Organic Air Quality Markers of Indoor and Outdoor PM2.5 Aerosols in Primary Schools from Barcelona
Abstract
:1. Introduction
2. Materials and Methods
2.1. School Sampling
2.2. Organic Tracer Analysis
2.3. Complementary Data
3. Results
3.1. Bulk Measurements
3.2. Polycyclic Aromatic Hydrocarbons
3.3. Organic Molecular Tracers
3.4. Source Apportionment of Organic Aerosol
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pey, J.; Querol, X.; Alastuey, A. Variations of levels and composition of PM10 and PM2.5 at an insular site in the Western Mediterranean. Atmos. Res. 2009, 94, 285–299. [Google Scholar] [CrossRef]
- Dall’Osto, M.; Querol, X.; Alastuey, A.; Minguillon, M.C.; Alier, M.; Amato, F.; Brines, M.; Cusack, M.; Grimalt, J.O.; Karanasiou, A.; et al. Presenting SAPUSS: Solving Aerosol Problem by Using Synergistic Strategies in Barcelona, Spain. Atmos. Chem. Phys. 2013, 13, 8991–9019. [Google Scholar]
- Rohr, A.C.; Wyzga, R.E. Attributing health effects to individual particulate matter constituents. Atmos. Environ. 2012, 62, 130–152. [Google Scholar] [CrossRef]
- Mesquita, S.R.; van Drooge, B.L.; Reche, C.; Guimarães, L.; Grimalt, J.O.; Barata, C.; Piña, B. Toxic assessment of urban atmospheric particle-bound PAHs: Relevance of composition and particle size in Barcelona (Spain). Environ. Pol. 2014, 184, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, S.R.; van Drooge, B.L.; Oliveira, E.; Grimalt, J.O.; Barata, C.; Vieira, N.; Guimaraes, L.; Pina, B. Differential embryotoxicity of the organic pollutants in rural and urban air particles. Environ. Pollut. 2015, 206, 535–542. [Google Scholar] [CrossRef]
- Alier, M.; van Drooge, B.L.; Dall’Osto, M.; Querol, X.; Grimalt, J.O.; Tauler, R. Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona (Spain) during SAPUSS. Atmos. Chem. Phys. 2013, 13, 10353–10371. [Google Scholar] [CrossRef] [Green Version]
- van Drooge, B.L.; Grimalt, J.O. Particle size-resolved source apportionment of primary and secondary organic tracer compounds at urban and rural locations in Spain. Atmos. Chem. Phys. 2015, 15, 7735–7752. [Google Scholar] [CrossRef] [Green Version]
- Mortamais, M.; Pujol, J.; van Drooge, B.L.; Macià, D.; Martínez-Vilavella, G.; Reynes, C.; Sabatier, R.; Rivas, I.; Grimalt, J.; Forns, J.; et al. Effect of exposure to polycyclic aromatic hydrocarbons on basal ganglia and attention-deficit hyperactivity disorder symptoms in primary school children. Environ. Int. 2017, 105, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Minguillón, M.C.; Schembari, A.; Triguero-Mas, M.; de Nazelle, A.; Dadvand, P.; Figueras, F.; Salvado, J.A.; Grimalt, J.O.; Nieuwenhuijsen, M.; Querol, X. Source apportionment of indoor, outdoor and personal PM2.5 exposure of pregnant women in Barcelona, Spain. Atmos. Environ. 2012, 59, 426–436. [Google Scholar] [CrossRef]
- van Drooge, B.L.; Marco, E.; Perez, N.; Grimalt, J.O. Influence of electronic cigarette vaping on the composition of indoor organic pollutants, particles, and exhaled breath of bystanders. Environ. Sci. Pollut. Res. 2019, 26, 4654–4666. [Google Scholar] [CrossRef]
