Crop Residue Burning in India: Policy Challenges and Potential Solutions
Abstract
:1. Introduction
2. Crop Residue: Composition and Decomposing Mechanisms
3. Crop Residue Burning in India: Statistics
4. Adverse Impact of Crop Residue Burning on the Environment
5. Government Intervention
5.1. Initiative towards Biogas Plants
5.2. National Schemes and Policies
- (1)
- Promote the technologies for optimum utilization and in-situ management of crop residue, to prevent loss of valuable soil nutrients, and diversify uses of crop residue in industrial applications.
- (2)
- Develop and promote appropriate crop machinery in farming practices such as modification of the grain recovery machines (harvesters with twin cutters to cut the straw). Provide discounts and incentives for purchase of mechanized sowing machinery such as the happy seeder, turbo seeder, shredder and baling machines.
- (3)
- Use satellite-based remote sensing technologies to monitor crop residue management with the National Remote Sensing Agency (NRSA) and Central Pollution Control Board (CPCB).
- (4)
- Provide financial support through multidisciplinary approach and fund mobilization in various ministries for innovative ideas and project proposals to accomplish above.
6. Sustainable Management Practices for Crop Residue
6.1. Composting
6.2. Production of Biochar
6.3. In-Situ Management with Mechanical Intensification
7. Discussion
7.1. The Need for a Running Mechanism
7.2. Empowering Stakeholders
7.3. Avoid Sectorial Thinking: Focus on Nexus Thinking
8. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nagendran, R. Agricultural Waste and Pollution. Waste 2011, 341–355. [Google Scholar] [CrossRef]
- United Nations. Glossary of Environment Statistics, Studies in Methods; Series F, 67; Department for Economic and Social Information and Policy Analysis, Statistics Division: New York, NY, USA, 1997; Volume 96. [Google Scholar]
- OECD (Organisation for Economic Co-operation and Development). 2001. Available online: https://stats.oecd.org/glossary/detail.asp?ID=77 (accessed on 10 November 2018).
- Hoornweg, D.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Agamuthu, P. Challenges and Opportunities in Agro-waste Management: An Asian Perspective. In Proceedings of the Meeting of First Regional 3R Forum in Asia, Tokyo, Japan, 11–12 November 2009. [Google Scholar]
- Obi, F.O.; Ugwuishiwu, B.O.; Nwakaire, J.N. Agricultural Waste Concept, Generation, Utilization and Management. NIJOTECH 2016, 35, 957–964. [Google Scholar] [CrossRef]
- NPMCR. Available online: http://agricoop.nic.in/sites/default/files/NPMCR_1.pdf (accessed on 6 March 2019).
- Jeff, S.; Prasad, M.; Agamuthu, P. Asia Waste Management Outlook. UNEP Asian Waste Management Outlook; United Nations Environment Programme: Nairobi, Kenya, 2017. [Google Scholar]
- Ross, S. Countries That Produce the Most Food, Investopedia. 2018. Available online: https://www.investopedia.com/articles/investing/100615/4-countries-produce-most-food.asp#ixzz5WRqV85mY (accessed on 10 November 2018).
