Skip Content
You are currently on the new version of our website. Access the old version .
  • Review
  • Open Access

9 January 2019

A Review and Update on Waterborne Viral Diseases Associated with Swimming Pools

and
Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
*
Authors to whom correspondence should be addressed.
This article belongs to the Special Issue Recreational Water Illnesses

Abstract

Infectious agents, including bacteria, viruses, protozoa, and molds, may threaten the health of swimming pool bathers. Viruses are a major cause of recreationally-associated waterborne diseases linked to pools, lakes, ponds, thermal pools/spas, rivers, and hot springs. They can make their way into waters through the accidental release of fecal matter, body fluids (saliva, mucus), or skin flakes by symptomatic or asymptomatic carriers. We present an updated overview of epidemiological data on viral outbreaks, a project motivated, among other things, by the availability of improved viral detection methodologies. Special attention is paid to outbreak investigations (source of the outbreak, pathways of transmission, chlorination/disinfection). Epidemiological studies on incidents of viral contamination of swimming pools under non-epidemic conditions are also reviewed.

1. Introduction

Swimming pools have been implicated in the transmission of infections. The risk of infection has mainly been linked to fecal contamination of the water, generally due to feces released by bathers or to contaminated source water. Failure in disinfection has been recorded as the main cause of many of the outbreaks associated with swimming pools.
The majority of reported swimming pool-related outbreaks have been caused by enteric viruses [1,2]. Sinclair and collaborators reported that 48% of viral outbreaks occur in swimming pools, 40% in lakes or ponds, and the remaining 12% in fountains, hot springs, and rivers (4% each) [1].
Viruses cannot replicate outside their host’s tissues and cannot multiply in the environment. Therefore, the presence of viruses in a swimming pool is the result of direct contamination by bathers, who may shed viruses through unintentional fecal release, or through the release of body fluids such as saliva, mucus, or vomitus [3]. Evidence suggests that skin may also be a potential source of pathogenic viruses.

2. Materials and Methods

We carried out a comprehensive literature review aimed at investigating waterborne viral outbreaks linked to swimming pools, to explore the etiological agents implicated, pathways of transmission, associations between indicator organisms and disease, and key issues related to chlorination/disinfection procedures. Viral outbreaks are summarized in Table 1. The presence of enteric viruses in swimming pools under non-epidemic conditions was also reviewed. Different databases (Scopus, PubMed, and Google Scholar) were accessed using the terms norovirus, Norwalk virus, adenovirus, enterovirus, echovirus, coxsackievirus, and hepatitis A, in combination with terms recreation, swimming, pool, and water.
Table 1. List of viral swimming pool-related outbreaks.

