Combining Data from Multiple Sources to Evaluate Spatial Variations in the Economic Costs of PM2.5-Related Health Conditions in the Beijing–Tianjin–Hebei Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fine Particulate Matter (PM2.5) Data
2.2. The Spatial Distribution of the Population Density
2.3. PM2.5 Health Risk Assessment
2.4. Quantitative Estimation of the Economic Costs
3. Results
3.1. Spatial Variations in PM2.5 and Population Density
3.2. Health Effects Linked to PM2.5
3.3. Economic Costs of PM2.5
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization (WHO). Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Woodruff, T.J.; Parker, J.D.; Schoendorf, K.C. Fine particulate matter (PM2.5) air pollution and selected causes of postneonatal infant mortality in California. Environ. Health Perspect. 2006, 114, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, G.; Zheng, M.; Liu, W.; Wang, M.; Xiao, K.; Li, C.; Wang, Y. Comparison of the contributions of polychlorinated dibenzo-p-dioxins and dibenzofurans and other unintentionally produced persistent organic pollutants to the total toxic equivalents in air of steel plant areas. Chemosphere 2015, 126, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; Mcdermott, A.; Zeger, S.L.; Samet, J.M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006, 295, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Jiang, W.; Wang, B.; Fang, J.; Lang, J.; Tian, G.; Jiang, J.; Zhu, T.F. Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event. Environ. Sci. Technol. 2014, 48, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Fu, Q.; Zhang, L.; Lyu, D.; Mao, G.; Wu, L.; Xu, P.; Wang, Z.; Pan, X.; Chen, Z. Acute effects of air pollution on respiratory disease mortalities and outpatients in Southeastern China. Sci. Rep. 2018, 8, 3461. [Google Scholar] [CrossRef]
- Dockery, D.W.; Stone, P.H. Cardiovascular risks from fine particulate air pollution. N. Engl. J. Med. 2007, 356, 511. [Google Scholar] [CrossRef]
- Dabass, A.; Talbott, E.O.; Venkat, A.; Rager, J.; Marsh, G.M.; Sharma, R.K.; Holguin, F. Association of exposure to particulate matter (PM2.5) air pollution and biomarkers of cardiovascular disease risk in adult NHANES participants (2001–2008). Int. J. Hyg. Environ. Health 2016, 219, 301–310. [Google Scholar] [CrossRef]
- Badyda, A.J.; Grellier, J.; Dąbrowiecki, P. Ambient PM2.5 exposure and mortality due to lung cancer and cardiopulmonary diseases in Polish cities. In Respiratory Treatment and Prevention; Springer: Cham, Switzerland, 2016; pp. 9–17. [Google Scholar]
- Shu, Y.; Zhu, L.; Yuan, F.; Kong, X.; Huang, T.; Cai, Y.D. Analysis of the relationship between PM2.5 and lung cancer based on protein-protein interactions. Comb. Chem. High Throughput Screen. 2016, 19, 100–108. [Google Scholar] [CrossRef]
- Huang, F.; Pan, B.; Wu, J.; Chen, E.; Chen, L. Relationship between exposure to PM2.5 and lung cancer incidence and mortality: A meta-analysis. Oncotarget 2017, 8, 43322–43331. [Google Scholar] [CrossRef]
- van Winkle, L.S.; Bein, K.; Anderson, D.; Pinkerton, K.E.; Tablin, F.; Wilson, D.; Wexler, A.S. Biological dose response to PM2.5: Effect of particle extraction method on platelet and lung responses. Toxicol. Sci. 2015, 143, 349–359. [Google Scholar] [CrossRef]
- Zhang, B.; Liang, S.; Zhao, J.; Qian, Z.; Bassig, B.A.; Yang, R.; Zhang, Y.; Hu, K.; Xu, S.; Zheng, T. Maternal exposure to air pollutant PM2.5 and PM10 during pregnancy and risk of congenital heart defects. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Kjellström, T.; Holmer, I.; Bruno, L. Workplace heat stress, health and productivity. Child Abus. Negl. 2009, 35, 647–654. [Google Scholar]