- Gadde, B.; Bonnet, S.; Menke, C.; Garivait, S. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ. Pollut. 2000, 157, 1554–1558. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, T.C.; Mendoza, B.C. A review of sustainability challenges of biomass for energy, focus in the Philippines. Agric. Technol. 2016, 12, 281–310. [Google Scholar]
- Phonbumrung, T.; Khemsawas, C. Agricultural Crop Residue. In Proceedings of the Sixth Meeting of Regional Working Group on Grazing and Feed Resources for Southeast Asia, Legaspi, Philippines, 5–9 October 1998; pp. 183–187. [Google Scholar]
- Arvanitoyannis, I.S.; Tserkezou, P. Wheat, barley and oat waste: A comparative and critical presentation of methods and potential uses of treated waste. Int. J. Food Sci. Technol. 2008, 43, 694–725. [Google Scholar] [CrossRef]
- Sjöström, E. Wood Chemistry: Fundamentals and Applications; Academic Press: San Diego, CA, USA, 1993. [Google Scholar]
- Jorgensen, H.; Kristensen, J.B.; Felby, C. Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. J. Biofuels Bioprod. Bioref. 2007, 1, 119–134. [Google Scholar] [CrossRef]
- Chandra, R.; Takeuchi, H.; Hasegawa, T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renew. Sustain. Energy Rev. 2012, 16, 1462–1476. [Google Scholar] [CrossRef]
- Taherzadeh, M.J. Ethanol from Lignocellulose: Physiological Effects of Inhibitors and Fermentation Strategies. Ph.D. Thesis, Biotechnology, Chemical Reaction Engineering, Chalmers University of Technology, Gothenburg, Sweden, 1999. [Google Scholar]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates II: Inhibitors and mechanisms of inhibition. J. Bioresour. Technol. 2000, 74, 25–33. [Google Scholar] [CrossRef]
- Perez, J.; Dorado, J.M.; Rubia, T.D.; Martinez, J. Biodegradation and biological treatment of cellulose, hemicellulose and lignin: An overview. J. Int. Microbiol. 2002, 5, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Monforti, F.; Bódis, K.; Scarlat, N.; Dallemand, J.F. The possible contribution of agricultural crop residues to renewable energy targets in Europe: A spatially explicit study. Renew. Sustain. Energy Rev. 2013, 19, 666–677. [Google Scholar] [CrossRef]
- Hayashi, K.; Ono, K.; Kajiura, M.; Sudo, S.; Yonemura, S.; Fushimi, A.; Saitoh, K.; Fujitani, Y.; Tanab, K. Trace gas and particle emissions from open burning of three cereal crop residues: Increase in residue moistness enhances emissions of carbon monoxide, methane, and particulate organic carbon. Atmos. Environ. 2014, 95, 36–44. [Google Scholar] [CrossRef]
- Lohan, S.K.; Jat, H.S.; Yadav, A.K.; Sidhu, H.S.; Jat, M.L.; Choudhary, M.; Jyotsna Kiran, P.; Sharma, P.C. Burning issues of paddy residue management in north-west states of India. Renew. Sustain. Energy Rev. 2018, 81, 693–706. [Google Scholar] [CrossRef]
- Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for pre-treatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. J. Ind. Eng. Chem. 2009, 48, 3713–3729. [Google Scholar] [CrossRef]
- Bruni, E.; Jensen, A.P.; Angelidaki, I. Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. J. Bioresour. Technol. 2010, 101, 8713–8717. [Google Scholar] [CrossRef] [PubMed]
- Carrère, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenès, J.P.; Steyer, J.P. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater. 2010, 183, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Garg, S. Bioremediation of Agricultural, Municipal, and Industrial Wastes. Handb. Res. Inventive Bioremediat. Tech. 2017. [Google Scholar] [CrossRef]
- Franchi, E.; Agazzi, G.; Rolli, E.; Borin, S.; Marasco, R.; Chiaberge, S.; Barbafieri, M. Exploiting hydrocarbon-degrader indigenous bacteria for bioremediation and phytoremediation of a multi-contaminated soil. Chem. Eng. Technol. 2016, 39, 1676–1684. [Google Scholar] [CrossRef]
- Gkorezis, P.; Daghio, M.; Franzetti, A.; Van Hamme, J.D.; Sillen, W.; Vangronsveld, J. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective. Front. Microbiol. 2016, 7, 1836. [Google Scholar] [CrossRef] [PubMed]
- Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 2009, 1000, 5478–5484. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.J.; Hobbs, P.J.; Holliman, P.J.; Jones, D.L. Review: Optimization of the anaerobic digestion of agricultural resources. Bioresour Technol. 1999, 79, 28–40. [Google Scholar]
- Meegoda, J.N.; Li, B.; Patel, K.; Wang, L.B. A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. Int. J. Environ. Res. Public Health 2018, 15, 2224. [Google Scholar] [CrossRef] [PubMed]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Sources: An Introduction; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008. [Google Scholar]
