Assessing Physical Activity and Sedentary Behavior under Free-Living Conditions: Comparison of Active Style Pro HJA-350IT and ActiGraphTM GT3X+
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Procedures
2.2. Instrument and Data Management
2.3. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Active Style Pro Outcomes and ActiGraph
3.3. Comparison between Active Style Pro and ActiGraph
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ekelund, U.; Griffin, S.J.; Wareham, N.J. Physical activity and metabolic risk in individuals with a family history of type 2 diabetes. Diabetes Care 2007, 30, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Healy, G.N.; Wijndaele, K.; Dunstan, D.W.; Shaw, J.E.; Salmon, J.; Zimmet, P.Z.; Owen, N. Objectively measured sedentary time, physical activity, and metabolic risk: The Australian diabetes, obesity and lifestyle study (AusDiab). Diabetes Care 2008, 31, 369–371. [Google Scholar] [CrossRef] [PubMed]
- de Rezende, L.F.; Rodrigues Lopes, M.; Rey-Lopez, J.P.; Matsudo, V.K.; Luiz Odo, C. Sedentary behavior and health outcomes: An overview of systematic reviews. PLoS ONE 2014, 9, e105620. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Oh, P.I.; Faulkner, G.E.; Bajaj, R.R.; Silver, M.A.; Mitchell, M.S.; Alter, D.A. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults a systematic review and meta-analysis. Ann. Intern. Med. 2015, 162, 123. [Google Scholar] [CrossRef] [PubMed]
- Beaglehole, R.; Bonita, R.; Horton, R.; Adams, C.; Alleyne, G.; Asaria, P.; Baugh, V.; Bekedam, H.; Billo, N.; Casswell, S. Priority actions for the non-communicable disease crisis. Lancet 2011, 377, 1438–1447. [Google Scholar] [CrossRef]
- Watson, K.B.; Frederick, G.M.; Harris, C.D.; Carlson, S.A.; Fulton, J.E. US adults’ participation in specific activities: Behavioral risk factor surveillance system—2011. J. Phys. Act. Health 2015, 12, S3–S10. [Google Scholar] [CrossRef]
- Tucker, J.M.; Welk, G.J.; Beyler, N.K. Physical activity in U.S.: Adults compliance with the physical activity guidelines for Americans. Am. J. Prev. Med. 2011, 40, 454–461. [Google Scholar] [CrossRef]
- Matthews, C.E.; Steven, C.M.; George, S.M.; Sampson, J.; Bowles, H.R. Improving self-reports of active and sedentary behaviors in large epidemiologic studies. Exerc. Sport Sci. Rev. 2012, 40, 118. [Google Scholar] [CrossRef]
- Sun, F.; Norman, I.J.; While, A.E. Physical activity in older people: A systematic review. BMC Public Health 2013, 13, 449. [Google Scholar] [CrossRef]
- Helmerhorst, H.H.J.; Brage, S.; Warren, J.; Besson, H.; Ekelund, U. A systematic review of reliability and objective criterion-related validity of physical activity questionnaires. Int. J. Behav. Med. 2012, 9, 103. [Google Scholar] [CrossRef]
- Troiano, R.P.; McClain, J.J.; Brychta, R.J.; Chen, K.Y. Evolution of accelerometer methods for physical activity research. Br. J. Sports Med. 2014, 48, 1019–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crouter, S.E.; Flynn, J.I.; Bassett, D.R., Jr. Estimating physical activity in youth using a wrist accelerometer. Med. Sci. Sports Exerc. 2015, 47, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.R.; Troiano, R.P.; McClain, J.J.; Wolff, D.L. Accelerometer-based physical activity: Total volume per day and standardized measures. Med. Sci. Sports Exerc. 2015, 47, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.R., Jr.; Rowlands, A.; Trost, S.G. Calibration and validation of wearable monitors. Med. Sci. Sports Exerc. 2012, 44, S32–S38. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.; Stewart, T.; Bo Schneller, M.; Godbole, S.; Cain, K.; Kerr, J. Convergent validity of ActiGraph and Actical accelerometers for estimating physical activity in adults. PLoS ONE 2018, 13, e0198587. [Google Scholar] [CrossRef]
