salt reduction initiatives: A systematic review of global programmes and their impact. J. Epidemiol. Community Health 2016, 70, 1140–1150. [Google Scholar] [CrossRef] [PubMed]
- Trieu, K.; Neal, B.; Hawkes, C.; Dunford, E.; Campbell, N.; Rodriguez-Fernandez, R.; Legetic, B.; McLaren, L.; Barberio, A.; Webster, J. Salt Reduction Initiatives around the World—A Systematic Review of Progress towards the Global Target. PLoS ONE 2015, 10, e0130247. [Google Scholar] [CrossRef] [PubMed]
- Strazzullo, P.; Cairella, G.; Campanozzi, A.; Carcea, M.; Galeone, D.; Galletti, F.; Giampaoli, S.; Iacoviello, L.; Scalfi, L. Population based strategy for dietary salt intake reduction: Italian initiatives in the European framework. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Lofthouse, C.; Te Morenga, L.; McLean, R. Sodium reduction in New Zealand requires major behaviour change. Appetite 2016, 105, 721–730. [Google Scholar] [CrossRef]
- D’Elia, L.; Galletti, F.; La Fata, E.; Sabino, P.; Strazzullo, P. Effect of dietary sodium restriction on arterial stiffness: Systematic review and meta-analysis of the randomized controlled trials. J. Hypertens. 2018, 36, 734–743. [Google Scholar] [CrossRef]
- Economos, C.D.; Hyatt, R.R.; Must, A.; Goldberg, J.P.; Kuder, J.; Naumova, E.N.; Collins, J.J.; Nelson, M.E. Shape Up Somerville two-year results: A community-based environmental change intervention sustains weight reduction in children. Prev. Med. 2013, 57, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Stockings, E.; Bartlem, K.; Hall, A.; Hodder, R.; Gilligan, C.; Wiggers, J.; Sherker, S.; Wolfenden, L. Whole-of-community interventions to reduce population-level harms arising from alcohol and other drug use: A systematic review and meta-analysis. Addict. Abingdon Engl. 2018, 113, 1984–2018. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.K.; Hudson, M.A.; Resnicow, K.; Blakeney, N.; Paxton, A.; Baskin, M. Church-Based Health Promotion Interventions: Evidence and Lessons Learned. Annu. Rev. Public Health 2007, 28, 213–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, C.Y.; Ma, G.X.; Handorf, E.A.; Feng, Z.; Tan, Y.; Rhee, J.; Miller, S.M.; Kim, C.; Koh, H.S. Addressing multilevel barriers to cervical cancer screening in Korean American women: A randomized trial of a community-based intervention. Cancer 2017, 123, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Baruth, M.; Wilcox, S. Multiple Behavior Change Among Church Members Taking Part in the Faith, Activity, and Nutrition Program. J. Nutr. Educ. Behav. 2013, 45, 428–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, J.; Waqanivalu, T.; Arcand, J.; Trieu, K.; Cappuccio, F.P.; Appel, L.J.; Woodward, M.; Campbell, N.R.C.; McLean, R. Understanding the science that supports population-wide salt reduction programs. J. Clin. Hypertens. Greenwich Conn. 2017, 19, 569–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hope, S.F.; Webster, J.; Trieu, K.; Pillay, A.; Ieremia, M.; Bell, C.; Snowdon, W.; Neal, B.; Moodie, M. A systematic review of economic evaluations of population-based sodium reduction interventions. PLoS ONE 2017, 12, e0173600. [Google Scholar] [CrossRef]
- Huynh, H.L.; Danhi, R.; Yan, S.W. Using Fish Sauce as a Substitute for Sodium Chloride in Culinary Sauces and Effects on Sensory Properties. J. Food Sci. 2016, 81, S150–S155. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services; U.S. Department of Agriculture. The Social-Ecological Model. Dietary Guidelines for Americans. 2015–2020; 8th Edition. Available online: https://health.gov/dietaryguidelines/2015/guidelines/chapter-3/social-ecological-model/ (accessed on 22 August 2019).
