Marine Predators Algorithm for Forecasting Confirmed Cases of COVID-19 in Italy, USA, Iran and Korea
Abstract
:1. Introduction
- We propose a robust time-series model for forecasting the number of infected people (confirmed cases) of SARS-CoV2 in several countries, Iran, Italy, Korea, and the USA.
- We improve the performance of the ANFIS model using a novel optimization method, MPA, which has not been applied in previous studies since the MPA is a new algorithm proposed in recent months.
- We evaluate the proposed MPA-ANFIS with official datasets and by comparing it with several previous forecasting methods.
2. Preliminaries
2.1. Adaptive Neuro-Fuzzy Inference System
2.2. Marine Predators Algorithm
2.2.1. Stage 1: High-Velocity Ratio
2.2.2. Stage 2: Unit Velocity Ratio
2.2.3. Stage 3: Low-Velocity Ratio
2.2.4. Eddy Formation and FADs’ Effect
2.2.5. Marine Memory
3. The Proposed Method
4. Experiment and Results
4.1. Data
4.2. Performance Measures and Parameter Setting
4.3. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020, 92, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.Y.; Li, J.L.; Yang, X.L.; Chmura, A.A.; Zhu, G.; Epstein, J.H.; Mazet, J.K.; Hu, B.; Zhang, W.; Peng, C.; et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013, 503, 535–538. [Google Scholar] [CrossRef]
- Wang, L.F.; Shi, Z.; Zhang, S.; Field, H.; Daszak, P.; Eaton, B.T. Review of bats and SARS. Emerg. Infect. Dis. 2006, 12, 1834. [Google Scholar] [CrossRef]
- Cauchemez, S.; Van Kerkhove, M.; Riley, S.; Donnelly, C.; Fraser, C.; Ferguson, N. Transmission scenarios for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and how to tell them apart. Euro Surveill. 2013, 18, 20503. [Google Scholar]
- World Health Organization. Novel Coronavirus (2019-nCoV). 2020. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 27 January 2020).
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.J.; Shan, J. 2019 Novel Coronavirus: Where We are and What We Know. Infection 2020, 48, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.l.; Hui, D.S.; et al. Clinical Characteristics of 2019 Novel Coronavirus Infection in China. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Shaman, J.; Yang, W.; Kandula, S. Inference and forecast of the current West African Ebola outbreak in Guinea, Sierra Leone and Liberia. PLoS Curr. 2014, 6. [Google Scholar] [CrossRef]
- Shaman, J.; Karspeck, A. Forecasting seasonal outbreaks of influenza. Proc. Natl. Acad. Sci. USA 2012, 109, 20425–20430. [Google Scholar] [CrossRef] [Green Version]
- Shaman, J.; Karspeck, A.; Yang, W.; Tamerius, J.; Lipsitch, M. Real-time influenza forecasts during the 2012–2013 season. Nat. Commun. 2013, 4, 1–10. [Google Scholar] [CrossRef]
- Ture, M.; Kurt, I. Comparison of four different time series methods to forecast hepatitis A virus infection. Expert Syst. Appl. 2006, 31, 41–46. [Google Scholar] [CrossRef]
- DeFelice, N.B.; Little, E.; Campbell, S.R.; Shaman, J. Ensemble forecast of human West Nile virus cases and mosquito infection rates. Nat. Commun. 2017, 8, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massad, E.; Burattini, M.N.; Lopez, L.F.; Coutinho, F.A. Forecasting versus projection models in epidemiology: The case of the SARS epidemics. Med. Hypotheses 2005, 65, 17–22. [Google Scholar] [CrossRef]
- Ong, J.B.S.; Mark, I.; Chen, C.; Cook, A.R.; Lee, H.C.; Lee, V.J.; Lin, R.T.P.; Tambyah, P.A.; Goh, L.G. Real-time epidemic monitoring and forecasting of H1N1-2009 using influenza-like illness from general practice and family doctor clinics in Singapore. PLoS ONE 2010, 5, e10036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nah, K.; Otsuki, S.; Chowell, G.; Nishiura, H. Predicting the international spread of Middle East respiratory syndrome (MERS). BMC Infect. Dis. 2016, 16, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, R.N. Novel Coronavirus Outbreak in Wuhan, China, 2020: Intense Surveillance Is Vital for Preventing Sustained Transmission in New Locations. J. Clin. Med. 2020, 9, 498. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Musa, S.S.; Lin, Q.; Ran, J.; Yang, G.; Wang, W.; Lou, Y.; Yang, L.; Gao, D.; He, D.; et al. Estimating the Unreported Number of Novel Coronavirus (2019-nCoV) Cases in China in the First Half of January 2020: A Data-Driven Modelling Analysis of the Early Outbreak. J. Clin. Med. 2020, 9, 388. [Google Scholar] [CrossRef] [Green Version]