- Meisner, C.; Gjorgjev, D.; Tozija, F. Estimating health impacts and economic costs of air pollution in the Republic of Macedonia. South East. Eur. J Public Health 2015, 4. [Google Scholar] [CrossRef]
- Trasande, L.; Malecha, P.; Attina, T.M. Particulate matter exposure and preterm birth: Estimates of U.S. attributable burden and economic costs. Environ. Health Perspect. 2016, 124, 1913–1918. [Google Scholar] [CrossRef]
- Xie, Y.; Dai, H.; Dong, H.; Hanaoka, T.; Masui, T. Economic impacts from PM2.5 pollution-related health effects in China: A provincial-level analysis. Environ. Sci. Technol. 2016, 50, 4836–4843. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Zhang, S. Health benefit evaluation for PM2.5 pollution control in Beijing-Tianjin-Hebei region of China. China Environ. Sci. 2013, 33, 166–174. (In Chinese) [Google Scholar]
- Li, L.; Lei, Y.; Wu, S.; Chen, J.; Yan, D. The health economic loss of fine particulate matter (PM2.5) in Beijing. J. Clean. Prod. 2017, 161, 1153–1161. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Voorhees, A.S.; Zhao, B.; Jang, C.; Jiang, J.; Fu, J.S.; Ding, D.; Zhu, Y.; Hao, J. Assessment of short-term PM2.5-related mortality due to different emission sources in the Yangtze River Delta, China. Atmos. Environ. 2015, 123, 440–448. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, L.; Song, C.; Yin, H.; Yang, J. Spatiotemporal assessment of PM2.5-related economic losses from health impacts during 2014–2016 in China. Int. J. Environ. Res. Public Health 2018, 15, 1278. [Google Scholar] [CrossRef]
- Liao, Z.; Sun, J.; Liu, J.; Guo, S.; Fan, S. Long-term trends in ambient particulate matter, chemical composition, and associated health risk and mortality burden in Hong Kong (1995–2016). Air Qual. Atmos. Health 2018, 11, 773–783. [Google Scholar] [CrossRef]
- Martinez, G.; Spadaro, J.; Chapizanis, D.; Kendrovski, V.; Kochubovski, M.; Mudu, P. Health impacts and economic costs of air pollution in the metropolitan area of Skopje. Int. J. Environ. Res. Public Health 2018, 15, 626. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Pizzol, M.; Xu, L. External costs of PM2.5 pollution in Beijing, China: Uncertainty analysis of multiple health impacts and costs. Environ. Pollut. 2017, 226, 356–369. [Google Scholar] [CrossRef] [PubMed]
- Lo, W.-C.; Shie, R.-H.; Chan, C.-C.; Lin, H.-H. Burden of disease attributable to ambient fine particulate matter exposure in Taiwan. J. Formos. Med. Assoc. 2017, 116, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Han, Y.; Tang, X.; Zhu, J.; Zhu, T. Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network. Sci. Total Environ. 2016, 568, 1253–1262. [Google Scholar] [CrossRef]
- Hoff, R.M.; Christopher, S.A. Remote sensing of particulate pollution from space: Have we reached the promised land? J. Air Waste Manag. Assoc. 2009, 59, 645–675. [Google Scholar] [CrossRef]
- Hu, X.; Waller, L.A.; Al-Hamdan, M.Z.; Crosson, W.L.; Estes, M.G., Jr.; Estes, S.M.; Quattrochi, D.A.; Sarnat, J.A.; Liu, Y. Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression. Environ. Res. 2013, 121, 1–10. [Google Scholar] [CrossRef]
- Remer, L.; Mattoo, S.; Levy, R.; Munchak, L. MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. Discuss. 2013, 6, 69–112. [Google Scholar] [CrossRef]
- You, W.; Zang, Z.; Zhang, L.; Li, Y.; Pan, X.; Wang, W. National-scale estimates of ground-level PM2.5 concentration in China using geographically weighted regression based on 3 km resolution MODIS AOD. Remote Sens. 2016, 8, 184. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, H. Improving satellite-driven PM2.5 models with VIIRS nighttime light data in the Beijing–Tianjin–Hebei region, China. Remote Sens. 2017, 9, 908. [Google Scholar] [CrossRef]
- Sutton, P.; Roberts, D.; Elvidge, C.; Meij, H. A comparison of nighttime satellite imagery and population density for the continental United States. Photogramm. Eng. Remote Sens. 1997, 63, 1303–1313. [Google Scholar]
