Potential Ecological Risk and Human Health Risk Assessment of Heavy Metal Pollution in Industrial Affected Soils by Coal Mining and Metallurgy in Ostrava, Czech Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Chemical Analysis
2.3. Pollution and Ecological Risk Assessment
2.4. Health Risk Assessment
2.5. Data Analysis
3. Results and Discussion
3.1. The Total Concentration of Heavy Metals in Soils
3.2. Pollution Assessment in Soils
3.3. Identification of Pollution Sources
3.3.1. Correlation Analysis
3.3.2. Hierarchical Cluster Analysis (HCA)
3.3.3. Principal Component Analysis (PCA)/Factor Analysis (FA)
3.4. Ecological Risk Assessment
3.5. Health Risk Assessment
4. Conclusions
- ■
- on the basis of Igeo and CF values, the levels of heavy metals risen in the following order Cu < V < Mn < Cd < Fe < Cr < Zn < Hg < Pb;
- ■
- indices of pollution confirmed anthropogenic pollution of the total area in Ostrava from strong to moderate levels;
- ■
- results from correlation analysis confirmed the assumption that heavy metals in soils create three major groups (Fe–Cr, Pb–Cu and Mn–V), and hierarchical cluster analysis identified several groups among heavy metals in relation to area and common pollution source of heavy metals, whereas principal component analyses with factor analysis were applied for pollution assessment and identification of the origin source of heavy metals;
- ■
- values of potential ecological risk index varied, and its value indicate a moderate ecological risk, whereas several sites with very strong ecological risk and highly strong ecological risk exist in Ostrava; and
- ■
- a serious health carcinogenic risk was identified in the case of Pb, and the high risk is for Cd and very high for Cr for children.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, J.Z.; Peng, S.C.; Chen, T.H.; Zhang, L. Occurrence, source identification and ecological risk evaluation of metal elements in surface sediment: Toward a comprehensive understanding of heavy metal pollution in Chaohu Lake, Eastern China. Environ. Sci. Pollut. Res. 2016, 23, 307–314. [Google Scholar] [CrossRef]
- Gabarrón, M.; Faz, A.; Martínez-Martínez, S.; Zornoza, R.; Acosta, J.A. Assessment of metals behaviour in industrial soil using sequential extraction, multivariable analysis and a geostatistical approach. J. Geochem. Explor. 2017, 172, 174–183. [Google Scholar] [CrossRef]
- Peña-Icart, M.; Pereira-Filho, E.R.; Fialho, L.L.; Nóbrega, J.A.; Alonso-Hernández, C.; Bolaños-Alvarez, Y.; Mario, S. Combining contamination indexes, sediment quality guidelines and multivariate data analysis for metal pollution assessment in marine sediments of Cienfuegos Bay, Cuba. Chemosphere 2017, 168, 1267–1276. [Google Scholar] [CrossRef]
- Qian, Y.; Gallagher, F.; Deng, Y.; Wu, M.; Feng, H. Risk assessment and interpretation of heavy metal contaminated soils on an urban brownfield site in New York metropolitan area. Environ. Sci. Pollut. Res. 2017, 24, 23549–23558. [Google Scholar] [CrossRef]
- Xia, X.; Yang, Z.; Li, G.; Yu, T.; Mutelo, A.M. Practicability of monitoring soil Cd, Hg, and Pb pollution based on a geochemical survey in China. Chemosphere 2017, 172, 217–224. [Google Scholar] [CrossRef]
- Wu, W.; Wu, P.; Yang, F.; Sun, D.-L.; Zhang, D.-X.; Zhou, Y.-K. Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Sci. Total Environ. 2018, 630, 53–61. [Google Scholar] [CrossRef]