- McClain, J.J.; Craig, C.L.; Sisson, S.B.; Tudor-Locke, C. Comparison of Lifecorder EX and ActiGraph accelerometers under free-living conditions. Appl. Physiol. Nutr. Metab. 2007, 32, 753–761. [Google Scholar] [CrossRef]
- Rowlands, A.V.; Rennie, K.; Kozarski, R.; Stanley, R.M.; Eston, R.G.; Parfitt, G.C.; Olds, T.S. Children’s physical activity assessed with wrist- and hip-worn accelerometers. Med. Sci. Sports Exerc. 2014, 46, 2308–2316. [Google Scholar] [CrossRef]
- Yano, S.; Koohsari, M.J.; Shibata, A.; Ishii, K.; Frehlich, L.; McCormack, G.R.; Oka, K. Comparison of Older and Newer Generation Active Style Pro Accelerometers in Physical Activity and Sedentary Behavior Surveillance under a Free-Living Environment. Int. J. Environ. Res. Public Health 2019, 16, 1597. [Google Scholar] [CrossRef]
- Bhammar, D.M.; Sawyer, B.J.; Tucker, W.J.; Lee, J.-M.; Gaesser, G.A. Validity of SenseWear® Armband v5.2 and v2.2 for estimating energy expenditure. J. Sports Sci. 2016, 34, 1830–1838. [Google Scholar] [CrossRef]
- Cain, K.L.; Conway, T.L.; Adams, M.A.; Husak, L.E.; Sallis, J.F. Comparison of older and newer generations of ActiGraph accelerometers with the normal filter and the low frequency extension. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 51. [Google Scholar] [CrossRef]
- Hildebrand, M.; Van Hees, V.T.; Hansen, B.H.; Ekelund, U. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med. Sci. Sports Exerc. 2014, 46, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Shiroma, E.J.; Schepps, M.; Harezlak, J.; Chen, K.; Matthews, C.; Koster, A.; Caserotti, P.; Glynn, N.; Harris, T. Daily physical activity patterns from hip-and wrist-worn accelerometers. Physiol. Meas. 2016, 37, 1852. [Google Scholar] [CrossRef] [PubMed]
- Abel, M.; Hannon, J.; Lillie, T.; Sell, K.; Anderson, D.; Conlin, G. Comparison of Kenz Lifecorder versus Actigraph physical activity output in free-living conditions. J. Phys. Act. Health 2009, 6, S141–S147. [Google Scholar] [CrossRef] [PubMed]
- Pfister, T.; Matthews, C.E.; Wang, Q.; Kopciuk, K.A.; Courneya, K.; Friedenreich, C. Comparison of two accelerometers for measuring physical activity and sedentary behaviour. BMJ Open Sport Exerc. Med. 2017, 3, e000227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallén, M.B.; Nero, H.; Franzén, E.; Hagströmer, M. Comparison of two accelerometer filter settings in individuals with Parkinson’s disease. Physiol. Meas. 2014, 35, 2287. [Google Scholar] [CrossRef] [PubMed]
- Cellini, N.; McDevitt, E.A.; Mednick, S.C.; Buman, M.P. Free-living cross-comparison of two wearable monitors for sleep and physical activity in healthy young adults. Physiol. Behav. 2016, 157, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos-Lozano, A.; Santin-Medeiros, F.; Cardon, G.; Torres-Luque, G.; Bailon, R.; Bergmeir, C.; Ruiz, J.R.; Lucia, A.; Garatachea, N. Actigraph GT3X: Validation and determination of physical activity intensity cut points. Int. J. Sports Med. 2013, 34, 975–982. [Google Scholar] [CrossRef]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Masse, L.C.; Tilert, T.; McDowell, M. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef]
- Shiroma, E.J.; Freedson, P.S.; Trost, S.G.; Lee, I. Patterns of accelerometer-assessed sedentary behavior in older women. JAMA 2013, 310, 2562–2563. [Google Scholar] [CrossRef]