4. Occurrence of Enteric Viruses in Swimming Pools under Non-Epidemic Conditions

To date, a limited number of studies examined the extent of viral contamination in swimming pools under non-epidemic conditions.
The first isolation of viruses from urban wading pools was documented in Albany, NY, USA in 1959 [37]. Two enteroviruses (echovirus 3 and echovirus 11) were identified from two chlorinated pools, both filled with water from the municipal supply. The same echovirus strains were found to be present in raw sewage sampled at the Albany treatment plant, reflecting widespread infection in the community.
In Toronto, Canada, Coxsackievirus B1 was isolated from children with pleurodynia, myalgia, and primary peritonitis during 1964. Examination for the virus content of a gauze swab, which was placed daily in a wading pool with high bather load located in a congested city area, revealed the presence of the same Coxsackievirus type [38].
In 1979 in Israel, swimming pool samples were found positive for enterovirus: three for Echovirus 7, two for Coxsackievirus B6, and one for Echovirus 6 [39]. Viruses were isolated from water samples with no detectable fecal or total coliform bacteria.
Different enteroviruses were detected in swimming pools and wading pools equipped with gas chlorine and sand/gravel filters in Texas, USA, in 1980 [40]. After virus concentration from water, samples were assayed on cell culture and plaque assays. Enteroviruses were found in 10/14 (71%) of the examined samples. Coxsackieviruses B3 and B4, poliovirus 1, and echovirus 7 were isolated in pool waters. No correlation was found with total coliform bacteria, as six among the positive virus samples were negative for coliforms. In three samples, viruses were detected in the presence of free chlorine exceeding 0.4 ppm and in the absence of coliforms, indicating that viruses can survive low levels of biocides in actively used pools. Cell cultures used in the study were suited for the isolation of enteroviruses, but it is likely that other viruses, not capable of growing on those cell lines, could also have been present in the water.
Three years later, in 1983, enteroviruses were detected in 28.4% of 116 water samples [41] collected from three outdoor swimming pools. A direct correlation was established between viral and microbial contamination, and the low exchange of water in the pools.
In 2004, van Heerden and coworkers detected HAdV in 12 of 64 samples (18.7%) from an indoor swimming pool and in three of 28 samples (10.7%) from an outdoor swimming pool [7]. Quantitative data were also obtained by Real-time PCR. Application of these results in an exponential risk assessment model, assuming a daily ingestion of 30 mL of water during swimming, indicated a daily risk of infection ranging from 1.92 × 10−3 to 3.69 × 10−3. No acceptable microbial risk has thus far been established for swimming pool water. However, pool water quality is generally considered comparable to drinking water quality (absence of fecal indicators and pathogens). For this reason, a maximum of one infection per 10,000 consumers per year has been recommended as an acceptable level of microbial risk for swimming pools. The risk of HAdV infections calculated for the swimming pool water in the study exceeded this acceptable risk.
More recently, in 2007 in Cyprus, HAdVs and enteroviruses were detected in public swimming pools complying with bacteriological standards (such as fecal coliforms and enterococci) [42]. The investigation was performed over a period of 21 months, from April 2007 to December 2008. A total of 126 samples were obtained from swimming pools located in five major cities. Bacteriological marker analysis showed that 98% of pools complied with the national regulations. Enteroviruses were identified in four swimming pools, one containing echovirus 18, two containing echovirus 30 and one containing poliovirus Sabin 1. In four swimming pools, HAdVs were detected, all characterized as type 41.
In 2013–2014, a study investigated the presence of human enteric viruses (adenovirus, norovirus, and enterovirus) in indoor and outdoor swimming pool waters in Rome. Bacteriological parameters (fecal indicator bacteria, heterotrophic plate count, Pseudomonas aeruginosa, and Staphylococcus aureus) were also investigated [43]. Moreover, the study was the first to examine the occurrence of non-enteric viruses in swimming pool waters: human papillomavirus (HPV) and human polyomavirus (HPyV). Interestingly, enteric viruses were not detected, while both HPVs and HPyVs were identified in 9/14 swimming pool water samples, by means of molecular methods. Neither of these viruses had previously been recognized as potential recreational waterborne pathogens, although the WHO Guidelines for safe recreational water environments do include HPVs among non-fecally-derived viruses as viruses associated with plantar warts [3]. A variety of HPVs and HPyVs were found in another study investigating spa/pool waters in Rome [44].
Recently, disinfected water from sixteen pools and spa collected in Rome between 2015 and 2018 were examined for the presence of human enteric viruses (adenovirus, norovirus and enterovirus. Viruses were detected in 25% of the analyzed samples by molecular methods: two samples were positive for adenovirus (type 41) and three samples for norovirus GII (type GII.4) (Bonadonna et al., unpublished data).

