Occupational and Environmental Risk Factors Influencing the Inducement of Erythema among Nigerian Laboratory University Workers with Multiple Chemical Exposures
Abstract
:1. Introduction
2. Cell Cytotoxicity Leading to Erythema Inducement
3. Materials and Methods
3.1. Data Collection
3.2. Measurement Tool
4. Results
5. Discussion
Strengths and Limitations of the Study
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ugranli, T.; Toprak, M.; Gursoy, G.; Cimrin, A.H.; Sofuoglu, S.C. Indoor environmental quality in chemistry and chemical engineering laboratories at Izmir Institute of Technology. Atmos. Pollut. Res. 2015, 6, 147–153. [Google Scholar] [CrossRef]
- Ekwempu, A.; Essien, U.; Naancin, V.; Polit, U.; Nnanna, O. Occupational Hazards: Knowledge, Attitude, and Perception of Medical Laboratory Scientists in Nigeria. Int. J. Innov. Res. Adv. Stud. 2018, 5, 145–151. [Google Scholar]
- Jeong, I.; Kim, I.; Park, H.J.; Roh, J.; Park, J.-W.; Lee, J.-H. Allergic diseases and multiple chemical sensitivity in Korean adults. Allergy Asthma Immunol. Res. 2014, 6, 409–414. [Google Scholar] [CrossRef]
- Lattanzio, L.; Denaro, N.; Vivenza, D.; Varamo, C.; Strola, G.; Fortunato, M.; Chamorey, E.; Comino, A.; Monteverde, M.; Nigro, C.L. Elevated basal antibody-dependent cell-mediated cytotoxicity (ADCC) and high epidermal growth factor receptor (EGFR) expression predict favourable outcome in patients with locally advanced head and neck cancer treated with cetuximab and radiotherapy. Cancer Immunol. Immunother. 2017, 66, 573–579. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Lamichhane, D.; Lee, M.; Ye, S.; Kwon, J.-H.; Park, M.-S.; Kim, H.-C.; Leem, J.-H.; Hong, Y.-C.; Kim, Y. Preventive effect of residential green space on infantile atopic dermatitis associated with prenatal air pollution exposure. Int. J. Environ. Res. Public Health 2018, 15, 102. [Google Scholar] [CrossRef]
- Paramasivam, P.; Raghavan, P.M.; Srinivasan, P.D.; Kumar, G.A. Knowledge, attitude, and practice of dyeing and printing workers. Indian J. Community Med. Off. Publ. Indian Assoc. Prev. Soc. Med. 2010, 35, 498–501. [Google Scholar] [CrossRef] [PubMed]
- Modenese, A.; Korpinen, L.; Gobba, F. Solar Radiation Exposure and Outdoor Work: An Underestimated Occupational Risk. Int. J. Environ. Res. Public Health 2018, 15, 2063. [Google Scholar] [CrossRef]
- Pavlos, R.; Mallal, S.; Ostrov, D.; Buus, S.; Metushi, I.; Peters, B.; Phillips, E. T Cell-Mediated hypersensitivity reactions to drugs. Annu. Rev. Med. 2015, 66, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Tunsaringkarn, T.; Siriwong, W.; Rungsiyothin, A.; Nopparatbundit, S. Occupational exposure of gasoline station workers to BTEX compounds in Bangkok, Thailand. Int. J. Occup. Environ. Med. 2012, 3, 117–125. [Google Scholar] [PubMed]
- Goodyear, M.D.; Krleza-Jeric, K.; Lemmens, T. The declaration of Helsinki. BMJ Br. Med. J. 2007, 335, 624–625. [Google Scholar] [CrossRef]
- Clarys, P.; Alewaeters, K.; Lambrecht, R.; Barel, A. Skin color measurements: Comparison between three instruments: The Chromameter®, the DermaSpectrometer® and the Mexameter®. Skin Res. Technol. 2000, 6, 230–238. [Google Scholar] [CrossRef]