- Hoek, G.; Brunekreef, B.; Goldbohm, S.; Fischer, P.; van den Brandt, P.A. Association between mortality and indicators of traffic-related air pollution in the Netherlands: A cohort study. Lancet 2002, 360, 1203–1209. [Google Scholar] [CrossRef] [Green Version]
- Sunyer, J. The neurological effects of air pollution in children. Eur. Respir. J. 2008, 32, 535–537. [Google Scholar] [CrossRef] [PubMed]
- Guxens, M.; Sunyer, J. A review of epidemiological studies on neuropsychological effects of air pollution. Swiss Med. Wkly. 2012, 141, w13322. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.; Weiland, K.; Neidell, M.; Wang, S. Prenatal exposure to airborn polycyclic aromatic hydrocarbons and IQ: Estimated benefits of pollution reduction. J. Public Health Policy 2014, 35, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Alemany, S.; Vilor-Tejedor, N.; García-Esteban, R.; Bustamante, M.; Mortamais, M.; Forns, J.; van Drooge, B.L.; Alvárez-Pedrerol, M.; Grimalt, J.O.; Rivas, I.; et al. Traffic-related air pollution, APOE ε4 status, and neurodevelopmental outcomes among school children enrolled in the BREATHE project (Catalonia, Spain). Environ. Health Perspect. 2018, 126, 087001. [Google Scholar] [CrossRef] [Green Version]
- WHO. 2014. Available online: http://www.who.int/phe/health_topics/outdoorair/databases/FINAL_HAP_AAP_BoD_24March2014.pdf?ua=1 (accessed on 8 May 2019).
- Pérez, N.; Pey, J.; Cusack, M.; Reche, C.; Querol, X.; Alastuey, A.; Viana, M. Variability of particle number, black carbon and PM10, PM2.5 and PM1 levels and speciation: Influence of road traffic emissions on urban air quality. Aerosol Sci. Technol. 2010, 44, 487–499. [Google Scholar] [CrossRef]
- Miguillon, M.C.; Cirach, M.; Hoek, G.; Brunekeef, B.; Tsai, M.; de Hoogh, K.; Jedynska, A.; Kooter, I.M.; Nieuwenhuijsen, M.; Querol, X. Spatial variability of trace elements and sources for improved exposure assessment in Barcelona. Atmos. Environ. 2014, 89, 268–281. [Google Scholar] [CrossRef]
- Sunyer, J.; Torrent, M.; Garcia-Esteban, R.; Ribas-Fitó, N.; Carrizo, D.; Romieu, I.; Antó, J.M.; Grimalt, J.O. Early exposure to dichlorodiphenyldichloroethylene, breastfeeding and asthma at age six. Clin. Exp. Allergy 2006, 36, 1236–1241. [Google Scholar] [CrossRef]
- Gascon, M.; Vrijheid, M.; Martínez, D.; Ballester, F.; Basterrechea, M.; Blarduni, E.; Esplugues, A.; Vizcaino, E.; Grimalt, J.O.; Morales, E.; et al. Pre-natal exposure to dichlorodiphenyldichloroethylene and infant lower respiratory tract infections and wheeze. Eur. Respir. J. 2012, 39, 1188–1196. [Google Scholar] [CrossRef] [Green Version]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2017. [Google Scholar] [CrossRef] [Green Version]
- Rivas, I.; Viana, M.; Moreno, T.; Pandolfi, M.; Amato, F.; Reche, C.; Bouso, L.; Alvarez-Pedrerol, M.; Alastuey, A.; Sunyer, J.; et al. Child exposure to indoor and outdoor air pollution in schools in Barcelona. Environ. Int. 2014, 69, 200–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, F.; Rivas, I.; Viana, M.; Moreno, T.; Bouso, L.; Reche, C.; Àlvarez-Pedrerol, M.; Alastuey, A.; Sunyer, J.; Querol, X. Sources of indoor and outdoor PM2.5 concentrations in primary schools. Sci. Total Environ. 2014, 490, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Fontal, M.; van Drooge, B.; López, J.F.; Fernández, P.; Grimalt, J.O. Broad spectrum analysis of polar and apolar organic compounds in submicron atmospheric particles. J. Chromatogr. A 2015, 1404, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Reche, C.; Rivas, I.; Pandolfi, M.; Viana, M.; Bouso, L.; Alvarez-Pedrerol, M.; Alastuey, A.; Sunyer, J.; Querol, X. Real-time indoor and outdoor measurements of black carbon at primary schools. Atmos. Environ. 2015, 120, 417–426. [Google Scholar] [CrossRef]