- Bosch, A.C.; O’Neill, B.; Sigge, G.O.; Kerwath, S.E.; Hoffman, L.C. Heavy metals in marine fish meat and consumer health: A review. J. Sci. Food Agric. 2016, 96, 32–48. [Google Scholar] [CrossRef]
- Lamas, G.A.; Navas-Acien, A.; Mark, D.B.; Lee, K.L. Heavy Metals, Cardiovascular Disease, and the Unexpected Benefits of Chelation Therapy. J. Am. Coll. Cardiol. 2016, 67, 2411–2418. [Google Scholar] [CrossRef]
- Ma, Y.; Egodawatta, P.; McGree, J.; Liu, A.; Goonetilleke, A. Human health risk assessment of heavy metals in urban stormwater. Sci. Total Environ. 2016, 557, 764–772. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Nathanail, P.; Tian, L.; Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environ. Pollut. 2017, 231, 1188–1200. [Google Scholar] [CrossRef]
- Ke, X.; Gui, S.; Huang, H.; Zhang, H.; Wang, C.; Guo, W. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere 2017, 175, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Zinkutė, R.; Taraškevičius, R.; Jankauskaitė, M.; Stankevičius, Ž. Methodological alternatives for calculation of enrichment factors used for assessment of topsoil contamination. J. Soils Sediments 2017, 17, 440–452. [Google Scholar] [CrossRef]
- Streets, D.G.; Lu, Z.; Levin, L.; ter Schure, A.F.H.; Sunderland, E.M. Historical releases of mercury to air, land, and water from coal combustion. Sci. Total Environ. 2018, 615, 131–140. [Google Scholar] [CrossRef]
- Abraham, J.; Dowling, K.; Florentine, S. Assessment of potentially toxic metal contamination in the soils of a legacy mine site in Central Victoria, Australia. Chemosphere 2018, 192, 122–132. [Google Scholar] [CrossRef]
- Shu, X.H.; Zhang, Q.; Lu, G.N.; Yi, X.Y.; Dang, Z. Pollution characteristics and assessment of sulfide tailings from the Dabaoshan Mine, China. Int. Biodeterior. Biodegrad. 2018, 128, 122–128. [Google Scholar] [CrossRef]
- Zhou, J.; Liang, J.; Hu, Y.; Zhang, W.; Liu, H.; You, L.; Zhang, W.; Gao, M.; Zhou, J. Exposure risk of local residents to copper near the largest flash copper smelter in China. Sci. Total Environ. 2018, 453–461. [Google Scholar] [CrossRef]
- Ma, Y.; Jia, Z.; Li, S. Risk assessment of heavy metals in soil of Tongnan District (Southwest China): Evidence from multiple indices with high-spatial-resolution sampling. Environ. Sci. Pollut. Res. 2017, 24, 20282–20290. [Google Scholar] [CrossRef]
- Čujič, M.; Dragovič, S.; Dorđevič, M.; Dragović, R.; Gajić, B. Environmental assessment of heavy metals around the largest coal fired power plant in Serbia. CATENA 2016, 139, 44–52. [Google Scholar] [CrossRef]
- ISO. ISO 10381-5:2005 Soil Quality—Sampling—Part 5: Guidance on the Procedure for the Investigation of Urban and Industrial Sites with Regard to Soil Contamination; International Standards Organization: Geneve, Switzerland, 2005. [Google Scholar]
- ISO. ISO 10390:2005 Soil Quality, Determination of PH; International Standards Organization: Geneve, Switzerland, 2005. [Google Scholar]
- ISO. ISO 11465:1993 Soil Quality—Determination of Dry Matter and Water Content on a Mass Basis—Gravimetric Method; International Standards Organization: Geneve, Switzerland; Beuth: Berlin, Germany, 1993. [Google Scholar]
- Reimann, C.; Fabian, K.; Flem, B.; Schilling, J.; Roberts, D.; Englmaier, P. Pb concentrations and isotope ratios of soil O and C horizons in Nord-Trøndelag, central Norway: Anthropogenic or natural sources? Appl. Geochem. 2016, 74, 55–66. [Google Scholar] [CrossRef]
- MAP 2019. Available online: http://mapy2.ostrava.cz/agenda-zp/ (accessed on 12 January 2019).