- Federer, W.T. Statistics and Society: Data Collection and Interpretation, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1991; ISBN 978-0-8247-8249-8. [Google Scholar]
- Bradburn, N.M.; Sudman, S.; Wansink, B. Asking Questions: The Definitive Guide to Questionnaire Design—For Market Research, Political Polls, and Social and Health Questionnaires, 2nd ed.; Jossey-Bass: San Francisco, CA, USA, 2004; ISBN 978-0-7879-7088-8. [Google Scholar]
- StataCorp. Stata Statistical Software: Release 14; StataCorp LP.: College Station, TX, USA, 2015. [Google Scholar]
- Diep, C.S.; Leung, R.; Thompson, D.I.; Gor, B.J.; Baranowski, T. Culture and Diet Among Chinese American Children Aged 9–13 Years: A Qualitative Study. J. Nutr. Educ. Behav. 2017, 49, 275–284. [Google Scholar] [CrossRef]
- Diep, C.S.; Foster, M.J.; McKyer, E.L.J.; Goodson, P.; Guidry, J.J.; Liew, J. What are Asian-American youth consuming? A systematic literature review. J. Immigr. Minor. Health 2015, 17, 591–604. [Google Scholar] [CrossRef]
- Liou, D.; Bauer, K.; Bai, Y. Investigating obesity risk-reduction behaviours and psychosocial factors in Chinese Americans. Perspect. Public Health 2014, 134, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Patnode, C.D.; Evans, C.V.; Senger, C.A.; Redmond, N.; Lin, J.S. Behavioral Counseling to Promote a Healthful Diet and Physical Activity for Cardiovascular Disease Prevention in Adults Without Known Cardiovascular Disease Risk Factors: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2017, 318, 175–193. [Google Scholar] [PubMed]
- Menke, A.; Casagrande, S.; Geiss, L.; Cowie, C.C. Prevalence of and Trends in Diabetes Among Adults in the United States, 1988–2012. JAMA 2015, 314, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Shih, M.; Du, Y.; Lightstone, A.S.; Simon, P.A.; Wang, M.C. Stemming the tide: Rising diabetes prevalence and ethnic subgroup variation among Asians in Los Angeles County. Prev. Med. 2014, 63, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.R.; Brancati, F.L.; Yeh, H.-C. Trends in the Prevalence of Type 2 Diabetes in Asians Versus Whites. Diabetes Care 2011, 34, 353–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, R.J.; Chou, C.; Sinha, S.R.; Kamal, A.; Ahmed, A. Ethnic disparities in the association of body mass index with the risk of hypertension and diabetes. J. Community Health 2014, 39, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Chiriboga, D.A.; Jang, Y.; Lee, S.; Huang, C.-H.; Parmelee, P. Health Status of Older Asian Americans in California. J. Am. Geriatr. Soc. 2010, 58, 2003–2008. [Google Scholar] [CrossRef] [PubMed]
- Klatsky, A.L.; Tekawa, I.S.; Armstrong, M.A. Cardiovascular risk factors among Asian Americans. Public Health Rep. 1996, 111, 62–64. [Google Scholar]
- Palaniappan, L.P.; Araneta, M.R.G.; Assimes, T.L.; Barrett-Connor, E.L.; Carnethon, M.R.; Criqui, M.H.; Fung, G.L.; Narayan, K.M.V.; Patel, H.; Taylor-Piliae, R.E.; et al. Call to Action: Cardiovascular Disease in Asian Americans: A Science Advisory from the American Heart Association. Circulation 2010, 122, 1242–1252. [Google Scholar] [CrossRef]
- Yates, A.; Edman, J.; Aruguete, M. Ethnic differences in BMI and body/self-dissatisfaction among Whites, Asian subgroups, Pacific Islanders, and African-Americans. J. Adolesc. Health 2004, 34, 300–307. [Google Scholar] [CrossRef]