- Birch, M.E.; Cary, R.A. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol. 1996, 25, 221–241. [Google Scholar] [CrossRef]
- Tauler, R.; Viana, M.; Querol, X.; Alastuey, A.; Flight, R.M.; Wentzell, P.D.; Hopke, P.K. Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies. Atmos. Environ. 2009, 43, 3989–3997. [Google Scholar] [CrossRef]
- Salako, G.O.; Hopke, P.K.; Cohen, D.D.; Begum, B.A.; Biswas, S.K.; Pandit, G.G.; Chung, Y.-S.; Rahman, S.A.; Hamzah, M.S.; Davy, P.; et al. Exploring the variation between EC and BC in a variety of locations. Aerosol Air Qual. Res. 2012, 12, 1–7. [Google Scholar] [CrossRef]
- Reche, C.; Querol, X.; Alastuey, A.; Viana, M.; Pey, J.; Moreno, T.; Rodríguez, S.; González, Y.; Fernández-Camacho, R.; de la Rosa, J.; et al. 2011. New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities. Atmos. Chem. Phys. 2011, 11, 6207–6227. [Google Scholar] [CrossRef] [Green Version]
- Querol, X.; Alastuey, A.; Viana, M.; Moreno, T.; Reche, C.; Minguillón, M.C.; Ripoll, A.; Pandolfi, M.; Amato, F.; Karanasiou, A.; et al. Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: Implications for air quality policy. Atmos. Chem. Phys. 2013, 13, 6185–6206. [Google Scholar] [CrossRef] [Green Version]
- Turpin, B.J.; Huntzicker, J.J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos. Environ. 1995, 29, 3527–3544. [Google Scholar] [CrossRef]
- Eeftens, M.; Tsai, M.-Y.; Ampe, C.; Anwander, B.; Beelen, R.; Bellander, T.; Cesaroni, G.; Cirach, M.; Cyrys, J.; de Hoogh, K.; et al. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2—Results of the ESCAPE project. Atmos. Environ. 2012, 62, 303–317. [Google Scholar] [CrossRef]
- Querol, X.; Alastuey, A.; Ruiz, C.R.; Artiñano, B.; Hansson, H.C.; Harrison, R.M.; Buringh, E.; Brink, H.T.; Lutz, M.P.; Bruckmann, P.; et al. Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos. Environ. 2004, 38, 6547–6555. [Google Scholar] [CrossRef]
- Jedynska, A.; Hoek, G.; Eeftens, M.; Cyrys, J.; Keuken, M.; Ampe, C.; Beelen, R.; Cesaroni, G.; Forastiere, F.; Cirach, M.; et al. Spatial variations of PAH, hopanes/steranes and EC/OC concentrations within and between European study areas. Atmos. Environ. 2014, 87, 239–248. [Google Scholar] [CrossRef]
- The European Parliament and the Council of Theeuropean Union. European Council Directive 2004/107/EC relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Off. J. 2005, L023, 3–6. [Google Scholar]
- Aceves, M.; Grimalt, J.O. Seasonally dependent size distributions of aliphatic and polycyclic aromatic hydrocarbons in urban aerosols from densely populated areas. Environ. Sci. Technol. 1993, 27, 2896–2908. [Google Scholar] [CrossRef]