- Doležalová Weissmannová, H.; Pavlovský, J. Indices of soil contamination by heavy metals – methodology of calculation for pollution assessment (minireview). Environ. Monit. Assess. 2017, 189, 1–25. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Pinedo-Hernández, J.; Díez, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res. 2017, 154, 380–388. [Google Scholar] [CrossRef]
- Zhang, P.; Qin, C.; Hong, X.; Kang, G.; Qin, M.; Yang, D.; Pang, B.; Li, Y.; He, J.; Dick, R.P. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China. Sci. Total Environ. 2018, 633, 1136–1147. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Varol, M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011, 195, 355–364. [Google Scholar] [CrossRef]
- Li, F.; Huang, J.; Zeng, G.; Yuan, X.; Li, X.; Liang, J.; Wang, X.; Tang, X.; Bai, B. Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J. Geochem. Explor. 2013, 132, 75–83. [Google Scholar] [CrossRef]
- Shen, F.; Liao, R.; Ali, A.; Mahar, A.; Guo, D.; Li, R.; Xining, S.; Awasthi, M.K.; Wang, Q.; Zhang, Z. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicol. Environ. Saf. 2017, 139, 254–262. [Google Scholar] [CrossRef]
- Adamu, C.I.; Nganje, T.N. Heavy metal contamination of surface soil in relationship to land use patterns: A case study of Benue State, Nigeria. Mater. Sci. Appl. 2010, 1, 127–134. [Google Scholar] [CrossRef]
- Kumar, K.R.; Anbazhagan, V. Analysis and assessment of heavy metals in soils around the industrial areas in Mettur, Tamilnadu, India. Env. Monit. Assess. 2018, 190, 519. [Google Scholar] [CrossRef]
- Sanjeevani, U.K.P.S.; Indraratne, S.P.; Weerasooriya, R.; Vitharana, U.W.A.; Kumaragamage, D. Identifying the Sources and Contamination Status of Potentially Toxic Trace Elements in Agricultural Soils. Commun. Soil Sci. Plant. Anal. 2017, 48, 865–877. [Google Scholar] [CrossRef]
- Müller, G. The heavy metal pollution of the sediments of Neckars and its tributary: A stocktaking. Chem. Ztg. 1981, 105, 157–164. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. Treatise Geochem. 2003, 3, 659. [Google Scholar]
- Yaroshevsky, A.A. Abundances of chemical elements in the Earth’s crust. Geochem. Int. 2006, 44, 48. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2010; pp. 1–548. [Google Scholar]
- Rahman, M.S.; Saha, N.; Molla, A.H. Potential ecological risk assessment of heavy metal contamination in sediment and water body around Dhaka export processing zone, Bangladesh. Environ. Earth Sci. 2014, 71, 2293–2308. [Google Scholar] [CrossRef]
- Inengite, A.K.; Abasi, C.; Walter, C. Application of pollution indices for the assessment of heavy metal pollution in flood impacted soil. Int. Res. J. Pure Appl. Chem. 2015, 8, 175–189. [Google Scholar] [CrossRef]
- Liang, A.; Wang, Y.; Guo, H.; Bo, L.; Zhang, S.; Bai, Y. Assessment of pollution and identification of sources of heavy metals in the sediments of Changshou Lake in a branch of the Three Gorges Reservoir. Environ. Sci. Pollut. Res. 2015, 22, 16067–16076. [Google Scholar] [CrossRef]
- Briki, M.; Zhu, Y.; Gao, Y.; Shao, M.; Ding, H.; Ji, H. Distribution and health risk assessment to heavy metals near smelting and mining areas of Hezhang, China. Environ. Monit. Assess. 2017, 189, 458. [Google Scholar] [CrossRef]
- Igwe, O.; Una, C.O.; Abu, E.; Adepehin, E.J. Environmental risk assessment of lead–zinc mining: A case study of Adudu metallogenic province, middle Benue Trough, Nigeria. Environ. Monit. Assess. 2017, 189, 492. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund (RAGS). In Volume I: Human Health Evaluation Manual (HHEM)—Part A, Baseline Risk Assessment; Office of Emergency and Remedial Response: Washington, DC, USA, 1989. [Google Scholar]
- USEPA (United States Environmental Protection Agency). Exposure Factors Handbook; Office of Research and Development; National Center for Environmental Assessment: Washington, DC, USA, 1997. [Google Scholar]
- USEPA (United States Environmental Protection Agency). Risk Assessment Guidance for Superfund: Volume III—Part A, Process for Conducting Probabilistic Risk Assessment; U.S. Environmental Protection Agency: Washington, DC, USA, 2001.