- Miller, S.A.; Coelho, S.G.; Yamaguchi, Y.; Hearing, V.J.; Beer, J.Z.; de Gruijl, F. The Evaluation of Non-invasive Measurements of Erythema as a Potential Surrogate for DNA Damage in Repetitively UV-exposed Human Skin. Photochem. Photobiol. 2017, 93, 1282–1288. [Google Scholar] [CrossRef] [PubMed]
- Madureira, J.; Paciência, I.; Pereira, C.; Teixeira, J.P.; Fernandes, E.d.O. Indoor air quality in Portuguese schools: Levels and sources of pollutants. Indoor Air 2016, 26, 526–537. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.H.; Guo, E.L.; Norris, D. A rare case of erythema elevatum diutinum presenting as diffuse neuropathy. JAAD Case Rep. 2017, 3, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Kheur, S.; Singh, N.; Bodas, D.; Rauch, J.-Y.; Jambhekar, S.; Kheur, M.; Rajwade, J. Nanoscale silver depositions inhibit microbial colonization and improve biocompatibility of titanium abutments. Colloids Surf. B Biointerfaces 2017, 159, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Mihalache, R.; Verbeek, J.; Graczyk, H.; Murashov, V.; van Broekhuizen, P. Occupational exposure limits for manufactured nanomaterials, a systematic review. Nanotoxicology 2017, 11, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Lavoue, J.; Friesen, M.; Burstyn, I. Workplace measurements by the US Occupational Safety and Health Administration since 1979: Descriptive analysis and potential uses for exposure assessment. Ann. Occup. Hyg. 2012, 57, 77–97. [Google Scholar]
- Geier, J.; Krautheim, A.; Uter, W.; Lessmann, H.; Schnuch, A. Occupational contact allergy in the building trade in Germany: Influence of preventive measures and changing exposure. Int. Arch. Occup. Environ. Health 2011, 84, 403–411. [Google Scholar] [CrossRef]
- Van der Molen, H.; de Vries, S.; Sluiter, J. Occupational diseases among workers in lower and higher socioeconomic positions. Int. J. Environ. Res. Public Health 2018, 15, 2849. [Google Scholar] [CrossRef]
- Ernst, S.; Schmitz, R.; Thamm, M.; Ellert, U. Lower prevalence of atopic dermatitis and allergic sensitization among children and adolescents with a two-sided migrant background. Int. J. Environ. Res. Public Health 2016, 13, 265. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, H.-X.; Xing, J.-J.; Jin, Z.; Hu, F.; Li, T.-L.; Zhou, X.-Y. Clinical analysis of 84 cases of erythrodermic psoriasis and 121 cases of other types of erythroderma from 2010–2015. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 2017, 37, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Allaerts, W.; Chang, T.W. Skewed Exposure to Environmental Antigens Complements Hygiene Hypothesis in Explaining the Rise of Allergy. Acta Biotheor. 2017, 65, 117–134. [Google Scholar] [CrossRef]
- Gillooly, J.F.; Charnov, E.L.; West, G.B.; Savage, V.M.; Brown, J.H. Effects of size and temperature on developmental time. Nature 2002, 417, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Engebretsen, K.; Johansen, J.; Kezic, S.; Linneberg, A.; Thyssen, J. The effect of environmental humidity and temperature on skin barrier function and dermatitis. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 223–249. [Google Scholar] [CrossRef] [PubMed]