- Lauderdale, D.S.; Rathouz, P.J. Body mass index in a US national sample of Asian Americans: Effects of nativity, years since immigration and socioeconomic status. Int. J. Obes. 2000, 24, 1188–1194. [Google Scholar] [CrossRef]
- Ma, G.X.; Lee, M.; Bhimla, A.; Tan, Y.; Gadegbeku, C.A.; Yeh, M.C.; Aczon, H. Risk Assessment and Prevention of Hypertension in Filipino Americans. J. Community Health 2017, 42, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, P.; Sondik, E.J. Cancer control objectives for the nation, 1985–2000. NCI Monogr. 1986, 2, 1–93. [Google Scholar]
- Jenkins, C.N.; McPhee, S.J.; Bird, J.A.; Bonilla, N.T. Cancer risks and prevention practices among Vietnamese refugees. West. J. Med. 1990, 153, 34–39. [Google Scholar] [PubMed]
- Crane, N.T.; Green, N.R. Food habits and food preferences of Vietnamese refugees living in northern Florida. J. Am. Diet. Assoc. 1980, 76, 591–593. [Google Scholar] [PubMed]
- Hung, S.S.; McPhee, S.J.; Jenkins, C.N.H.; Nguyen, K.P.; Fordham, D.C.; Ha, N.-T. Dietary intake patterns of Vietnamese in California. J. Nutr. Educ. Behav. 1995, 27, 63–68. [Google Scholar] [CrossRef]
- Wardle, J.; Haase, A.M.; Steptoe, A.; Nillapun, M.; Jonwutiwes, K.; Bellisie, F. Gender differences in food choice: The contribution of health beliefs and dieting. Ann. Behav. Med. 2004, 27, 107–116. [Google Scholar] [CrossRef]
- Westenhoefer, J. Age and Gender Dependent Profile of Food Choice. Diet Diversif. Health Promot. 2005, 57, 44–51. [Google Scholar]
- An, R. Fast-food and full-service restaurant consumption and daily energy and nutrient intakes in US adults. Eur. J. Clin. Nutr. 2016, 70, 97–103. [Google Scholar] [CrossRef]
- Millen, B.E.; Quatromoni, P.A.; Gagnon, D.R.; Cupples, L.A.; Franz, M.M.; D’Agostino, R.B. Dietary Patterns of Men and Women Suggest Targets for Health Promotion: The Framingham Nutrition Studies. Am. J. Health Promot. 1996, 11, 42–52. [Google Scholar] [CrossRef]
- Turrell, G. Determinants of Gender Differences in Dietary Behavior. Nutr. Res. 1997, 17, 1105–1120. [Google Scholar] [CrossRef]
- Marston, C.; Renedo, A.; McGowan, C.R.; Portela, A. Effects of Community Participation on Improving Uptake of Skilled Care for Maternal and Newborn Health: A Systematic Review. PLoS ONE 2013, 8, e55012. [Google Scholar] [CrossRef] [PubMed]
- Satterfield, D.W.; Volansky, M.; Caspersen, C.J.; Engelgau, M.M.; Bowman, B.A.; Gregg, E.W.; Geiss, L.S.; Hosey, G.M.; May, J.; Vinicor, F. Community-Based Lifestyle Interventions to Prevent Type 2 Diabetes. Diabetes Care 2003, 26, 2643–2652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rifkin, S.B. Examining the links between community participation and health outcomes: A review of the literature. Health Policy Plan. 2014, 29, ii98–ii106. [Google Scholar] [CrossRef]
- Yancey, A.K.; Kumanyika, S.K.; Ponce, N.A.; McCarthy, W.J.; Fielding, J.E.; Leslie, J.P.; Akbar, J. Population-based Interventions Engaging Communities of Color in Healthy Eating and Active Living: A Review. Prev. Chronic Dis. 2003, 1, A09. [Google Scholar] [PubMed]
- Brown, A.F.; Ma, G.X.; Miranda, J.; Eng, E.; Castille, D.; Brockie, T.; Jones, P.; Airhihenbuwa, C.O.; Farhat, T.; Zhu, L.; et al. Structural Interventions to Reduce and Eliminate Health Disparities. Am. J. Public Health 2019, 109, S72–S78. [Google Scholar] [CrossRef]
- Thout, S.R.; Santos, J.A.; McKenzie, B.; Trieu, K.; Johnson, C.; McLean, R.; Arcand, J.; Campbell, N.R.C.; Webster, J. The Science of Salt: Updating the evidence on global estimates of salt intake. J. Clin. Hypertens. Greenwich Conn. 2019, 21, 710–721. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Baseline n = 1110 | 12-Month Follow-Up n = 1098 | χ2 (df) |