5. Concluding Remarks

Starting with the first HAdV outbreak recorded in 1951, we reviewed all of the reports concerning swimming-pool related viral illness. The data collected here confirm the involvement of viruses in cases and outbreaks associated with swimming pool attendance.
A number of considerations emerge:
  • The paper reviews 29 viral outbreaks due to adenovirus, enterovirus, hepatitis A virus, and norovirus, accounting for more than 3000 cases. Nevertheless, there are likely to have been many other undetected cases and outbreaks. In fact, waterborne diseases are difficult to record because of their wide variety, the difficulty associating symptoms with water use/contact, and the limitations of pathogen detection methods. In the studies described, viruses responsible for reported cases were detected in pool waters only in 21% of the outbreaks, and were found to match with viruses of clinical origin. Currently, better and more rapid methods for the detection of viruses in water samples are available than in the past, resulting in better studies and improved reporting of viral recreational outbreaks worldwide. This allows researchers to identify the causes of outbreaks and possible contributing factors for them. An excellent model to follow is the US-Waterborne Disease and Outbreak Surveillance System (WBDOSS) that has been collecting and reporting data related to occurrences and causes of waterborne disease outbreaks associated with drinking and recreational waters since 1971.
  • Some of the studies found that waters meeting state or local water quality requirements contained enteric viruses and were the source of disease outbreaks, confirming that bacterial indicators are unreliable indicators of the presence of viruses and that enteric viruses are important hazardous waterborne pathogens. Indeed, despite the relatively low concentration of viruses in water, they may nevertheless pose health risks due to their low infectious doses (10–100 virions).
  • The human illnesses associated with enteric viruses in the reviewed studies were diverse: the most commonly reported symptoms were gastroenteritis, respiratory symptoms, and conjunctivitis. More severe symptoms were also documented, however, including hepatitis and central nervous system infections (aseptic meningitis).
  • The majority of the outbreaks described involved mainly children and young people less than 18 years of age. This may be attributable to differences in behaviors, susceptibility and/or immune defenses between children and adults. Children are known to experience more severe symptoms than adults.
  • Low concentrations of disinfectant/disinfection malfunction in swimming pools were reported in the vast majority of the outbreaks. Only in one case the concentration of biocide was considered high.
In light of the health hazards posed by swimming pools, it is essential to constantly monitor water quality in swimming pools and to assess the effectiveness of treatment and disinfection processes and compliance with standards. Specifically, appropriate chemical and microbial evaluation of water quality should be carried out, especially when large numbers of bathers are expected to use the pools. Overcrowding should in any case be prevented. Since the behavior of swimmers may affect water quality, strict rules of behavior in the pool should be followed and enforced, including shower before entering the water, wash hands after using the toilet, take children to bathroom before swimming, and, importantly, avoid swimming while sick.