- Shukla, P.R. Biomass Energy Strategies for Aligning Development and Climate Goals in India; Environmental Assessment Agency: The Hague, The Netherlands, 2007. [Google Scholar]
- Ministry of New and Renewable Energy (MNRE). Strategic Plan for New and Renewable Energy Sector for the Period 2011–2017. In Energy; Ministry of New and Renewable Energy: New Delhi, India, 2011. [Google Scholar]
- Srinivasarao, C.H.; Venkateswarlu, B.; Lal, R.; Singh, A.K.; Sumanta, K. Sustainable management of soils of dryland ecosystems for enhancing agronomic productivity and sequestering carbon. Adv. Agron. 2013, 121, 253–329. [Google Scholar]
- Sinha, A. Four New Missions to Boost Response to Climate Change; The Indian Express: New Delhi, India, 2015. [Google Scholar]
- Ministry of New and Renewable Energy (MNRE). Annual Report, 2015–2016. In Energy; Ministry of New and Renewable Energy: New Delhi, India, 2015. [Google Scholar]
- Mittal, S.; Ahlgren, E.; Shukla, P. Barriers to biogas Dissemination in India: A review. Energy Policy 2017, 112, 361–370. [Google Scholar] [CrossRef]
- Sharma, S.K.; Mishra, I.M.; Sharma, M.P.; Saini, J.S. Effect of particle size on biogas generation from biomass residues. J. Biomass 1988, 17, 251–263. [Google Scholar] [CrossRef]
- Weiland, P. Production and energetic use of biogas from energy crops and wastes in Germany. Appl. Biochem. Biotechnol. 2003, 109, 263–274. [Google Scholar] [CrossRef]
- Moller, H.B.; Sommer, S.G.; Ahring, B.K. Methane productivity of manure, straw and solid fractions of manure. J. Biomass Bioenergy 2004, 26, 485–495. [Google Scholar] [CrossRef]
- Deren, C.W.; Snyder, G.H. Biomass production and biochemical methane potential of seasonally flooded inter-generic and inter-specific saccharum hybrids. J. Bioresour. Technol. 1991, 36, 179–184. [Google Scholar] [CrossRef]
- Jain, N.; Bhatia, A.; Pathak, H. Emission of Air Pollutants from Crop Residue Burning in India. Aerosol Air Qual. Res. 2014, 14, 422–430. [Google Scholar] [CrossRef]
- Sahai, S.; Sharma, C.; Singh, S.K.; Gupta, P.K. Assessment of Trace Gases, Carbon and Nitrogen Emissions from Field Burning of Agricultural Residues in India. Nutr. Cycl. Agroecosyst. 2011, 89, 143–157. [Google Scholar]
- Jitendra and Others. India’s Burning Issues of Crop Burning Takes a New Turn, Down to Earth. 2017. Available online: https://www.downtoearth.org.in/coverage/river-of-fire-57924 (accessed on 7 September 2018).
- Mittal, S.K.; Susheel, K.; Singh, N.; Agarwal, R.; Awasthi, A.; Gupta, P.K. Ambient air quality during wheat and rice crop stubble burning episodes in Patiala. Atmos. Environ. 2009, 43, 238–244. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, D.; Chen, J.; Ye, X.; Wang, S.X.; Hao, J.; Wang, L.; Zhang, R.; Zhi, A. Particle Size Distribution and Polycyclic Aromatic Hydrocarbons emissions from Agricultural Crop Residue Burning. Environ. Sci. Technol. 2011, 45, 5477–5482. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Sahai, S.; Singh, N.; Dixit, C.K.; Singh, D.P.; Sharma, C. Residue burning in rice-wheat cropping system: Causes and implications. Curr. Sci. India 2004, 87, 1713–1715. [Google Scholar]
- Streets, D.G.; Yarber, K.F.; Woo, J.H.; Carmichael, G.R. An Inventory of Gaseous and Primary Aerosol Emissions in Asia in the Year 2000. J. Geophys. Res. 2003, 108, 8809–8823. [Google Scholar] [CrossRef]
- Jiang, H.; Frie, A.L.; Lavi, A.; Chen, J.; Zhang, H. Brown Carbon Formation from Nighttime Chemistry of Unsaturated Heterocyclic Volatile Organic Compounds. Environ. Sci. Technol. Lett. Artic. ASAP 2019. [Google Scholar] [CrossRef]
- Washenfelder, R.A.; Attwood, A.R. Biomass burning dominates brown carbon absorption in the rural southeastern United States. Geophys. Res. Lett. 2015, 42, 653–664. [Google Scholar] [CrossRef] [Green Version]
- Hatch, L.E.; Luo, W.; Pankow, J.F.; Yokelson, R.J.; Stockwell, C.E.; Barsanti, K.C. Identification and Quantification of Gaseous Organic Compounds Emitted from Biomass Burning using Two-Dimensional Gas Chromatography-time-of-flight Mass Spectrometry. Atmos. Chem. Phys. 2015, 15, 1865–1899. [Google Scholar] [CrossRef]
- Singh, C.P.; Panigrahy, S. Characterization of residue burning from agricultural system in India using space-based observations. J. Indian Soc. Remote Sens. 2011, 39, 423–429. [Google Scholar] [CrossRef]
- Allen, A.; Voiland, A. NASA Earth Observatory, Haze Blankets Northern India. 2017. Available online: https://earthobservatory.nasa.gov/images/91240/haze-blankets-northern-india (accessed on 11 July 2018).