---|---|---|---|
CBO ethnicity (sites) | |||
Chinese | 6 (19.35%) | 6 (19.35%) | |
Korean | 12 (38.71%) | 12 (38.71%) | |
Vietnamese | 9 (29.03%) | 9 (29.03%) | |
Filipino | 4 (12.90%) | 4 (12.90%) | |
Race/ethnicity | 2.91 (4) | ||
Chinese | 264 (23.85%) | 248 (23.24%) | |
Korean | 344 (31.07%) | 360 (33.74%) | |
Vietnamese | 292 (26.38%) | 270 (25.30%) | |
Filipino | 196 (17.71%) | 174 (16.31%) | |
Other | 11 (0.99%) | 15 (1.41%) | |
Age | 15.47 (3) *** | ||
18–29 | 45 (4.16%) | 73 (6.85%) | |
30–44 | 222 (20.54%) | 255 (23.94%) | |
45–60 | 428 (39.59%) | 419 (39.94%) | |
>60 | 386 (35.71%) | 318 (29.86%) | |
Gender | 7.44 (1) | ||
Male | 298 (28.11%) | 346 (33.62%) | |
Female | 762 (71.89%) | 683 (66.38%) | |
Education | 2.72 (2) | ||
<High school graduate | 253 (23.67%) | 286 (26.75%) | |
High School | 260 (24.32%) | 252 (23.57%) | |
University and above | 556 (52.01%) | 531 (49.67%) | |
Employment status | 4.90 (4) | ||
Employed | 515 (47.47%) | 557 (51.91%) | |
Unemployed | 79 (7.28%) | 75 (6.99%) | |
Retired | 267 (24.61%) | 234 (21.81%) | |
Homemaker | 195 (17.97%) | 176 (16.40%) | |
Student | 29 (2.67%) | 31 (2.89%) | |
English proficiency | 8.72 (1) * | ||
Not at all/not well | 675 (62.68%) | 606 (56.42%) | |
Well/fluently | 402 (37.32%) | 468 (43.57%) | |
Language spoken at home | 12.07 (2) * | ||
English | 74 (6.85%) | 69 (6.41%) | |
Native Asian language | 780 (72.22%) | 713 (66.26%) | |
English and native Asian language both | 226 (20.93%) | 294 (27.32%) | |
Has health insurance | 925 (84.94%) | 936 (86.99%) | 1.52 (1) |
Has a regular physician to visit | 914 (84.16%) | 912 (84.92%) | 0.20 (1) |
Self-rated health | 5.73 (1) * | ||
Excellent/good | 869 (79.95%) | 902 (83.90%) | |
Poor/very poor | 218 (20.06%) | 173 (16.09%) |
Baseline n = 1110 | 12-Month Follow-Up n = 1098 | χ2 (df) or t | |
---|---|---|---|
Food Purchases | |||
Soy Sauce | |||
Size of regular soy sauce purchased | 0.82 (2) | ||
Small bottle | 258 (23.50%) | 250 (23.02%) | |
Regular bottle | 693 (63.11%) | 676 (62.25%) | |
Gallon canister | 147 (13.39%) | 160 (14.37%) | |
Regular soy sauce purchasing interval, month † | 1.86 (1.54), 0.25–6 | 2.02 (1.65), 0.25–6 | t = −2.36 * |
M(SD), range | |||
Grain Products | |||
White rice bag size | 6.35 (2) | ||
5 pounds or less | 176 (16.62%) | 212 (20.17%) | |
10–35 pounds | 626 (59.11%) | 569 (54.14%) | |
40 pounds or more | 257 (24.27%) | 270 (25.69%) | |
White rice purchasing interval, month † | 1.94 (1.45), 0.25–6 | 2.11 (1.40), 0.5–6 | t = −2.64 ** |
M(SD), range | |||
Brown rice bag size | 51.94 (3) *** | ||
Does not eat brown rice | 265 (26.74%) | 170 (17.97%) | |
5 pounds or less | 215 (31.79%) | 349 (36.89%) | |
10–35 pounds | 376 (37.94%) | 397 (41.97%) | |
40 pounds or more | 35 (3.53%) | 30 (3.17%) | |
Brown rice purchase interval, month † | 1.88 (1.38), 0.25–6 | 1.80 (1.24), 0.25–5 | t = −1.19 |
M(SD), range | |||
Oil | |||
Types of oil purchased | |||
Canola | 307 (27.66%) | 400 (36.56%) | 19.93 (1) *** |
Sesame | 155 (13.96%) | 209 (19.10%) | 10.55 (1) *** |
Corn | 238 (21.44%) | 220 (20.11%) | 0.59 (1) |
Olive | 432 (38.92%) | 408 (37.29%) | 0.62 (1) |
Vegetable | 202 (18.20%) | 195 (17.82%) | 0.05 (1) |
Container size of oil purchased | 3.97 (2) | ||
Small bottle | 155 (14.31%) | 182 (17.28%) | |
Regular bottle | 688 (63.53%) | 634 (60.21%) | |