- Lo, C.P. Modeling the population of China using DMSP operational linescan system nighttime data. Photogramm. Eng. Remote Sens. 2001, 67, 1037–1048. [Google Scholar]
- Zeng, C.; Zhou, Y.; Wang, S.; Yan, F.; Zhao, Q. Population spatialization in China based on night-time imagery and land use data. Int. J. Remote Sens. 2011, 32, 9599–9620. [Google Scholar] [CrossRef]
- Kan, H.; Chen, R.; Tong, S. Ambient air pollution, climate change, and population health in China. Environ. Int. 2012, 42, 10–19. [Google Scholar] [CrossRef] [PubMed]
- van Donkelaar, A.; Martin, R.V.; Park, R.J. Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health Perspect. 2010, 118, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Hu, X.; Sayer, A.M.; Levy, R.; Zhang, Q.; Xue, Y.; Tong, S.; Bi, J.; Huang, L.; Liu, Y. Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004–2013. Environ. Health Perspect. 2016, 124, 184–192. [Google Scholar] [CrossRef]
- Lee, H.J.; Liu, Y.; Coull, B.A.; Schwartz, J.; Koutrakis, P. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations. Atmos. Chem. Phys. 2011, 11, 9769–9795. [Google Scholar] [CrossRef]
- China’s Air Quality Online Monitoring and Analysis Platform. Available online: http:// www.aqistudy.cn/ (accessed on 18 October 2019).
- Beijing Municipal Environmental Monitoring Center. Available online: http://zx.bjmemc.com.cn/ (accessed on 18 October 2019).
- The Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC). Available online: https://ladsweb.nascom.nasa.gov/data/search.html (accessed on 18 October 2019).
- He, Q.; Zhang, M.; Huang, B. Spatio-temporal variation and impact factors analysis of satellite-based aerosol optical depth over China from 2002 to 2015. Atmos. Environ. 2016, 129, 79–90. [Google Scholar] [CrossRef]
- Lucchesi, R. File Specification for GEOS-5 FP-IT (Forward Processing for Instrument Teams); NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2013.
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; Volume 2, pp. 1137–1143. [Google Scholar]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An introduction to spatial data analysis. Geogr. Anal. 2006, 38, 5–22. [Google Scholar] [CrossRef]
- Chi, G.; Zhu, J. Spatial regression models for demographic analysis. Popul. Res. Policy Rev. 2008, 27, 17–42. [Google Scholar] [CrossRef]
- Zhuo, L.; Ichinose, T.; Zheng, J.; Chen, J.; Shi, P.J.; Li, X. Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images. Int. J. Remote Sens. 2009, 30, 1003–1018. [Google Scholar] [CrossRef]
- Tan, M.; Li, X.; Li, S.; Xin, L.; Wang, X.; Li, Q.; Li, W.; Li, Y.; Xiang, W. Modeling population density based on nighttime light images and land use data in China. Appl. Geogr. 2018, 90, 239–247. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, Z.; Fang, L. Monitoring population evolution in China using time-series DMSP/OLS nightlight imagery. Remote Sens. 2018, 10, 194. [Google Scholar] [CrossRef]
- Harvey, J.T. Estimating census district populations from satellite imagery: Some approaches and limitations. Int. J. Remote Sens. 2002, 23, 2071–2095. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Imhoff, M.L.; Baugh, K.E.; Hobson, V.R.; Nelson, I.; Safran, J.; Dietz, J.B.; Tuttle, B.T. Night-time lights of the world: 1994–1995. ISPRS J. Photogramm. 2001, 56, 81–99. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance calibration of DMSP-OLS low-light imaging data of human settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- The Land Processes Distribution Active Archive Center of the United States Geological Survey. Available online: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1 (accessed on 18 October 2019).