Author Contributions

L.B. and G.L.R. conceived and wrote the paper, and approved the submitted version.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Sinclair, R.G.; Jones, E.L.; Gerba, C.P. Viruses in recreational water-borne disease outbreaks: A review. J. Appl. Microbiol. 2009, 107, 1769–1780. [Google Scholar] [CrossRef] [PubMed]
  2. Barna, Z.; Kadar, M. The risk of contracting infectious diseases in public swimming pools. A review. Ann. Ist. Super. Sanità 2012, 48, 374–386. [Google Scholar] [CrossRef] [PubMed]
  3. WHO: Guidelines for Safe Recreational Water Environments—Swimming Pools and Similar Environments. Available online: http://www who.int/iris/handle/10665/43336 (accessed on 8 November 2018).
  4. Human Adenovirus Working Group. Available online: http://hadvwg.gmu.edu/ (accessed on 14 December 2018).
  5. La Rosa, G.; Suffredini, E. Adenovirus. In Handbook of Foodborne Diseases, 1st ed.; Liu, D., Ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
  6. Mena, K.D.; Gerba, C.P. Waterborne adenovirus. Rev. Environ. Contam Toxicol. 2009, 198, 133–167. [Google Scholar] [CrossRef] [PubMed]
  7. Van Heerden, J.; Ehlers, M.M.; Grabow, W.O.K. Detection and risk assessment of adenoviruses in swimming pool water. J. Appl. Microbiol. 2005, 99, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
  8. Staggemeier, R.; Arantes, T.; Caumo, K.S.; Rott, M.B.; Spilki, F.R. Detection and quantification of human adenovirus genomes in Acanthamoeba isolated from swimming pools. An. Acad. Bras. Cienc. 2016, 88 (Suppl. 1), 635–641. [Google Scholar] [CrossRef] [PubMed]
  9. Cockburn, T.A. An epidemic of conjunctivitis in Colorado associated with pharyngitis, muscle pain, and pyrexia. Am. J. Ophthalmol. 1953, 36, 1534–1539. [Google Scholar] [CrossRef]
  10. Bell, J.A.; Rowe, W.P.; Engler, J.I.; Parrot, R.H.; Huebner, R.J. Pharyngoconjunctival fever; epidemiological studies of a recently recognized disease entity. J. Am. Med. Assoc. 1955, 157, 1083–1092. [Google Scholar] [CrossRef]
  11. Ormsby, H.L.; Aitchison, W.S. The role of the swimming pool in the transmission of pharyngeal-conjunctival fever. Can. Med. Assoc. J. 1955, 73, 864–866. [Google Scholar]
  12. Fukumi, H.; Nishikawa, M.; Takemura, M.; Odaka, Y. isolation of adenovirus possessing both the antigens of types 3 and 7. Jpn. J. Med. Sci. Biol. 1961, 14, 173–181. [Google Scholar] [CrossRef]
  13. Foy, H.M.; Cooney, M.K.; Hatlen, J.B. Adenovirus type 3 epidemic associated with intermittent chlorination of a swimming pool. Arch. Environ. Health 1968, 17, 795–802. [Google Scholar] [CrossRef]
  14. Caldwell, G.G.; Lindsey, N.J.; Wulff, H.; Donnelly, D.D.; Bohl, F.N. Epidemic of adenovirus type 7 acute conjunctivitis in swimmers. Am. J. Epidemiol. 1974, 99, 230–234. [Google Scholar] [CrossRef] [PubMed]
  15. Martone, W.J.; Hierholzer, J.C.; Keenlyside, R.A.; Fraser, D.W.; D’Angelo, L.J.; Winkler, W.G. An outbreak of adenovirus type 3 disease at a private recreation center swimming pool. Am. J. Epidemiol. 1980, 111, 229–237. [Google Scholar] [CrossRef] [PubMed]
  16. D’Angelo, L.J.; Hierholzer, J.C.; Keenlyside, R.A.; Anderson, L.J.; Martone, W.J. Pharyngoconjunctival fever caused by adenovirus type 4: Report of a swimming pool-related outbreak with recovery of virus from pool water. J. Infect. Dis. 1979, 140, 42–47. [Google Scholar] [CrossRef] [PubMed]