Gallon canister | 240 (22.16%) | 237 (22.51%) | |
Oil purchase interval, month † | 1.91 (1.46), 0.25–6 | 2.31 (1.64), 0.5–6 | t = −6.05 *** |
M(SD), range | |||
Reads nutrition label at purchase | |||
Sugar | 506 (53.66%) | 563 (53.67%) | 0 (1) |
Sodium | 406 (43.15%) | 485 (46.15%) | 1.81 (1) |
Calories | 354 (37.64%) | 446 (42.48%) | 5.2 (1) * |
Fiber | 173 (18.35%) | 301 (28.67%) | 29.20 (1) *** |
Unsaturated fat | 198 (21.00%) | 232 (22.10%) | 0.35 (1) |
Trans Fat | 245 (25.98%) | 319 (30.38%) | 4.74 (1) * |
Saturated Fat | 172 (18.28%) | 194 (18.46%) | 0.01 (1) |
Food Preparation | 7 | ||
Number of people to cook for | 3.17 (1.41), 1–6 | 3.11 (1.34), 1–6 | t = 0.38 |
Salt use | |||
Does not measure salt use | 830 (80.98%) | 818 (80.43%) | 0.10 (1) |
Does measure salt use | 195 (19.02%) | 199 (19.57%) | |
Oil use | |||
Does not measure oil use | 777 (76.25%) | 818 (80.27%) | 4.85 (1) * |
Does measure oil use | 242 (23.75%) | 201 (19.73%) | |
Trying to use less sodium in cooking | 848 (80.61%) | 849 (80.40%) | 0.01 (1) |
Trying to use less oil in cooking | 901 (85.48%) | 896 (84.77%) | 0.21 (1) |
Trying to use more whole grain in cooking | 692 (66.35%) | 773 (73.13%) | 11.46 (1) *** |
Consumption | |||
How often add salt to food at table | 16.90 (2) *** | ||
Never | 338 (30.98%) | 396 (36.97%) | |
Sometimes | 600 (55.00%) | 577 (53.87%) | |
Always | 153 (14.02%) | 98 (9.15%) |
Baseline n = 1110 | 12-Month Follow-Up n = 1098 | χ2 (df), or t | |
---|---|---|---|
Physical activity | |||
How much should people with diabetes exercise | 9.48 (1) ** | ||
Right (most days of the wk for 30+ min) | 782 (72.34%) | 840 (78.07%) | |
Wrong (other answers) | 299 (27.66%) | 236 (21.93%) | |
Health benefit of physical activity score, | 0.64 (0.27), 0–1 | 0.63 (0.25), 0–1 | t = 0.90 |
M(SD), range | |||
Sodium | |||
Recommended daily sodium intake | 186.00 (1) *** | ||
Right (one teaspoon) | 129 (12.07%) | 402 (37.54%) | |
Wrong (other answers) | 940 (87.93%) | 669 (62.46%) | |
Main source of sodium in American diet | 5.10 (1) * | ||
Right (processed foods) | 374 (34.73%) | 425 (39.42%) | |
Wrong (other answers) | 703 (65.27%) | 653 (60.58%) | |
Oil | |||
Healthiest type of fat | 12.01 (1) *** | ||
Right (monounsaturated and polyunsaturated) | 448 (40.36%) | 524 (47.68%) | |
Wrong (other answers) | 662 (59.64%) | 575 (52.32%) | |
Healthy types of oils score | 0.47 (0.21), 0–1 | 0.50 (0.20), 0–1 | t = −3.45 |
M(SD), range | |||
Fiber | |||
Carbohydrates with highest fiber score, | 0.69 (0.27), 0–1 | 0.70 (.27), 0–1 | t = 0.87 |
M(SD), range | |||
Health benefits of high fiber diet score, | 0.49 (0.14), 0–0.86 | 0.49 (0.14), 0–0.86 | t = 0 |
M(SD), range | |||
Knowledge of sodium, oil, and fiber score, | 4.32 (1.22), 1.06–7.21 | 4.68 (1.35), 1.06–7.71 | t = 1.29 *** |
M (SD), range (0–8) |
Participants’ Exposure to Health Promotions | Baseline n = 1110 | 12-Month Follow-Up n = 1098 | χ2 (df) |
---|---|---|---|
Noticed signs that promoted healthier foods in general | 372 (35.43%) | 367 (35.32%) | 0.002 (1) |
Noticed signs that promoted healthier oil | 296 (29.16%) | 352 (44.39%) | 44.88 (1) *** |
Noticed signs that promoted whole grain | 296 (31.56%) | 342 (43.96%) | 28.01 (1) *** |
Noticed signs that promoted low-sodium products | 266 (25.75%) | 350 (34.09%) | 17.05 (1) *** |
Healthier Purchasing Behaviors | n (%) |
---|---|
Purchased low-sodium products in the past 6 months | 419 (40.37%) |