- Al-qaness, M.A.; Ewees, A.A.; Fan, H.; Abd El Aziz, M. Optimization Method for Forecasting Confirmed Cases of COVID-19 in China. J. Clin. Med. 2020, 9, 674. [Google Scholar] [CrossRef] [Green Version]
- Nishiura, H.; Kobayashi, T.; Yang, Y.; Hayashi, K.; Miyama, T.; Kinoshita, R.; Linton, N.M.; Jung, S.m.; Yuan, B.; Suzuki, A.; et al. The Rate of Underascertainment of Novel Coronavirus (2019-nCoV) Infection: Estimation Using Japanese Passengers Data on Evacuation Flights. J. Clin. Med. 2020, 9, 419. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.; Wang, X.; Li, Q.; Bragazzi, N.L.; Tang, S.; Xiao, Y.; Wu, J. Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions. J. Clin. Med. 2020, 9, 462. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.m.; Akhmetzhanov, A.R.; Hayashi, K.; Linton, N.M.; Yang, Y.; Yuan, B.; Kobayashi, T.; Kinoshita, R.; Nishiura, H. Real time estimation of the risk of death from novel coronavirus (2019-nCoV) infection: Inference using exported cases. J. Clin. Med. 2020, 9, 523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.Y. A hybrid ANFIS model based on empirical mode decomposition for stock time series forecasting. Appl. Soft Comput. 2016, 42, 368–376. [Google Scholar] [CrossRef]
- Elaziz, M.A.; Ewees, A.A.; Alameer, Z. Improving adaptive neuro-fuzzy inference system based on a modified salp swarm algorithm using genetic algorithm to forecast crude oil price. Nat. Resour. Res. 2019, 1–16. [Google Scholar] [CrossRef]
- Ekici, B.B.; Aksoy, U.T. Prediction of building energy needs in early stage of design by using ANFIS. Expert Syst. Appl. 2011, 38, 5352–5358. [Google Scholar] [CrossRef]
- Al-Qaness, M.A.; Elaziz, M.A.; Ewees, A.A. Oil consumption forecasting using optimized adaptive neuro-fuzzy inference system based on sine cosine algorithm. IEEE Access 2018, 6, 68394–68402. [Google Scholar] [CrossRef]
- Al-qaness, M.A.; Abd Elaziz, M.; Ewees, A.A.; Cui, X. A Modified Adaptive Neuro-Fuzzy Inference System Using Multi-Verse Optimizer Algorithm for Oil Consumption Forecasting. Electronics 2019, 8, 1071. [Google Scholar] [CrossRef] [Green Version]
- Catalão, J.P.d.S.; Pousinho, H.M.I.; Mendes, V.M.F. Hybrid wavelet-PSO-ANFIS approach for short-term electricity prices forecasting. IEEE Trans. Power Syst. 2010, 26, 137–144. [Google Scholar] [CrossRef]
- Bagheri, A.; Peyhani, H.M.; Akbari, M. Financial forecasting using ANFIS networks with quantum-behaved particle swarm optimization. Expert Syst. Appl. 2014, 41, 6235–6250. [Google Scholar] [CrossRef]
- El Aziz, M.A.; Hemdan, A.M.; Ewees, A.A.; Elhoseny, M.; Shehab, A.; Hassanien, A.E.; Xiong, S. Prediction of biochar yield using adaptive neuro-fuzzy inference system with particle swarm optimization. In Proceedings of the IEEE PES PowerAfrica, Accra, Ghana, 27–30 June 2017; pp. 115–120. [Google Scholar]
- Ewees, A.A.; El Aziz, M.A.; Elhoseny, M. Social-spider optimization algorithm for improving ANFIS to predict biochar yield. In Proceedings of the 8th international conference on computing, communication and networking technologies (ICCCNT), Delhi, India, 3–5 July 2017; pp. 1–6. [Google Scholar]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A Nature-inspired Metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Ahmed, K.; Ewees, A.A.; El Aziz, M.A.; Hassanien, A.E.; Gaber, T.; Tsai, P.W.; Pan, J.S. A hybrid krill-ANFIS model for wind speed forecasting. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, Cairo, Egypt, 24–26 October 2016; Springer: Cham, Switzerland, 2016; pp. 365–372. [Google Scholar]