  17. Turner, M.; Istre, G.R.; Beauchamp, H.; Baum, M.; Arnold, S. Community outbreak of adenovirus type 7a infections associated with a swimming pool. South. Med. J. 1987, 80, 712–715. [Google Scholar] [CrossRef] [PubMed]
  18. Papapetropoulou, M.; Vantarakis, A.C. Detection of adenovirus outbreak at a municipal swimming pool by nested PCR amplification. J. Infect. 1998, 36, 101–103. [Google Scholar] [CrossRef]
  19. Harley, D.; Harrower, B.; Lyon, M.; Dick, A. A primary school outbreak of pharyngoconjunctival fever caused by adenovirus type 3. Commun. Dis. Intell. 2001, 25, 9–12. [Google Scholar] [PubMed]
  20. Artieda, J.; Pineiro, L.; Gonzalez, M.; Munoz, M.; Basterrechea, M.; Iturzaeta, A.; Cilla, G. A swimming pool-related outbreak of pharyngoconjunctival fever in children due to adenovirus type 4, Gipuzkoa, Spain, 2008. Eurosurveillance 2009, 14, 19125. [Google Scholar]
  21. Xie, L.; Yu, X.F.; Sun, Z.; Yang, X.H.; Huang, R.J.; Wang, J.; Yu, A.; Zheng, L.; Yu, M.C.; Hu, X.W.; et al. Two adenovirus serotype 3 outbreaks associated with febrile respiratory disease and pharyngoconjunctival fever in children under 15 years of age in Hangzhou, China, during 2011. J. Clin. Microbiol. 2012, 50, 1879–1888. [Google Scholar] [CrossRef]
  22. Wei, S.H. An Adenovirus Outbreak Associated with a Swimming Facility. SM Trop. Med. J. 2016, 1, 1007. [Google Scholar]
  23. Li, J.; Lu, X.; Sun, Y.; Lin, C.; Li, F.; Yang, Y.; Liang, Z.; Jia, L.; Chen, L.; Jiang, B.; et al. A swimming pool-associated outbreak of pharyngoconjunctival fever caused by human adenovirus type 4 in Beijing, China. Int. J. Infect. Dis. 2018, 75, 89–91. [Google Scholar] [CrossRef]
  24. Lenaway, D.D.; Brockmann, R.; Dola, G.J.; Cruz-Uribe, F. An outbreak of an enterovirus-like illness at a community wading pool: Implications for public health inspection programs. Am. J. Public Health 1989, 79, 889–890. [Google Scholar] [CrossRef] [PubMed]
  25. Kee, F.; McElroy, G.; Stewart, D.; Coyle, P.; Watson, J. A community outbreak of echovirus infection associated with an outdoor swimming pool. J. Public Health Med. 1994, 16, 145–148. [Google Scholar] [CrossRef] [PubMed]
  26. Faustini, A.; Fano, V.; Muscillo, M.; Zaniratti, S.; La Rosa, G.; Tribuzi, L.; Perucci, C.A. An outbreak of aseptic meningitis due to Echovirus 30 associated with attending school and swimming in pools. Int. J. Infect. Dis. 2006, 10, 291–297. [Google Scholar] [CrossRef] [PubMed]
  27. Yeats, J.; Smuts, H.; Serfontein, C.J.; Kannemeyer, J. Investigation into a school enterovirus outbreak using PCR detection and serotype identification based on the 5’ non-coding region. Epidemiol. Infect. 2005, 133, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
  28. Hauri, A.M.; Schimmelpfennig, M.; Walter-Domes, M.; Letz, A.; Diedrich, S.; Lopez-Pila, J.; Schreier, E. An outbreak of viral meningitis associated with a public swimming pond. Epidemiol. Infect. 2005, 133, 291–298. [Google Scholar] [CrossRef] [PubMed]
  29. Yoder, J.S.; Blackburn, B.G.; Craun, G.F.; Hill, V.; Levy, D.A.; Chen, N.; Lee, S.H.; Calderon, R.L.; Beach, M.J. Surveillance for waterborne-disease outbreaks associated with recreational water—United States, 2001–2002. MMWR Surveill. Summ. 2004, 53, 23–45. [Google Scholar]
  30. Solt, K.; Nagy, T.; Csohan, A.; Csanady, M.; Hollos, I. An outbreak of hepatitis A due to a thermal spa. Bp. Kozeu. 1994, 26, 8–12. [Google Scholar]