Used in cooking | 299 (71.36%) |
Family and respondent liked it | 323 (77.09%) |
Would continue to use it in the future | 338 (80.67%) |
Purchased whole grain products in the past 6 months | 377 (37.48%) |
Used in cooking | 251 (68.71%) |
Family and respondent liked it | 280 (78.21%) |
Would continue to use it in the future | 302 (82.51%) |
Purchased healthier oil in the past 6 months | 378 (37.80%) |
Used in cooking | 290 (78.59%) |
Family and respondent liked it | 301 (82.02%) |
Would continue to use it in the future | 311 (83.38%) |
Regression Results | Purchased Low-Sodium Products (n = 851) | Purchased Whole Grain Products (n = 771) | Purchased Healthier Oil Products (n = 781) |
---|---|---|---|
β (s.e.) | β (s.e.) | β (s.e.) | |
Knowledge score | 0.24 (0.07) *** | 0.33 (0.07) *** | 0.35 (0.07) *** |
Noticed signs that promoted healthier foods in general (ref: no) | 0.59 (0.23) ** | 0.53 (0.32) | −0.55 (0.36) |
Noticed signs that promoted less sodium | 0.20 (0.24) | - | - |
Noticed signs that promoted more whole grain | - | 0.47 (0.33) | |
Noticed signs that promoted healthier oil | - | - | 1.58 (0.36) *** |
Ethnicity (ref: Chinese) | 1 | 1 | 1 |
Korean | 0.19 (0.25) | −0.03 (0.26) | −0.005 (0.27) |
Vietnamese | 0.05 (0.23) | −0.54 (0.26) * | 0.34 (0.25) |
Filipino | 2.14 (0.33) *** | 2.15 (0.37) *** | 1.93 (.35) *** |
Other Asian | 1.74 (0.77) * | 1.04 (0.83) | 1.28 (0.87) |
Female (ref: male) | 0.49 (0.17) ** | 0.57 (0.19) ** | 0.62 (0.19) ** |
Educational attainment (ref: < hs) | 1 | 1 | 1 |
high school | −0.09 (0.24) | −0.31 (0.27) | −0.23 (0.26) |
college or higher | 0.33 (0.25) | −0.09 (0.28) | 0.20 (0.28) |
English proficiency (ref: poor/not well) | 1 | 1 | 1 |
Well/fluent | −0.28 (0.20) | 0.14 (0.22) | −0.03 (0.22) |
Constant | −2.68 | −3.02 | −3.34 |
Log-likelihood chi-square (df) | 157.53 (11) *** | 193.12 (11) *** | 187.13 (11) *** |
McFadden R-square | 0.13 | 0.19 | 0.18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, G.X.; Zhu, L.; Shive, S.E.; Zhang, G.; Senter, Y.R.; Topete, P.; Seals, B.; Zhai, S.; Wang, M.; Tan, Y. The Evaluation of IDEAL-REACH Program to Improve Nutrition among Asian American Community Members in the Philadelphia Metropolitan Area. Int. J. Environ. Res. Public Health 2019, 16, 3054. https://doi.org/10.3390/ijerph16173054
Ma GX, Zhu L, Shive SE, Zhang G, Senter YR, Topete P, Seals B, Zhai S, Wang M, Tan Y. The Evaluation of IDEAL-REACH Program to Improve Nutrition among Asian American Community Members in the Philadelphia Metropolitan Area. International Journal of Environmental Research and Public Health. 2019; 16(17):3054. https://doi.org/10.3390/ijerph16173054
Chicago/Turabian StyleMa, Grace X., Lin Zhu, Steven E. Shive, Guo Zhang, Yvette R. Senter, Pablo Topete, Brenda Seals, Shumenghui Zhai, MinQi Wang, and Yin Tan. 2019. "The Evaluation of IDEAL-REACH Program to Improve Nutrition among Asian American Community Members in the Philadelphia Metropolitan Area" International Journal of Environmental Research and Public Health 16, no. 17: 3054. https://doi.org/10.3390/ijerph16173054
APA StyleMa, G. X., Zhu, L., Shive, S. E., Zhang, G., Senter, Y. R., Topete, P., Seals, B., Zhai, S., Wang, M., & Tan, Y. (2019). The Evaluation of IDEAL-REACH Program to Improve Nutrition among Asian American Community Members in the Philadelphia Metropolitan Area. International Journal of Environmental Research and Public Health, 16(17), 3054. https://doi.org/10.3390/ijerph16173054