- Fryer, M.; Collins, C.D.; Ferrier, H.; Colvile, R.N.; Nieuwenhuijsen, M.J. Human exposure modelling for chemical risk assessment:a review of current approaches and research and policy implications. Environ. Sci. Policy 2006, 9, 261–274. [Google Scholar] [CrossRef]
- Hu, W.Y.; Huang, B.; He, Y.; Yusef, K.K. Assessment of potential health risk of heavy metals in soils from a rapidly developing region of China. Hum. Ecol. Risk Assess. 2016, 22, 211–225. [Google Scholar] [CrossRef]
- Hu, B.F.; Wang, J.Y.; Jin, B.; Li, Y.; Shi, Z. Assessment of the potential health risks of heavy metals in soils in a coastal industrial region of the Yangtze River Delta. Environ. Sci. Pollut. Res. Int. 2017, 24, 19816–19826. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (USEPA). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, OSWER 9355; Office of Emergency and Remedial Response: Washington, DC, USA, 2002. [Google Scholar]
- Luo, X.S.; Ding, J.; Xu, B.; Wang, Y.J.; Li, H.B.; Yu, S. Incorporating bioaccessibility into human risk assessments of heavy metals in urban park soils. Sci. Total. Environ. 2012, 424, 88–96. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (USEPA). Exposure Factors Handbook; (EPA/600/R-09/052F); National Center for Environmental Assessment: Washington, DC, USA, 2011.
- US Environmental Protection Agency (USEPA). Integrated Risk Information System of the US Environmental Protection Agency; US Environmental Protection Agency (USEPA): Washington, DC, USA, 2012.
- Diami, S.M.; Kusin, F.M.; Madzin, Z. Potential ecological and human health risks of heavy metals in surface soils associated with iron ore mining in Pahang, Malaysia. Environ. Sci. Pollut. Res. Int. 2016, 23, 21086–21097. [Google Scholar] [CrossRef]
- Liu, X.; Song, Q.; Tang, Y.; Li, W.; Xu, J.; Wu, J.; Wang, F.; Brookes, P.C. Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Sci. Tot. Environ. 2013, 463, 530–540. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, S.; Xiao, L.; Zhong, Q.; Li, L.; Xu, G.; Deng, O.; Pu, Y. Heavy metals in soils from a typical industrial area in Sichuan, China: Spatial distribution, source identification, and ecological risk assessment. Environ. Sci. Pollut. Res. 2017, 24, 16618–16630. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Maghakyan, N.; Sahakyan, L.; Saghatelyan, A. Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils. Ecotoxicol. Environ. Saf. 2017, 142, 257–265. [Google Scholar] [CrossRef]
- Guan, Q.; Wang, F.; Xu, C.; Pan, N.; Lin, J.; Zhao, R.; Yang, Y.; Luo, H. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere 2018, 193, 189–197. [Google Scholar] [CrossRef]