- Ohkawara, K.; Oshima, Y.; Hikihara, Y.; Ishikawa-Takata, K.; Tabata, I.; Tanaka, S. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm. Br. J. Nutr. 2011, 105, 1681–1691. [Google Scholar] [CrossRef]
- Oshima, Y.; Kawaguchi, K.; Tanaka, S.; Ohkawara, K.; Hikihara, Y.; Ishikawa-Takata, K.; Tabata, I. Classifying household and locomotive activities using a triaxial accelerometer. Gait Posture 2010, 31, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Murakami, H.; Kawakami, R.; Nakae, S.; Nakata, Y.; Ishikawa-Takata, K.; Tanaka, S.; Miyachi, M. Accuracy of wearable devices for estimating total energy expenditure: Comparison with metabolic chamber and doubly labeled water method. JAMA Intern. Med. 2016, 176, 702–703. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Ishikawa-Takata, K.; Tanaka, S.; Mekata, Y.; Tabata, I. Effects of walking speed and step frequency on estimation of physical activity using accelerometers. J. Physiol. Anthropol. 2011, 30, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Yasunaga, A.; Shibata, A.; Ishii, K.; Koohsari, M.J.; Inoue, S.; Sugiyama, T.; Owen, N.; Oka, K. Associations of sedentary behavior and physical activity with older adults’ physical function: An isotemporal substitution approach. BMC Geriatr. 2017, 17, 280. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Honda, T.; Narazaki, K.; Chen, T.; Nofuji, Y.; Kumagai, S. Global cognitive performance and frailty in non-demented community-dwelling older adults: Findings from the Sasaguri Genkimon study. Geriatr. Gerontol. Int. 2016, 16, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Amagasa, S.; Fukushima, N.; Kikuchi, H.; Takamiya, T.; Oka, K.; Inoue, S. Light and sporadic physical activity overlooked by current guidelines makes older women more active than older men. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 59. [Google Scholar] [CrossRef] [PubMed]
- Kurita, S.; Yano, S.; Ishii, K.; Shibata, A.; Sasai, H.; Nakata, Y.; Fukushima, N.; Inoue, S.; Tanaka, S.; Sugiyama, T. Comparability of activity monitors used in Asian and Western-country studies for assessing free-living sedentary behaviour. PLoS ONE 2017, 12, e0186523. [Google Scholar] [CrossRef] [PubMed]
- Kurita, S.; Shibata, A.; Ishii, K.; Koohsari, M.J.; Owen, N.; Oka, K. Patterns of objectively assessed sedentary time and physical activity among Japanese workers: A cross-sectional observational study. BMJ Open 2019, 9, e021690. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Rico, E.; Hilland, T.A.; Foweather, L.; Fernandez-Garcia, E.; Fairclough, S.J. Weekday and weekend patterns of physical activity and sedentary time among Liverpool and Madrid youth. Eur. J. Sport Sci. 2014, 14, 287–293. [Google Scholar] [CrossRef]
- Kim, Y.; Beets, M.W.; Welk, G.J. Everything you wanted to know about selecting the “right” Actigraph accelerometer cut-points for youth, but…: A systematic review. J. Sci. Med. Sport 2012, 15, 311–321. [Google Scholar] [CrossRef]
- Holtermann, A.; Schellewald, V.; Mathiassen, S.E.; Gupta, N.; Pinder, A.; Punakallio, A.; Veiersted, K.B.; Weber, B.; Takala, E.-P.; Draicchio, F. A practical guidance for assessments of sedentary behavior at work: A PEROSH initiative. Appl. Ergon. 2017, 63, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Kozey-Keadle, S.; Libertine, A.; Lyden, K.; Staudenmayer, J.; Freedson, P.S. Validation of wearable monitors for assessing sedentary behavior. Med. Sci. Sports Exerc. 2011, 43, 1561–1567. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Farías, N.; Brown, W.J.; Peeters, G.G. ActiGraph GT3X+ cut-points for identifying sedentary behaviour in older adults in free-living environments. J. Sci. Med. Sport 2014, 17, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the computer science and applications, Inc. accelerometer. Med. Sci. Sports Exerc. 