- Maula, H.; Hongisto, V.; Naatula, V.; Haapakangas, A.; Koskela, H. The effect of low ventilation rate with elevated bioeffluent concentration on work performance, perceived indoor air quality, and health symptoms. Indoor Air 2017, 27, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Uter, W.; Werfel, T.; White, I.; Johansen, J. Contact allergy: A review of current problems from a clinical perspective. Int. J. Environ. Res. Public Health 2018, 15, 1108. [Google Scholar] [CrossRef]
- Bekö, G.; Morrison, G.; Weschler, C.J.; Koch, H.M.; Pälmke, C.; Salthammer, T.; Schripp, T.; Eftekhari, A.; Toftum, J.; Clausen, G. Dermal uptake of nicotine from air and clothing: Experimental verification. Indoor Air 2017, 28, 247–257. [Google Scholar] [CrossRef]
- Schomäcker, K.; Fischer, T.; Zimmermanns, B.; Bregulla, J.; Sudbrock, F.; Prante, O.; Drzezga, A. Retention efficacy and release of radioiodine in fume hoods. J. Environ. Radioact. 2017, 166, 175–180. [Google Scholar] [CrossRef]
- Gonzalez, Y.I.; Woodroof, M.D.; Yan, Y.S.; Deng, W.; Gladle, M.A. Chemical laboratory consolidation project. J. Chem. Health Saf. 2017, 24, 38–43. [Google Scholar] [CrossRef]
- Hughes, O.B.; Maderal, A.D.; Tosti, A. Preservative sensitization—Safety with and safety without. Curr. Treat. Options Allergy 2016, 3, 345–358. [Google Scholar] [CrossRef]
(a) Socio-demographic data | |||||||
Personal parameters (n = 286) | Sex | Age (Years) | Monthly Income (US$) | Working Experience (Years) | |||
Male | Female | Male | Female | ||||
n (%) | 165 (57.7) | 122 (42.7) | |||||
Mean (SD) | 43.1 (8.1) | 38.4 (5.1) | 246 (120.8) | 13.6(6.2) | |||
(b) | |||||||
Chemical parameters (n = 30) | CO (ppm) | CO2 (ppm) | NO2 (ppm) | H2S (ppm) | SO2 (ppm) | ||
Mean (SD) | 17.9 (2.3) | 473.0(52.4) | 5.5(0.5) | 5.7(0.5) | 6.3(0.7) | ||
(c) | |||||||
Environmental parameters (n = 30) | Temperature °C | LVS (cfm−1) | RH (%) | LD (m2) | |||
Mean (SD) | 28.8(1.5) | 25.8(12.6) | 24.4 (1.9) | 44.7(21.3) |
Variables | Skin Allergies–Erythema Inducement | MeanDifference(95% CI) | t (df) | χ2 (df) | p-Value | |
---|---|---|---|---|---|---|
Positive Skin Allergy (n = 176) n (%), Mean (SD) | Negative Skin Allergy (n = 111) n (%), Mean (SD) | |||||
PPE | ||||||
Not used | 84 (44.0) | 107 (56.0) | 72.43(1) | <0.001 a | ||
Used | 92 (95.8) | 4 (4.2) | ||||
PEL (ppm) | ||||||
Not exceeded | 169 (60.4) | 111 (39.6) | 4.33(1) | 0.031 *,b | ||
Exceeded | 7 (100) | 0 (0.0) | ||||
Con. (mol.dm3) | ||||||
Not exceeded | 21 (91.3) | 2 (8.7) | 9.62(1) | 0.001 *,b | ||
Exceeded | 153 (58.4) | 109 (41.6) | ||||
Exposed population | 528.9 (144.0) | 232.3 (106.1) | 296.6 (327.8, −265.4) | 0.71 (285) | 0.001 *,c | |
Type of chemicals | ||||||
IC and CC > 50% | 94 (100) | 0 (0.0) | 14.1 (2) | 0.231 a | ||
IC and CC < 50% | 50 (98.0) | 1 (2.0) | ||||
HRC and UC > 50% | 19 (28.4) | 48 (71.6) | ||||
HRC and UC < 50% | 13 (17.6) | 61 (82.4) | ||||
Time of exposure(h) | 4.36 (0.70) | 3.41 (0.62) | 0.953 (1.113, 0.792) | 1.14 (285) | <0.001 c |
Variables | Skin Allergies–Erythema Inducement | Mean Difference (95% CI) | t (df) | χ2 (df) | p-Value | |
---|---|---|---|---|---|---|
Positive Skin Allergy (n = 176) n (%), Mean (SD) | Negative Skin Allergy (n = 111) n (%), Mean (SD) | |||||
Temperature (°C) | 36.23 (2.15) | 32 (3.36) | 3.88 (4.36, −3.39) | 1.23 (285) | 86.1 (1) | <0.001 c |
Laboratory temperature level (°C) | ||||||
Moderate | 3 (5.4) | 53 (94.6) | <0.001a | |||
Poor | 173 (74.9) | 58 (25.1) | ||||