- Hou, Y.; Wang, S.; Nan, Z. Rule-based land cover classification method for the Heihe River Basin. Acta Geogr. Sin. 2011, 66, 549–561. (In Chinese) [Google Scholar]
- Ren, Z.; Zhu, H.; Liu, X. Spatio-temporal differentiation of land covers on annual scale and its response to climate and topography in arid and semi-arid region. Trans. Chin. Soc. Agric. Eng. 2012, 28, 205–214. (In Chinese) [Google Scholar]
- National Bureau of Statistics (NBS). China Statistical Yearbook; China Statistics Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
- National Bureau of Statistics (NBS). China Statistical Yearbook; China Statistics Press: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Xu, X.; Dockery, D.W.; Christiani, D.C.; Li, B.; Huang, H. Association of air pollution with hospital outpatient visits in Beijing. Arch. Environ. Health 1995, 50, 214–220. [Google Scholar] [CrossRef]
- Wong, C.M.; Atkinson, R.W.; Anderson, H.R.; Hedley, A.J.; Ma, S.; Chau, P.Y.; Lam, T.H. A tale of two cities: Effects of air pollution on hospital admissions in Hong Kong and London compared. Environ. Health Perspect. 2002, 110, 67–77. [Google Scholar] [CrossRef]
- Aunan, K.; Pan, X.C. Exposure-response functions for health effects of ambient air pollution applicable for China—A meta-analysis. Sci. Total Environ. 2004, 329, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Ko, F.W.; Tam, W.; Wong, T.W.; Lai, C.K.; Wong, G.W.; Leung, T.F.; Ng, S.S.; Hui, D.S. Effects of air pollution on asthma hospitalization rates in different age groups in Hong Kong. Clin. Exp. Allergy 2007, 37, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Liu, X.; Liu, Z.; Li, T.; Bai, Y. Exposure-response functions for health effects of ambient particulate matter pollution applicable for China. China Environ. Sci. 2009, 29, 1034–1040. (In Chinese) [Google Scholar]
- Liu, X.; Xie, P.; Liu, Z.; Li, T.; Zhong, L.; Xiang, Y. Economic assessment of acute health impact due to inhalable particulate air pollution in the Pearl River Delta. Acta Sci. Nat. Univ. Pekin. 2010, 46, 829–834. (In Chinese) [Google Scholar]
- Zhang, M.; Yu, S.; Cai, X. A health-based assessment of particulate air pollution in urban areas of Beijing in 2000–2004. Sci. Total Environ. 2007, 376, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; An, X.; Yan, T.; Sun, Z. Assessment of resident’s exposure level and health economic costs of PM10 in Beijing from 2008 to 2012. Sci. Total Environ. 2016, 563–564, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Li, H. Health economic evaluation of PM10 and PM2.5 pollution in Beijing-Tianjin-Hebei region of China. Acta Sci. Nat. Univ. Nankaiensis 2016, 1, 69–77. (In Chinese) [Google Scholar]
- China’s Environmental Protection Ministry. National Ambient Air Quality Standards (GB3095-2012); China Environmental Science Publisher: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Jin, L.B.; Qin, Y.; Xu, Z. Relationship between air pollution and acute and chronic respiratory diseases in Benxi. J. Environ. Health 2000, 17, 268–270. (In Chinese) [Google Scholar]
- Chen, B.; Hong, C.; Kan, H. Exposures and health outcomes from outdoor air pollutants in China. Toxicology 2004, 198, 291–300. [Google Scholar] [CrossRef]
- National Health Commission of the People’s Republic of China. China Statistical Yearbook of Public Health; Peking Union Medical College: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Xie, Y.; Chen, J.; Li, W. An assessment of PM2.5 related health risks and impaired values of Beijing residents in a consecutive high-level exposure during heavy haze days. Environ. Sci. 2014, 35, 1–8. (In Chinese) [Google Scholar]
- Hammitt, J.K. Valuing mortality risk: Theory and practice. Environ. Sci. Technol. 2000, 34, 1396–1400. [Google Scholar] [CrossRef]
- Johnson, T.M.; Liu, F.; Newfarmer, R.S. Clear Water Blue Skies: China’s Environment in the New Century; The World Bank: Washington, DC, USA, 1997. [Google Scholar]
- Wang, H.; Mullahy, J. Willingness to pay for reducing fatal risk by improving air quality: A contingent valuation study in Chongqing, China. Sci. Total Environ. 2006, 367, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Li, T. Assessment of health-based economic costs linked to fine particulate (PM2.5) pollution: A case study of haze during January 2013 in Beijing, China. Air Qual. Atmos. Health 2016, 9, 439–445. [Google Scholar] [CrossRef]
- Hammitt, J.K.; Zhou, Y. The economic value of air-pollution-related health risks in China: A contingent valuation study. Environ. Resour. Econ. 2006, 33, 399–423. [Google Scholar] [CrossRef]
- Quah, E.; Boon, T.L. The economic cost of particulate air pollution on health in Singapore. J. Asian Econ. 2004, 14, 73–90. [Google Scholar] [CrossRef]
- China Foreign Exchange Trade System 2016. History Average Exchange Rate of RMB. Available online: http://www.chinamoney.com.cn/ (accessed on 18 October 2019).