1998, 30, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, J.E.; John, D.; Freedson, P.S. Validation and comparison of ActiGraph activity monitors. J. Sci. Med. Sport 2011, 14, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.M.; Shiroma, E.J.; Evenson, K.R.; Kamada, M.; LaCroix, A.Z.; Buring, J.E. Accelerometer-measured physical activity and sedentary behavior in relation to all-cause mortality: The Women’s Health Study. Circulation 2018, 137, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Kamada, M.; Shiroma, E.J.; Harris, T.B.; Lee, I.M. Comparison of physical activity assessed using hip- and wrist-worn accelerometers. Gait Posture 2016, 44, 23–28. [Google Scholar] [CrossRef]
- Feito, Y.; Hornbuckle, L.M.; Reid, L.A.; Crouter, S.E. Effect of ActiGraph’s low frequency extension for estimating steps and physical activity intensity. PLoS ONE 2017, 12, e0188242. [Google Scholar] [CrossRef]
- Koster, A.; Shiroma, E.J.; Caserotti, P.; Matthews, C.E.; Chen, K.Y.; Glynn, N.W.; Harris, T.B. Comparison of sedentary estimates between activPAL and hip- and wrist-worn ActiGraph. Med. Sci. Sports Exerc. 2016, 48, 1514–1522. [Google Scholar] [CrossRef]
- Hart, T.L.; Ainsworth, B.E.; Tudor-Locke, C. Objective and subjective measures of sedentary behavior and physical activity. Med. Sci. Sports Exerc. 2011, 43, 449–456. [Google Scholar] [CrossRef]
- Feehan, L.M.; Goldsmith, C.H.; Leung, A.Y.; Li, L.C. SenseWearMini and Actigraph GT3X accelerometer classification of observed sedentary and light-intensity physical activities in a laboratory setting. Physiother. Can. 2016, 68, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Unick, J.L.; Bond, D.S.; Jakicic, J.M.; Vithiananthan, S.; Ryder, B.A.; Roye, G.D.; Pohl, D.; Trautvetter, J.; Wing, R.R. Comparison of two objective monitors for assessing physical activity and sedentary behaviors in bariatric surgery patients. Obesity Surg. 2012, 22, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Nyström, C.D.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef] [PubMed]
- Vanhelst, J.; Béghin, L.; Duhamel, A.; Bergman, P.; Sjöström, M.; Gottrand, F. Comparison of uniaxial and triaxial accelerometry in the assessment of physical activity among adolescents under free-living conditions: The HELENA study. BMC Med. Res. Methodol. 2012, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Chomistek, A.K.; Yuan, C.; Matthews, C.E.; Troiano, R.P.; Bowles, H.R.; Rood, J.; Barnett, J.B.; Willett, W.C.; Rimm, E.B.; Bassett, D.R., Jr. Physical activity assessment with the ActiGraph GT3X and doubly labeled water. Med. Sci. Sports Exerc. 2017, 49, 1935–1944. [Google Scholar] [CrossRef] [PubMed]
- Rothney, M.P.; Apker, G.A.; Song, Y.; Chen, K.Y. Comparing the performance of three generations of ActiGraph accelerometers. J. Appl. Physiol. 2008, 105, 1091–1097. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Recommendations on Physical Activity for Health; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Crouter, S.E.; DellaValle, D.M.; Haas, J.D.; Frongillo, E.A.; Bassett, D.R. Validity of ActiGraph 2-regression model, Matthews cut-points, and NHANES cut-points for assessing free-living physical activity. J. Phys. Act. Health 2013, 10, 504–514. [Google Scholar] [CrossRef]
- Ferguson, T.; Rowlands, A.V.; Olds, T.; Maher, C. The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 42. [Google Scholar] [CrossRef]