- Rapant, S.; Fajčíková, K.; Khun, M.; Cvečková, V. Application of health risk assessment method for geological environment at national and regional scales. Environ. Earth Sci. 2010, 64, 513–521. [Google Scholar] [CrossRef]
- Li, F.; Huang, J.; Zeng, G.; Huang, X.; Liu, W.; Wu, H.; Yuan, Y.; He, X.; Lai, M. Spatial distribution and health risk assessment of toxic metals associated with receptor population density in street dust: A case study of Xiandao District, Changsha, Middle China. Environ. Sci. Pollut. Res. Int. 2015, 22, 6732–6742. [Google Scholar] [CrossRef]
- Faiz, Y.; Siddique, N.; Tufail, M. Pollution level and health risk assessment of road dust from an expressway. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2012, 47, 818–829. [Google Scholar] [CrossRef]
Statistic | Hg | Pb | Cd | Cu | Cr | Fe | Mn | V | Zn | |
---|---|---|---|---|---|---|---|---|---|---|
Total | Min | 0.08 | 11.09 | 0.05 | 4.88 | 3.03 | 4.45 | 263.72 | 43.45 | 60.91 |
Max | 1.31 | 174.03 | 1.18 | 98.83 | 64.02 | 20.64 | 2368.31 | 181.79 | 393.08 | |
Median | 0.19 | 37.71 | 0.21 | 21.11 | 17.46 | 8.11 | 1370.92 | 96.71 | 204.569 | |
SD | 0.02 | 3.04 | 0.02 | 1.63 | 1.96 | 0.58 | 71.53 | 4.31 | 12.03 | |
Site A | Min | 0.13 | 17.03 | 0.06 | 13.88 | 3.379 | 4.502 | 263.722 | 43.455 | 85.160 |
Max | 1.31 | 174.24 | 1.18 | 90.66 | 63.974 | 20.644 | 2368.786 | 154.488 | 373.587 | |
Median | 0.34 | 56.56 | 0.265 | 27.28 | 19.75 | 9.76 | 1327.51 | 97.79 | 250.03 | |
SD | 0.05 | 3.33 | 0.05 | 1.09 | 2.793 | 0.839 | 113.230 | 5.054 | 15.707 | |
Site B | Min | 0.08 | 18.22 | 0.05 | 4.88 | 3.026 | 4.455 | 557.329 | 43.455 | 63.160 |
Max | 0.19 | 110.03 | 0.31 | 55.96 | 63.539 | 20.644 | 2081.199 | 181.798 | 331.306 | |
Median | 0.12 | 42.47 | 0.19 | 31.50 | 17.058 | 7.811 | 1370.924 | 90.593 | 195.704 | |
SD | 0.01 | 5.94 | 0.01 | 2.95 | 3.965 | 1.177 | 111.235 | 7.988 | 17.912 | |
Site C | Min | 0.09 | 11.09 | 0.06 | 15.01 | 3.03 | 4.455 | 557.329 | 69.291 | 78.906 |
Max | 0.25 | 162.02 | 0.43 | 98.83 | 64.015 | 20.493 | 2271.312 | 181.798 | 331.081 | |
Median | 0.19 | 55.61 | 0.21 | 37.78 | 16.618 | 8.473 | 1325.369 | 104.784 | 167.727 | |
SD | 0.05 | 46.71 | 0.08 | 24.01 | 16.107 | 4.828 | 510.931 | 30.657 | 92.971 | |
Earth crust | a | 0.08 | 16.00 | 0.13 | 47.00 | 83.00 | 46500 | 1000.00 | 90.00 | 83.000 |
b | 0.05 | 17 | 0.09 | 28 | 92.0 | - | - | 97 | 67 | |
c | 0.07 | 15 | 0.1 | 55 | 100 | - | 900 | 135 | 70 | |
PEL, CZ | 0.60 | 50 | 0.40 | 50 | 40 | - | - | 50 | 100 | |
Bn | 0.12 | 14.58 | 0.12 | 8.35 | 3.03 | 5.46 | 263.0 | 4.053 | 61.87 |
Hg (T) | Pb (T) | Cd (T) | Cu (T) | Cr (T) | Fe (T) | Mn (T) | V (T) | Zn (T) | |
---|---|---|---|---|---|---|---|---|---|