- Xie, P.; Liu, X.; Liu, Z.; Li, T.; Zhong, L.; Xiang, Y. Human health impact of exposure to airborne particulate matter in Pearl River Delta, China. Water Air Soil Pollut. 2011, 215, 349–363. [Google Scholar] [CrossRef]
- Apte, J.S.; Marshall, J.D.; Cohen, A.J.; Brauer, M. Addressing global mortality from ambient PM2.5. Environ. Sci. Technol. 2015, 49, 8057–8066. [Google Scholar] [CrossRef]
- Liang, R.; Zhang, B.; Zhao, X.; Ruan, Y.; Lian, H.; Fan, Z. Effect of exposure to PM2.5 on blood pressure: A systematic review and meta-analysis. J. Hypertens. 2014, 32, 2130–2140. [Google Scholar] [CrossRef]
Health Impact | Exposure-Response Coefficients 95% CI | Reference |
---|---|---|
All-cause mortality | 0.0040 (0.0019, 0.0062) | [63] |
Respiratory hospital admission | 0.0109 (0, 0.0221) | [60,61,63] [60,61,63] |
Cardiovascular hospital admission | 0.0068 (0.0043, 0.0093) | [60,61,63] |
Outpatient visits to pediatrics | 0.0056 (0.0020, 0.09) | [59] |
Outpatient visits to internal medicine | 0.0049 (0.0027, 0.07) | [59] |
Acute bronchitis | 0.0790 (0.027, 0.13) | [69] |
Chronic bronchitis | 0.01009 (0.00366, 0.01559) | [18] |
Asthma attack | 0.02100 (0.0145, 0.03) | [70] |
Health Impact | EBeijing | ETianjin | EHebei | Reference |
---|---|---|---|---|
All-cause mortality | 5.20‰ | 5.54‰ | 6.36‰ | [58] |
Respiratory hospital admission | 2.03% | 1.47% | 2.11% | [71] |
Cardiovascular hospital admission | 1.57% | 1.14% | 1.64% | [71] |
Outpatient visits to pediatrics | 77.00‰ | 52.58‰ | 96.10‰ | [71] |
Outpatient visits to internal medicine | 22.20% | 31.70% | 21.80% | [71] |
Acute bronchitis | 3.80% | 3.80% | 3.80% | [18,72] |
Chronic bronchitis | 0.69% | 3.80% | 3.80% | [18,72] |
Asthma attack | 0.94% | 0.94% | 0.94% | [18,72] |
Health Impact | ECBeijing | ECTianjin | ECHebei | Method | References |
---|---|---|---|---|---|
All-cause mortality | 775,333.85 | 502,461.50 | 383,481.63 | VOSL | [58] |
Respiratory hospital admission | 1096.17 | 1096.17 | 1096.17 | COI | [71] |
Cardiovascular hospital admission | 2595.54 | 2595.54 | 2595.54 | COI | [71] |
Outpatient visits to pediatrics | 69.28 | 45.06 | 32.35 | COI | [71] |
Outpatient visits to internal medicine | 69.28 | 45.06 | 32.35 | COI | [71] |
Acute bronchitis | 376.39 | 304.86 | 211.21 | COI | [18,67] |
Chronic bronchitis | 42,643.36 | 27,635.38 | 21,091.49 | VOSL | [77] |
Asthma attack | 277.06 | 224.41 | 155.39 | COI | [67] |
Health Impact | Beijing | Tianjin | Hebei |
---|---|---|---|
All-cause mortality | 15.934 (7.871, 23.718) | 11.004 (5.413, 16.447) | 62.067 (30.566, 92.676) |
Respiratory hospital admission | 149.415 (0, 250.340) | 70.832 (0, 120.835) | 500.378 (0, 849.737) |
Cardiovascular hospital admission | 77.810 (51.511, 101.725) | 36.617 (24.128, 48.089) | 259.152 (170.962, 339.954) |