- Zehra, R. How Clean Is the Air around You. 2017. Available online: https://fit.thequint.com/health-news/clean-your-air-as-per-who-standards-2. (accessed on 10 June 2018).
- Singh, Y.; Gupta, R.K.; Singh, J.; Singh, G.; Singh, G.; Ladha, J.K. Placement effects on paddy residue decomposition and nutrient dynamics on two soil types during wheat cropping in paddy-wheat system in north western India. Nutr. Cycl. Agroecosyst. 2010, 88, 471–480. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, S.; Joshi, L. The extend and management of crop residue stubbles. In Socioeconomic and Environmental Implications of Agricultural Residue Burning: A Case Study of Punjab, India; Kumar, P., Kumar, S., Joshi, L., Eds.; Springer Briefs in Environmental Science: Berlin, Germany, 2015; p. 144. ISBN 978-81-322-2014-5. Available online: http//www.springer.com/978-81-322-2146-3 (accessed on 6 March 2019).
- CSO (Central Statistics Office). Energy Statistics. In Ministry of Statistics and Program Implementation Office; CSO: New Delhi, India, 2014. [Google Scholar]
- The Central Pollution Control Board (CPCB). Consolidated Annual Review Report on Implementation of Municipal Solid Wastes (Management and Handling) Rules. In Ministry of Environment Forests and Climate Change; Board, C.P.C., Ed.; The Central Pollution Control Board: New Delhi, India, 2013. [Google Scholar]
- Urja, A. Generation of Green Energy from Paddy Straw, a Novel Initiative in Sustainable Agriculture Green Energy. 2016. Available online: https://mnre.gov.in/file-manager/akshay-urja/june-2016/30-33.pdf (accessed on 10 June 2018).
- Verma, S.S. Technologies for stubble use. J. Agric. Life Sci. 2014, 1, 2. [Google Scholar]
- Sood, J. Not a Waste until Wasted, Down to Earth. 2015. Available online: https://www.downtoearth.org.in/coverage/not-a-waste-until-wasted-40051 (accessed on 7 September 2018).
- The Hindu Crop Residue-Coal Mix to Nix Stubble Burning. 2018. Available online: http//www.thehindu.com/news/national/other-states/ntpc-to-mix-crop-residue-with-coal-to-curb-crop-burning/article20492123.ece (accessed on 25 June 2018).
- Pratap Singh, D.; Prabha, R. Bioconversion of Agricultural Wastes into High Value Biocompost: A Route to Livelihood Generation for Farmers. Adv. Recycl. Waste Manag. 2017, 137. [Google Scholar] [CrossRef]
- Schmaltz, J.; Voiland, A. NASA Earth Observatory, Stubble Burning in Punjab, India. 2017. Available online: https://earthobservatory.nasa.gov/images/86982/stubble-burning-in-punjab-india (accessed on 11 July 2018).
- Sirhindi, M. Punjab Witnesses 38% Fall Stubble Burning Instances, Times of India. Available online: http//timesofindia.indiatimes.com/city/chandigarh/punjab-witnesses-38-fall-stubble-burning-instances/articleshowprint/64018735.cms (accessed on 7 September 2018).