Hg (T) | 1.000 | 0.004 | 0.222 | −0.097 | 0.291 * | 0.245 * | 0.118 | −0.172 | 0.190 |
Pb (T) | 1.000 | 0.351 ** | 0.608 ** | −0.050 | 0.089 | 0.197 | 0.383 ** | 0.174 | |
Cd (T) | 1.000 | 0.111 | −0.042 | 0.105 | −0.044 | 0.035 | 0.236 | ||
Cu (T) | 1.000 | −0.149 | −0.025 | 0.120 | 0.411 ** | 0.054 | |||
Cr (T) | 1.000 | 0.796 ** | 0.066 | 0.085 | 0.211 | ||||
Fe (T) | 1.000 | 0.138 | 0.159 | 0.128 | |||||
Mn (T) | 1.000 | 0.474 * | 0.268 ** | ||||||
V (T) | 1.000 | 0.407 * | |||||||
Zn (T) | 1.000 | ||||||||
Hg (A) | Pb (A) | Cd (A) | Cu (A) | Cr (A) | Fe (A) | Mn (A) | V (A) | Zn (A) | |
Hg (A) | 1.000 | −0.143 | 0.126 | −0.193 | 0.526 ** | 0.422 * | 0.156 | −0.269 | 0.043 |
Pb (A) | 1.000 | 0.326 | 0.586 ** | 0.009 | 0.313 | 0.108 | 0.471 ** | 0.067 | |
Cd (A) | 1.000 | 0.057 | 0.036 | 0.281 | −0.110 | 0.027 | 0.194 | ||
Cu (A) | 1.000 | −0.220 | 0.005 | −0.187 | 0.360 | −0.016 | |||
Cr (A) | 1.000 | 0.676 ** | 0.059 | −0.239 | 0.088 | ||||
Fe (A) | 1.000 | 0.259 | 0.065 | 0.035 | |||||
Mn (A) | 1.000 | 0.368 * | −0.102 | ||||||
V (A) | 1.000 | 0.361 | |||||||
Zn (A) | 1.000 | ||||||||
Hg (B) | Pb (B) | Cd (B) | Cu (B) | Cr (B) | Fe (B) | Mn (B) | V (B) | Zn (B) | |
Hg (B) | 1.000 | 0.334 | 0.551 ** | 0.382 | 0.072 | 0.037 | 0.212 | 0.235 | 0.180 |
Pb (B) | 1.000 | 0.587 ** | 0.605 ** | −0.204 | −0.244 | 0.139 | 0.320 | 0.282 | |
Cd (B) | 1.000 | 0.645 ** | −0.399 | −0.319 | 0.175 | 0.164 | 0.230 | ||
Cu (B) | 1.000 | −0.028 | 0.016 | 0.196 | 0.515 ** | 0.438 * | |||
Cr (B) | 1.000 | 0.901 ** | −0.040 | 0.286 | 0.090 | ||||
Fe (B) | 1.000 | −0.070 | 0.221 | 0.021 | |||||
Mn (B) | 1.000 | 0.495 * | 0.741 ** | ||||||
V (B) | 1.000 | 0.720 ** | |||||||
Zn (B) | 1.000 | ||||||||
Hg (C) | Pb (C) | Cd (C) | Cu (C) | Cr (C) | Fe (C) | Mn (C) | V (C) | Zn (C) | |
Hg (C) | 1.000 | 0.513 | 0.240 | 0.591 * | 0.162 | 0.239 | 0.261 | −0.037 | 0.277 |
Pb (C) | 1.000 | 0.429 | 0.893 ** | 0.099 | 0.141 | 0.484 | 0.441 | 0.219 | |
Cd (C) | 1.000 | 0.336 | 0.121 | -0.101 | −0.055 | 0.252 | 0.169 | ||
Cu (C) | 1.000 | −0.102 | −0.039 | 0.499 | 0.265 | 0.125 | |||
Cr (C) | 1.000 | 0.828 ** | 0.312 | 0.300 | 0.787 ** | ||||
Fe (C) | 1.000 | 0.291 | 0.271 | 0.727 ** | |||||
Mn (C) | 1.000 | 0.699 ** | 0.412 | ||||||
V (C) | 1.000 | 0.270 | |||||||
Zn (C) | 1.000 |
Hg | Pb | Cd | Cu | Cr | Fe | Mn | V | Zn | ||
---|---|---|---|---|---|---|---|---|---|---|
Adult | Total | 8.71.10−3 | 1.48.10−1 | 9.63.10−4 | 7.83.10−3 | 8.00.10−2 | 1.59.10−4 | 3.77.10−2 | 1.90.10−1 | 9.38.10−2 |
Site A | 1.56.10−2 | 2.22.10−1 | 1.21.10−3 | 1.01.10−2 | 9.05.10−2 | 1.92.10−4 | 3.65.10−2 | 1.92.10−1 | 1.15.10−1 | |