  31. Mahoney, F.J.; Farley, T.A.; Kelso, K.Y.; Wilson, S.A.; Horan, J.M.; McFarland, L.M. An outbreak of hepatitis A associated with swimming in a public pool. J. Infect. Dis. 1992, 165, 613–618. [Google Scholar] [CrossRef]
  32. Tallis, G.; Gregory, J. An outbreak of hepatitis A associated with a spa pool. Commun. Dis. Intell. 1997, 21, 353–354. [Google Scholar]
  33. Kappus, K.D.; Marks, J.S.; Holman, R.C.; Bryant, J.K.; Baker, C.; Gary, G.W.; Greenberg, H.B. An outbreak of Norwalk gastroenteritis associated with swimming in a pool and secondary person-to-person transmission. Am. J. Epidemiol. 1982, 116, 834–839. [Google Scholar] [CrossRef]
  34. Maunula, L.; Kalso, S.; von Bonsdorff, C.H.; Ponka, A. Wading pool water contaminated with both noroviruses and astroviruses as the source of a gastroenteritis outbreak. Epidemiol. Infect. 2004, 132, 737–743. [Google Scholar] [CrossRef] [PubMed]
  35. Podewils, L.J.; Zanardi, B.L.; Hagenbuch, M.; Itani, D.; Burns, A.; Otto, C.; Blanton, L.; Adams, S.; Monroe, S.S.; Beach, M.J.; et al. Outbreak of norovirus illness associated with a swimming pool. Epidemiol. Infect. 2007, 135, 827–833. [Google Scholar] [CrossRef] [PubMed]
  36. Yoder, J.S.; Hlavsa, M.C.; Craun, G.F.; Hill, V.; Roberts, V.; Yu, P.A.; Hicks, L.A.; Alexander, N.T.; Calderon, R.L.; Roy, S.L.; et al. Surveillance for waterborne disease and outbreaks associated with recreational water use and other aquatic facility-associated health events—United States, 2005–2006. MMWR Surveill. Summ. 2008, 57, 1–29. [Google Scholar] [PubMed]
  37. Kelly, S.; Sanderson, W.W. Enteric Viruses in Wading Pools. Public Health Rep. 1961, 76, 199–200. [Google Scholar] [CrossRef] [PubMed]
  38. McLean, D.M.; Larke, R.P.B.; McNaughton, G.A.; Best, J.M.; Smith, P. Enteroviral Syndromes in Toronto, 1964. Can. Med. Assoc. J. 1965, 92, 658–661. [Google Scholar] [PubMed]
  39. Marzouk, Y.M.; Goyal, S.M.; Gerba, C. Relationship of viruses and indicator bacteria in water and wastewater of Israel. Water Res. 1980, 14, 1585–1590. [Google Scholar] [CrossRef]
  40. Keswick, B.H.; Gerba, C.P.; Goyal, S.M. Occurrence of enteroviruses in community swimming pools. Am. J. Public Health 1981, 71, 1026–1030. [Google Scholar] [CrossRef]
  41. Cotor, F.; Zavate, O.; Finichiu, M.; Avram, G.; Ivan, A. Enterovirus contamination of swimming pool water; correlation with bacteriological indicators. Virologie 1983, 34, 251–256. [Google Scholar] [PubMed]
  42. Bashiardes, S.; Koptides, D.; Pavlidou, S.; Richter, J.; Stavrou, N.; Kourtis, C.; Papageorgiou, G.T.; Christodoulou, C.G. Analysis of enterovirus and adenovirus presence in swimming pools in Cyprus from 2007–2008. Water Sci. Technol. 2011, 63, 2674–2684. [Google Scholar] [CrossRef] [PubMed]
  43. La Rosa, G.; Della Libera, S.; Petricca, S.; Iaconelli, M.; Briancesco, R.; Paradiso, R.; Semproni, M.; Di Bonito, P.; Bonadonna, L. First detection of papillomaviruses and polyomaviruses in swimming pool waters: Unrecognized recreational water-related pathogens? J. Appl. Microbiol. 2015, 119, 1683–1691. [Google Scholar] [CrossRef]
  44. Di Bonito, P.; Iaconelli, M.; Gheit, T.; Tommasino, M.; Della Libera, S.; Bonadonna, L.; La Rosa, G. Detection of oncogenic viruses in water environments by a Luminex-based multiplex platform for high throughput screening of infectious agents. Water Res. 2017, 123, 549–555. [Google Scholar] [CrossRef] [PubMed]

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.