- Khanna, B. Times of India. Haryana Sees Decline in Stubble Burning Cases by 25%. Available online: https://timesofindia.indiatimes.com/city/chandigarh/haryana-sees-decline-in-stubble-burning-cases-by-25/articleshowprint/64021934.cms.2018 (accessed on 7 September 2018).
- Hettiarachchi, H.; Meegoda, J.N.; Ryu, S. Organic Waste Buyback as a Viable Method to Enhance Sustainable Municipal Solid Waste Management in Developing Countries. Int. J. Environ. Res. Public Health 2018, 15, 2483. [Google Scholar] [CrossRef] [PubMed]
- Misra, R.V.; Roy, R.N.; Hiraoka, H. On Farm Composting Methods; Food and Agricultural Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Shilev, S.; Naydenov, M.; Vancheva, V.; Aladjadjiyan, A. Composting of Food and Agricultural Wastes. Utilization of By-Products and Treatment of Waste in the Food Industry; Oreopoulou, V., Russ, W., Eds.; Springer: New York, NY, USA, 2006; pp. 283–301. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, J.; Zhang, Z.; Sugiura, N. Methane production from rice straw with acclimated anaerobic sludge: Effect of phosphate supplementation. J. Bioresour. Technol. 2010, 101, 4343–4348. [Google Scholar] [CrossRef] [PubMed]
- Tuomela, M.; Vikman, M.; Hatakka, A.; Itavaara, M. Biodegradation of lignin in a compost environment: A review. Bioresour. Technol. 2000, 72, 169. [Google Scholar] [CrossRef]
- Sequi, P. The role of composting in sustainable agriculture. In The Science of Composting; Bertoldi, M., Sequi, P., Lemmens, B., Papi, T., Eds.; Blackie Academic & Professional: London, UK, 1996; pp. 23–29. [Google Scholar]
- Aladjadjiyan, A. Lessons from Denmark and Austria on the Energy Valorization of Biomass (Contract No: JOU2-CT92-0212, Coordinator for Bulgaria); European Commission: Brussels, Belgium, 1992. [Google Scholar]
- Beck-Friis, B.; Pell, M.; Sonesson, U.; Jonsson, H.; Kirchmann, H. Formation and emission of N2O and CH4, from compost heaps of organic household waste. Environ. Monit. Assess. 2000, 62, 317. [Google Scholar] [CrossRef]
- Maynard, A.A. Compost: The process and research. The Connecticut agricultural experiment station. Bulletin 2000, 966, 13. [Google Scholar]
- Wu, L.; Ma, L.Q.; Martinez, G.A. Comparison of methods for evaluating stability and maturity of biosolids compost. J. Environ. Q. 2000, 29, 424. [Google Scholar] [CrossRef]
- Sonesson, U.; Bjorklund, A.; Carlsson, M.; Dalemo, M. Environmental and economic analysis of management systems for biodegradable wastes. Resour. Conserv. Recycl. 2000, 28, 29. [Google Scholar] [CrossRef]
- Sommer, S.G.; Dahl, P. Nutrient and carbon balance during the composting of deep litter. J. Agric. Eng. Res. 1999, 74, 145. [Google Scholar] [CrossRef]
- Dumontet, S.; Dinel, H.; Baloda, S.B. Pathogen reduction in sewage sludge by composting and other biological treatments: A review. Biol. Agric. Hortic. 1999, 16, 409. [Google Scholar] [CrossRef]
- Schaik, C.; Van Murray, H.; Lamb, J.; Di-Giacomo, J. Composting reduces fuel and labour costs on family farms. Biocycle 2000, 41, 72. [Google Scholar]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 14th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Nielsen, H.B.; Angelidaki, I. Codigestion of manure and industrial organic waste at centralized biogas plants: Process imbalances and limitations. Water Sci. Technol. 2008, 58, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Wall, D.H.; Nielsen, U.N.; Six, J. Soil biodiversity and human health. Nature 2015, 528, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Izaurralde, R.C.; Rosenberg, N.J.; Lal, R. Mitigation of climate change by soil carbon sequestration: Issues of science, monitoring, and degraded lands. Adv. Agron. 2001, 70, 1–75. [Google Scholar]
- McHenry, M.P. Agricultural biochar production, renewable energy generation and farm carbon sequestration in Western Australia, Certainty, uncertainty and risk. Agric. Ecosyst. Environ. 2009, 129, 1–7. [Google Scholar] [CrossRef]
- Amonette, J.; Joseph, S. Characteristics of biochar: Micro-chemical properties. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earth Scan: London, UK, 2009; pp. 33–52. [Google Scholar]
- Masek, O. Biochar Production Technologies. 2009. Available online: http://www.geos.ed.ac.uk/sccs/biochar/documents/BiocharLaunch-OMasek.pdf (accessed on 6 March 2019).