Site B | 5.50.10−3 | 1.67.10−1 | 8.71.10−4 | 1.17.10−2 | 7.82.10−2 | 1.53.10−4 | 3.77.10−2 | 1.78.10−1 | 8.97.10−2 | |
Site C | 8.71.10−3 | 2.19.10−0 | 9.63.10−4 | 1.40.10−2 | 7.62.10−2 | 1.66.10−4 | 3.65.10−2 | 2.06.10−1 | 7.69.10−2 | |
Child | Total | 8.11.10−2 | 1.38.10−0 | 8.97.10−3 | 7.29.10−2 | 7.46.10−1 | 1.48.10−3 | 3.51.10−1 | 1.77.10−0 | 8.74.10−1 |
Site A | 1.45.10−1 | 2.07.10−0 | 1.13.10−2 | 9.42.10−2 | 8.43.10−1 | 1.79.10−3 | 3.40.10−1 | 1.79.10−0 | 1.07.10−0 | |
Site B | 5.12.10−2 | 1.55.10−0 | 8.11.10−3 | 1.09.10−2 | 7.28.10−1 | 1.43.10−3 | 3.51.10−1 | 1.66.10−0 | 8.36.10−1 | |
Site C | 8.11.10−2 | 2.04.10−0 | 8.97.10−3 | 1.30.10−2 | 7.10.10−1 | 1.55.10−3 | 3.40.10−1 | 1.92.10−0 | 7.16.10−1 |
Pb | Cd | Cr | ||
---|---|---|---|---|
Adults | Total | 4.41.10−6 | 1.82.10−5 | 1.20.10−4 |
Site A | 6.61.10−6 | 2.30.10−5 | 1.36.10−4 | |
Site B | 4.96.10−6 | 1.65.10−5 | 1.17.10−4 | |
Site C | 6.50.10−6 | 1.82.10−5 | 1.14.10−4 | |
Child | Total | 4.11.10−5 | 1.69.10−4 | 1.12.10−3 |
Site A | 6.16.10−5 | 2.14.10−4 | 1.27.10−3 | |
Site B | 4.62.10−5 | 1.53.10−4 | 1.09.10−3 | |
Site C | 6.06.10−5 | 1.69.10−4 | 1.06.10−3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doležalová Weissmannová, H.; Mihočová, S.; Chovanec, P.; Pavlovský, J. Potential Ecological Risk and Human Health Risk Assessment of Heavy Metal Pollution in Industrial Affected Soils by Coal Mining and Metallurgy in Ostrava, Czech Republic. Int. J. Environ. Res. Public Health 2019, 16, 4495. https://doi.org/10.3390/ijerph16224495
Doležalová Weissmannová H, Mihočová S, Chovanec P, Pavlovský J. Potential Ecological Risk and Human Health Risk Assessment of Heavy Metal Pollution in Industrial Affected Soils by Coal Mining and Metallurgy in Ostrava, Czech Republic. International Journal of Environmental Research and Public Health. 2019; 16(22):4495. https://doi.org/10.3390/ijerph16224495
Chicago/Turabian StyleDoležalová Weissmannová, Helena, Silvie Mihočová, Petr Chovanec, and Jiří Pavlovský. 2019. "Potential Ecological Risk and Human Health Risk Assessment of Heavy Metal Pollution in Industrial Affected Soils by Coal Mining and Metallurgy in Ostrava, Czech Republic" International Journal of Environmental Research and Public Health 16, no. 22: 4495. https://doi.org/10.3390/ijerph16224495
APA StyleDoležalová Weissmannová, H., Mihočová, S., Chovanec, P., & Pavlovský, J. (2019). Potential Ecological Risk and Human Health Risk Assessment of Heavy Metal Pollution in Industrial Affected Soils by Coal Mining and Metallurgy in Ostrava, Czech Republic. International Journal of Environmental Research and Public Health, 16(22), 4495. https://doi.org/10.3390/ijerph16224495