Outpatient visits to pediatrics | 320.725 (122.453, 484.648) | 142.390 (53.991, 216.506) | 1277.715 (485.322, 1939.757) |
Outpatient visits to internal medicine | 819.571 (470.404, 1126.711) | 759.872 (434.312, 1048.723) | 2,566.449 (1468.419, 3538.570) |
Acute bronchitis | 784.711 (529.764, 819.832) | 553.107 (356.541, 586.417) | 2659.836 (1735.294, 2808.604) |
Chronic bronchitis | 48.028 (19.580, 67.412) | 31.481 (12.684, 44.600) | 154.244 (62.332, 218.013) |
Asthma attack | 112.297 (86.531, 138.935) | 74.929 (57.147, 93.883) | 365.481 (279.469, 456.461) |
Health Impact | Economic Cost (95%CI) | ||
---|---|---|---|
Beijing | Tianjin | Heibei | |
All-cause mortality | 12.35 (6.10, 18.39) | 5.53 (2.72, 8.26) | 23.80 (11.72, 35.54) |
Respiratory hospital admission | 0.16 (0, 0.27) | 0.08 (0, 0.13) | 0.55 (0, 0.93) |
Cardiovascular hospital admission | 0.20 (0.13, 0.26) | 0.10 (0.06, 0.12) | 0.67 (0.44, 0.88) |
Outpatient visits to pediatrics | 0.02 (0.01, 0.03) | 0.01 (0.002, 0.01) | 0.04 (0.02, 0.06) |
Outpatient visits to internal medicine | 0.06 (0.03, 0.08) | 0.03 (0.02, 0.05) | 0.08 (0.05, 0.11) |
Acute bronchitis | 0.30 (0.20, 0.31) | 0.17 (0.11, 0.18) | 0.56 (0.37, 0.59) |
Chronic bronchitis | 2.04 (0.83, 2.87) | 0.86 (0.35, 1.23) | 3.25 (1.31, 4.60) |
Asthma attack | 0.03 (0.02, 0.04) | 0.02 (0.01, 0.02) | 0.05 (0.04, 0.07) |
Total loss | 15.16 (7.34, 22.26) | 6.80 (3.28, 10.01) | 29.00 (13.95, 42.79) |
GDP | 386.45 | 269.26 | 482.81 |
Total loss/GDP | 3.90% | 2.52% | 6.00% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Hu, H. Combining Data from Multiple Sources to Evaluate Spatial Variations in the Economic Costs of PM2.5-Related Health Conditions in the Beijing–Tianjin–Hebei Region. Int. J. Environ. Res. Public Health 2019, 16, 3994. https://doi.org/10.3390/ijerph16203994
Zhang X, Hu H. Combining Data from Multiple Sources to Evaluate Spatial Variations in the Economic Costs of PM2.5-Related Health Conditions in the Beijing–Tianjin–Hebei Region. International Journal of Environmental Research and Public Health. 2019; 16(20):3994. https://doi.org/10.3390/ijerph16203994
Chicago/Turabian StyleZhang, Xiya, and Haibo Hu. 2019. "Combining Data from Multiple Sources to Evaluate Spatial Variations in the Economic Costs of PM2.5-Related Health Conditions in the Beijing–Tianjin–Hebei Region" International Journal of Environmental Research and Public Health 16, no. 20: 3994. https://doi.org/10.3390/ijerph16203994
APA StyleZhang, X., & Hu, H. (2019). Combining Data from Multiple Sources to Evaluate Spatial Variations in the Economic Costs of PM2.5-Related Health Conditions in the Beijing–Tianjin–Hebei Region. International Journal of Environmental Research and Public Health, 16(20), 3994. https://doi.org/10.3390/ijerph16203994