Relative humidity (%) | 34.60 (7.13) | 20.32 (7.03) | 14.27 (15.9, −12.5) | 1.14 (285) | 29.3 (1) | <0.001 c |
Laboratory RH level (%) | ||||||
Poor | 31 (27.4) | 82 (72.6) | 90.2 (1) | <0.001 a | ||
Moderate | 145 (83.3) | 29 (16.7) | ||||
Indoor air quality (ppm) | ||||||
Good | 1 (11.1) | 8 (88.9) | 24.1 (1) | 0.001 *,b | ||
Poor | 58 (71.6) | 23 (28.4) | ||||
Laboratory dimensions(m2) | 32.02 (11.07) | 58.58 (20.20) | 26.53 (22.91, 30.19) | 0.81 (285) | 13.3 (1) | <0.001 c |
Laboratory dimensions (m2) | ||||||
Poor | 172 (82.3) | 37 (17.7) | 98.6 (2) | <0.001a | ||
Moderate | 2 (4.0) | 48 (96.0) | ||||
Good | 2 (7.1) | 26 (92.9) | ||||
Fume cupboard system | ||||||
Maximum | 2 (4.0) | 48 (96.0) | 96.3 (2) | 0.001* | ||
Moderate | 12 (16.4) | 61 (83.6) | ||||
Minimum | 162 (98.8) | 2 (1.2) |
Variables | Simple Logistic Regression | Multiple Logistic Regression | ||||||
---|---|---|---|---|---|---|---|---|
B | LR/Wald | COR (95%Cl) | p-Value | B | LR/Wald | AOR (95%CI) | p-Value | |
PPE | ||||||||
Not used | 0 | 1 | 0 | 1 | ||||
Used | −1.23 | 25.34 | 0.29 (0.12, 0.97) | <0.001 | −0.91 | 18.24 | 0.40 (0.22, 0.77) | 0.001 |
PEL (ppm) | ||||||||
Not exceeded | 0 | 1 | 0 | 1 | ||||
Exceeded | 1.16 | 9.11 | 3.29 (1.02, 9.22) | 0.003 * | 3.19 | 4.11 | 4.22 (2.88, 12.11) | 0.004 |
TOE (hours) | ||||||||
2–3 | 0 | 1 | 0 | 1 | ||||
4–5 | 1.05 | 6.32 | 2.88 (1.00, 7.11) | 0.001 | 2.01 | 3.55 | 3.11 (1.77, 9.23) | 0.001 |
Air laboratory temp (°C) | ||||||||
26.6–31.9 | 0 | 1 | 0 | 1 | ||||
≥32 | 1.95 | 11.24 | 7.06 (3.53, 14.05) | 0.002 * | 2.10 | 4.82 | 8.21 (4.03, 15.01) | 0.001 |
Ventilation (cfm−1) | ||||||||
≤20 | 0 | 1 | 0 | 1 | ||||
21.5–40.5 | −4.38 | 2.33 | 0.01 (0.001, 0.05) | <0.001 | −3.07 | 0.22 | 0.05 (0.004, 0.05) | 0.111 |
≥41.5 | −2.88 | 3.87 | 0.06 (0.01, 0.24) | <0.001 | −1.68 | 2.53 | 0.18 (0.02, 0.48) | 0.002 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reuben, U.; F. Ismail, A.; Ahmad, A.L.; Maina, H.M.; Daud, A. Occupational and Environmental Risk Factors Influencing the Inducement of Erythema among Nigerian Laboratory University Workers with Multiple Chemical Exposures. Int. J. Environ. Res. Public Health 2019, 16, 1334. https://doi.org/10.3390/ijerph16081334
Reuben U, F. Ismail A, Ahmad AL, Maina HM, Daud A. Occupational and Environmental Risk Factors Influencing the Inducement of Erythema among Nigerian Laboratory University Workers with Multiple Chemical Exposures. International Journal of Environmental Research and Public Health. 2019; 16(8):1334. https://doi.org/10.3390/ijerph16081334
Chicago/Turabian StyleReuben, Usaku, Ahmad F. Ismail, Abdul L. Ahmad, Humphrey M. Maina, and Aziah Daud. 2019. "Occupational and Environmental Risk Factors Influencing the Inducement of Erythema among Nigerian Laboratory University Workers with Multiple Chemical Exposures" International Journal of Environmental Research and Public Health 16, no. 8: 1334. https://doi.org/10.3390/ijerph16081334
APA StyleReuben, U., F. Ismail, A., Ahmad, A. L., Maina, H. M., & Daud, A. (2019). Occupational and Environmental Risk Factors Influencing the Inducement of Erythema among Nigerian Laboratory University Workers with Multiple Chemical Exposures. International Journal of Environmental Research and Public Health, 16(8), 1334. https://doi.org/10.3390/ijerph16081334