- Alameer, Z.; Elaziz, M.A.; Ewees, A.A.; Ye, H.; Jianhua, Z. Forecasting copper prices using hybrid adaptive neuro-fuzzy inference system and genetic algorithms. Nat. Resour. Res. 2019, 28, 1385–1401. [Google Scholar] [CrossRef]
Measure | Formula |
---|---|
Root Mean Squared Error (RMSE) | |
Mean Absolute Error (MAE) | |
Mean Absolute Percentage Error (MAPE) | |
Root Mean Squared Relative Error (RMSRE) | |
Coefficient of Determination () |
Algorithm | Parameter Setting |
---|---|
ANFIS | |
GA | |
PSO | |
, | |
ABC | |
SCA | |
FPASSA | ∈ [0, 1], ∈ [0, 1] |
MPA |
Algorithm | RMSE | MAE | MAPE | RMSRE | R | Time |
---|---|---|---|---|---|---|
ANFIS | 80245 | 58231 | 744.09 | 14.0700 | 0.8371 | - |
PSO | 17656 | 15545 | 7.22 | 0.0801 | 0.9162 | 23.24 |
GA | 19302 | 15846 | 12.13 | 0.1624 | 0.9489 | 26.23 |
ABC | 345497 | 335418 | 1307.52 | 22.8424 | 0.7816 | 44.58 |
SCA | 372321 | 281297 | 380.71 | 5.8893 | 0.6630 | 21.86 |
FPASSA | 520963 | 443400 | 1225.67 | 18.3782 | 0.8949 | 22.98 |
MPA | 15611 | 12979 | 5.74 | 0.0673 | 0.9595 | 45.83 |
RMSE | MAE | MAPE | RMSRE | R | Time | |
---|---|---|---|---|---|---|
ANFIS | 26925.01 | 21912.08 | 257.895 | 5.4871 | 0.9017 | - |
PSO | 317.99 | 282.51 | 0.861 | 0.0118 | 0.9861 | 20.68 |
GA | 301.39 | 271.35 | 0.840 | 0.0113 | 0.9861 | 23.20 |
ABC | 12581.97 | 9665.28 | 51.682 | 1.0031 | 0.9111 | 39.91 |
SCA | 21891.68 | 14370.36 | 72.184 | 1.0982 | 0.5843 | 20.24 |
FPASSA | 6830.25 | 3007.19 | 28.136 | 0.6905 | 0.9457 | 20.20 |
MPA | 302.37 | 217.27 | 0.736 | 0.0105 | 0.9874 | 39.80 |
RMSE | MAE | MAPE | RMSRE | R | Time | |
---|---|---|---|---|---|---|
ANFIS | 99558.76 | 81394.93 | 239.668 | 5.3878 | 0.7720 | - |
PSO | 5988.44 | 4383.08 | 2.830 | 0.0368 | 0.9636 | 21.59 |
GA | 5772.62 | 4307.22 | 2.728 | 0.0348 | 0.9649 | 23.75 |
ABC | 99655.58 | 55053.80 | 49.518 | 0.8160 | 0.7941 | 40.36 |
SCA | 20644.06 | 15098.11 | 138.84 | 2.6193 | 0.8622 | 20.02 |
FPASSA | 57704.18 | 38335.82 | 101.190 | 1.7320 | 0.9278 | 33.64 |
MPA | 5465.66 | 3951.94 | 2.634 | 0.0372 | 0.9859 | 39.36 |
RMSE | MAE | MAPE | RMSRE | R | Time | |
---|---|---|---|---|---|---|
ANFIS | 127.76 | 112.13 | 1.250 | 0.0142 | 0.8228 | - |
PSO | 117.24 | 88.79 | 0.979 | 0.0129 | 0.8280 | 20.81 |
GA | 80.01 | 60.26 | 0.690 | 0.0091 | 0.9848 | 24.01 |
ABC | 650.49 | 399.83 | 7.886 | 0.1277 | 0.7588 | 35.34 |
SCA | 1145.10 | 642.06 | 24.455 | 0.4701 | 0.6638 | 20.26 |
FPASSA | 91.68 | 78.28 | 0.792 | 0.0094 | 0.9038 | 20.38 |
MPA | 70.93 | 60.31 | 0.696 | 0.0082 | 0.9648 | 40.73 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-qaness, M.A.A.; Ewees, A.A.; Fan, H.; Abualigah, L.; Abd Elaziz, M. Marine Predators Algorithm for Forecasting Confirmed Cases of COVID-19 in Italy, USA, Iran and Korea. Int. J. Environ. Res. Public Health 2020, 17, 3520. https://doi.org/10.3390/ijerph17103520
Al-qaness MAA, Ewees AA, Fan H, Abualigah L, Abd Elaziz M. Marine Predators Algorithm for Forecasting Confirmed Cases of COVID-19 in Italy, USA, Iran and Korea. International Journal of Environmental Research and Public Health. 2020; 17(10):3520. https://doi.org/10.3390/ijerph17103520
Chicago/Turabian StyleAl-qaness, Mohammed A. A., Ahmed A. Ewees, Hong Fan, Laith Abualigah, and Mohamed Abd Elaziz. 2020. "Marine Predators Algorithm for Forecasting Confirmed Cases of COVID-19 in Italy, USA, Iran and Korea" International Journal of Environmental Research and Public Health 17, no. 10: 3520. https://doi.org/10.3390/ijerph17103520
APA StyleAl-qaness, M. A. A., Ewees, A. A., Fan, H., Abualigah, L., & Abd Elaziz, M. (2020). Marine Predators Algorithm for Forecasting Confirmed Cases of COVID-19 in Italy, USA, Iran and Korea. International Journal of Environmental Research and Public Health, 17(10), 3520. https://doi.org/10.3390/ijerph17103520