- Espinel, P.T.; Chau, J.Y.; van der Ploeg, H.P.; Merom, D. Older adults’ time in sedentary, light and moderate intensity activities and correlates: Application of Australian time use survey. J. Sci. Med. Sport 2015, 18, 161–166. [Google Scholar] [CrossRef]
- Dunstan, D.W.; Howard, B.; Healy, G.N.; Owen, N. Too much sitting—A health hazard. Diabetes Res. Clin. Pract. 2012, 97, 368–376. [Google Scholar] [CrossRef]
- Loprinzi, P.D. Light-intensity physical activity and all-cause mortality. Am. J. Health Promot. 2017, 31, 340–342. [Google Scholar] [CrossRef] [PubMed]
- Buman, M.P.; Hekler, E.B.; Haskell, W.L.; Pruitt, L.; Conway, T.L.; Cain, K.L.; Sallis, J.F.; Saelens, B.E.; Frank, L.D.; King, A.C. Objective light-intensity physical activity associations with rated health in older adults. Am. J. Epidemiol. 2010, 172, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Izawa, K.P.; Shibata, A.; Ishii, K.; Miyawaki, R.; Oka, K. Associations of low-intensity light physical activity with physical performance in community-dwelling elderly Japanese: A cross-sectional study. PLoS ONE 2017, 12, e0178654. [Google Scholar] [CrossRef] [PubMed]
- Wijndaele, K.; Westgate, K.; Stephens, S.K.; Blair, S.N.; Bull, F.C.; Chastin, S.F.; Dunstan, D.W.; Ekelund, U.; Esliger, D.W.; Freedson, P.S. Utilization and harmonization of adult accelerometry data: Review and expert consensus. Med. Sci. Sports Exerc. 2015, 47, 2129–2139. [Google Scholar] [CrossRef] [PubMed]
- Evenson, K.R.; Goto, M.M.; Furberg, R.D. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 159. [Google Scholar] [CrossRef] [PubMed]
Participants’ Characteristics | Total Participants | Work Day | Nonwork Day |
---|---|---|---|
Accelerometers’ outputs | |||
Wear time (min/day) | 835.2 ± 108.7 | 911.8 ± 109.6 | 839.9 ± 94.3 |
Total time of SB (min/day) | |||
Active style Pro | 456.4 ± 134.3 | 437.1 ± 132.2 | 480.6 ± 134.3 |
ActiGraph vertical axis | 543.5 ± 114.5 | 539.2 ± 124.1 | 550.9 ± 108.1 |
ActiGraph vector magnitude | 455.9 ± 120.1 | 435.0 ± 132.6 | 480.3 ± 102.4 |
Total time of LPA (min/day) | |||
Active style Pro | 306.1 ± 127.4 | 356.9 ± 121.7 | 251.7 ± 108.9 |
ActiGraph vertical axis | 253.8 ± 110.3 | 298.4 ± 121.4 | 208.6 ± 78.2 |
ActiGraph vector magnitude | 334.9 ± 131.6 | 393.5 ± 134.4 | 274.3 ± 96.6 |
Total time of MVPA (min/day) | |||
Active style Pro | 72.1 ± 49.1 | 81.9 ± 52.9 | 61.4 ± 41.3 |
ActiGraph vertical axis | 37.4 ± 31.3 | 37.0 ± 28.9 | 36.4 ± 33.0 |
ActiGraph vector magnitude | 43.9 ± 36.9 | 46.1 ± 38.5 | 41.3 ± 34.1 |
Total steps (steps/day) | |||
Active style Pro | 8691.4 ± 4959.8 | 9969.0 ± 4355.1 | 7417.9 ± 5132.6 |
ActiGraph (vertical axis, vector magnitude) | 8373.0 ± 4585.5 | 9441.8 ± 4190.9 | 7175.9 ± 4582.9 |
Mean Difference (95% CI) | |||
---|---|---|---|
Total | Work Day | Nonwork Day | |
Total time of SB (min/day) | |||
Active style Pro—ActiGraph vertical axis | −87.0 (−100.8, −73.2) * | −102.1 (−121.2, −82.9) * | −70.3 (−89.6, −50.9) * |
Active style Pro—ActiGraph vector magnitude | 0.6 (−9.8, 10.9) | 2.1 (−10.9, 15.2) | 0.3 (−15.2, 15.9) |
Total time of LPA (min/day) | |||
Active style Pro—ActiGraph vertical axis | 52.2 (39.7, 64.7) * | 58.5 (40.2, 76.8) * | 43.0 (25.2, 60.9) * |
Active style Pro—ActiGraph vector magnitude | −28.8 (−39.3, −18.3) * | −36.6 (−51.1, −22.2) * | −22.6 (−37.0, −8.3) * |
Total time of MVPA (min/day) | |||
Active style Pro—ActiGraph vertical axis | 34.7 (27.9, 41.6) * | 44.9 (34.0, 55.8) * | 25.1 (18.2, 32.0) * |
Active style Pro—ActiGraph vector magnitude | 28.2 (22.6, 33.8) * | 35.8 (27.3, 44.2) * | 20.1 (14.1, 26.2) * |
Total steps (step/day) | |||