- Lehmann, J.; Joseph, S. Biochar systems. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 147–168. [Google Scholar]
- Tryon, E.H. Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecol. Monogr. 1948, 18, 81–115. [Google Scholar] [CrossRef]
- Gaunt, J.; Cowie, A. Biochar greenhouse gas accounting and emission trading. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 317–340. [Google Scholar]
- Marjanovic, I. The Best Practices for Using Plant Residues, Agrivi. 2016. Available online: http://blog.agrivi.com/post/the-best-practices-for-using-plant-residues (accessed on 15 November 2018).
- Singh, Y.; Sidhu, H.S. Management of cereal crop residues for sustainable rice-wheat production system in the Indo-gangetic plains of India. Proc. Indian Natl. Sci. Acad. 2014, 80, 95–114. [Google Scholar] [CrossRef]
- DACFW. Minutes of Kharif Campaign-2017, Department of Agriculture Cooperation & Farmers Welfare, the Government of India. 2017. Available online: http://agricoop.nic.in/sites/default/files/Revised_Minutes_of_Kharif_conference_2017.pdf (accessed on 15 November 2018).
- Pettinger, T. Polluter Pays Principle (PPP). 2016. Available online: http://www.economicshelp.org/blog/6955/economics/polluter-pays-principle-ppp (accessed on 23 November 2018).
- Hettiarachchi, H.; Ardakanian, R. Good Practice Examples of Wastewater Reuse; UNU-FLORES: Dresden, Germany, 2016; ISBN 978-3-944863-30-6 (web), 978-3-944863-31-3 (print). [Google Scholar]
- Hettiarachchi, H.; Ardakanian, R. Environmental Resource Management and Nexus Approach: Managing Water, Soil, and Waste in the Context of Global Change; Springer Nature: Basel, Switzerland, 2016; ISBN 978-3-319-28593. [Google Scholar]
Country | Agricultural Waste Generated (million tons/year) |
---|---|
India | 500 |
Bangladesh | 72 |
Indonesia | 55 |
Myanmar | 19 |
Source | Composition |
---|---|
Rice | Husk, bran |
Wheat | Bran, straw |
Maize | Stover, husk, skins |
Millet | Stover |
Sugarcane | Sugarcane tops, bagasse, molasses |
Crop | Estimate of Production (Mt) |
---|---|
Rice | 105 |
Wheat | 94 |
Sugarcane | 361 |
Oil seeds | 30 |
Cotton | 35 |
Jute | 11 |
Pulses | 17 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhuvaneshwari, S.; Hettiarachchi, H.; Meegoda, J.N. Crop Residue Burning in India: Policy Challenges and Potential Solutions. Int. J. Environ. Res. Public Health 2019, 16, 832. https://doi.org/10.3390/ijerph16050832
Bhuvaneshwari S, Hettiarachchi H, Meegoda JN. Crop Residue Burning in India: Policy Challenges and Potential Solutions. International Journal of Environmental Research and Public Health. 2019; 16(5):832. https://doi.org/10.3390/ijerph16050832
Chicago/Turabian StyleBhuvaneshwari, S., Hiroshan Hettiarachchi, and Jay N. Meegoda. 2019. "Crop Residue Burning in India: Policy Challenges and Potential Solutions" International Journal of Environmental Research and Public Health 16, no. 5: 832. https://doi.org/10.3390/ijerph16050832
APA StyleBhuvaneshwari, S., Hettiarachchi, H., & Meegoda, J. N. (2019). Crop Residue Burning in India: Policy Challenges and Potential Solutions. International Journal of Environmental Research and Public Health, 16(5), 832. https://doi.org/10.3390/ijerph16050832