Active style Pro—ActiGraph (vertical axis, vector magnitude) | 318.3 (59.8, 576.9) * | 527.2 (157.2, 897.2) ** | 242.0 (−141.1, 625.1) |
Active style Pro | ActiGraph Vertical Axis | Difference (95% CI) | p | |
---|---|---|---|---|
Total (n = 44, wear time = 829.5 ± 116.6) | ||||
SB | 462.0 ± 150.1 | 467.5 ± 116.3 | −5.5 ± 64.5 | 0.57 |
LPA | 296.8 ± 134.8 | 292.3 ± 95.4 | 4.4 ± 61.5 | 0.64 |
MVPA | 69.6 ± 42.4 | 64.6 ± 31.8 | 5.0 ± 30.4 | 0.28 |
Work day (n = 23, wear time = 880.3 ± 102.0) | ||||
SB | 464.9 ± 154.6 | 443.5 ± 116.5 | 21.4 ± 57.0 | 0.09 |
LPA | 325.8 ± 125.7 | 355.0 ± 93.1 | −29.2 ± 54.3 | <0.05 |
MVPA | 93.0 ± 63.1 | 90.0 ± 33.8 | 2.9 ± 41.5 | 0.74 |
Nonwork day (n = 22, wear time = 800.0 ± 95.1) | ||||
SB | 469.1 ± 103.3 | 475.7 ± 106.3 | −6.6 ± 42.0 | 0.47 |
LPA | 260.1 ± 90.1 | 246.3 ± 86.2 | 13.8 ± 40.6 | 0.12 |
MVPA | 68.5 ± 42.0 | 67.7 ± 46.2 | 0.8 ± 23.6 | 0.87 |
Active style Pro | ActiGraph Vector Magnitude | Difference (95% CI) | p | |
Total (n = 44, wear time = 829.5 ± 116.6) | ||||
LPA | 296.8 ± 134.8 | 300.4 ± 124.2 | −3.7 (−20.1, 12.8) | 0.66 |
MVPA | 69.6 ± 42.4 | 65.3 ± 30.9 | 4.2 (−4.3, 12.8) | 0.33 |
Work day (n = 23, wear time = 880.3 ± 102.0) | ||||
LPA | 325.8 ± 125.7 | 327.7 ± 129.0 | −1.9 (−18.5, 14.6) | 0.81 |
MVPA | 93.0 ± 63.1 | 99.5 ± 60.3 | −6.5 (−17.8, 4.7) | 0.24 |
Nonwork day (n = 22, wear time = 800.0 ± 95.1) | ||||
LPA | 260.1 ± 90.1 | 276.5 ± 107.1 | −16.4 (−32.0, −0.7) | <0.05 |
MVPA | 68.5 ± 42.0 | 66.3 ± 44.7 | 2.2 (−6.4, 10.8) | 0.60 |
Total (n = 44) | Work Day (n = 24) | Nonwork Day (n = 23) | ||||
---|---|---|---|---|---|---|
Outcome variables | ActiGraph vertical axis | ActiGraph vector magnitude | ActiGraph vertical axis | ActiGraph vector magnitude | ActiGraph vertical axis | ActiGraph vector magnitude |
SB time (%, min/day) | −0.13 + 1.04 × SB | non sig | −0.03 + 0.84 × SB | non sig | −0.34 + 1.37 × SB | non sig |
LPA time (%, min/day) | 0.1 + 0.87 × LPA | 0.01 + 0.90 × LPA | 0.2 + 0.66 × LPA | 0.01 + 0.88 × LPA | 0.004 + 1.15 × LPA | 0.08 + 1.18 × LPA |
MVPA time (%, min/day) | 0.03 + 1.14 × MVPA | 0.03 + 1.10 × MVPA | 0.05 + 0.94 × MVPA | 0.03 + 1.20 × MVPA time | 0.02 + 1.22 × MVPA | 0.02 + 1.17 × MVPA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yano, S.; Koohsari, M.J.; Shibata, A.; Ishii, K.; Mavoa, S.; Oka, K. Assessing Physical Activity and Sedentary Behavior under Free-Living Conditions: Comparison of Active Style Pro HJA-350IT and ActiGraphTM GT3X+. Int. J. Environ. Res. Public Health 2019, 16, 3065. https://doi.org/10.3390/ijerph16173065
Yano S, Koohsari MJ, Shibata A, Ishii K, Mavoa S, Oka K. Assessing Physical Activity and Sedentary Behavior under Free-Living Conditions: Comparison of Active Style Pro HJA-350IT and ActiGraphTM GT3X+. International Journal of Environmental Research and Public Health. 2019; 16(17):3065. https://doi.org/10.3390/ijerph16173065
Chicago/Turabian StyleYano, Shohei, Mohammad Javad Koohsari, Ai Shibata, Kaori Ishii, Suzanne Mavoa, and Koichiro Oka. 2019. "Assessing Physical Activity and Sedentary Behavior under Free-Living Conditions: Comparison of Active Style Pro HJA-350IT and ActiGraphTM GT3X+" International Journal of Environmental Research and Public Health 16, no. 17: 3065. https://doi.org/10.3390/ijerph16173065
APA StyleYano, S., Koohsari, M. J., Shibata, A., Ishii, K., Mavoa, S., & Oka, K. (2019). Assessing Physical Activity and Sedentary Behavior under Free-Living Conditions: Comparison of Active Style Pro HJA-350IT and ActiGraphTM GT3X+. International Journal of Environmental Research and Public Health, 16(17), 3065. https://doi.org/10.3390/ijerph16173065