- Xu, H.; Guinot, B.; Niu, X.; Cao, J.; Ho, K.F.; Zhao, Z.; Ho, S.S.H.; Liu, S. Concentrations, particle-size distribution, and indoor/outdoor differences of polycyclic aromatic hydrocarbons (PAHs) in a middle school classroom in Xiám, China. Environ. Geochem. Health 2014. [Google Scholar] [CrossRef]
- Jyethi, D.S.; Khillare, P.S.; Sarkar, S. Risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in school children. Environ. Sci. Pollut. Res. 2014, 21, 366–378. [Google Scholar] [CrossRef]
- Lohmann, R.; Lammel, G. Adsorptive and absorptive contributions to the gas-particle partitioning of polycyclic aromatic hydrocarbons: State of knowledge and recommended parametrization for modeling. Environ. Sci. Technol. 2004, 38, 3793–3803. [Google Scholar] [CrossRef]
- Schauer, J.J.; Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos. Environ. 2007, 41, S241–S259. [Google Scholar] [CrossRef]
- Simoneit, B.R.T. Biomass burning—A review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 2002, 17, 129–162. [Google Scholar] [CrossRef]
- Puxbaum, H.; Caseiro, A.; Sánchez-Ochoa, A.; Kasper-Giebl, A.; Cleays, M.; Gelencsér, A.; Legrand, M.; Preunkert, S.; Pio, C. Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. J. Geophys. Res. 2007, 112, D23S05. [Google Scholar] [CrossRef] [Green Version]
- Reche, C.; Viana, M.; Amato, F.; Alastuey, A.; Moreno, T.; Hillamo, R.; Teinilä, K.; Saarnio, K.; Seco, R.; Peñuelas, J.; et al. Biomass burning contributions to urban aerosols in a coastal Mediterranean city. Sci. Total Environ. 2012, 427–428, 175–190. [Google Scholar] [CrossRef] [PubMed]
- van Drooge, B.L.; Fontal, M.; Bravo, N.; Fernández, P.; Fernández, M.A.; Muñoz-Arnanz, J.; Jiménez, B.; Grimalt, J.O. Seasonal and spatial variation of organic tracers for biomass burning in PM1 aerosols from highly insolated urban areas. Environ. Sci. Pollut. Res. 2014, 21, 11661–11670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, X.; Sheng, G.; Feng, Y.; Fu, J.; Xie, J. Gas- and particulate-phase specific tracer and toxic organic compounds in environmental tobacco smoke. Chemosphere 2005, 61, 1512–1522. [Google Scholar] [CrossRef]
- Medeiros, P.M.; Simoneit, B.R.T. Analysis of sugars in environmental samples by gas chromatography-mass spectrometry. J. Chromatogr. A 2007, 1141, 271–278. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Elias, V.O.; Kobayashi, M.; Kawamura, K.; Rushdi, A.I.; Medeiros, P.M.; Rogge, W.F.; Didyk, B.M. Sugars-Dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter. Environ. Sci. Technol. 2004, 38, 5939–5949. [Google Scholar] [CrossRef]
- Robinson, A.L.; Subrananian, R.; Donahue, N.M.; Bernardo-Bricker, A.; Rogge, W.F. Source apportionment of molecular markers and organic aerosol. 3. Food cooking emissions. Environ. Sci. Technol. 2006, 40, 7820–7827. [Google Scholar] [CrossRef]
- Jang, M.; McDow, S.R. Products of benz[a]anthracene photodegradation in the presence of known organic constituents of atmospheric aerosols. Environ. Sci. Technol. 1997, 31, 1046–1053. [Google Scholar] [CrossRef]
- Kerminen, V.M.; Virkkula, A.; Hillamo, R.; Wexler, A.S.; Kulmala, M. Secondary organics and atmospheric cloud condensation nuclei production. J. Geophys. Res. Atmos. 2000, 105, 9255–9264. [Google Scholar] [CrossRef]
- Heald, C.L.; Kroll, J.H.; Jimenez, J.L.; Docherty, K.S.; Decarlo, P.F.; Aiken, A.C.; Chen, Q.; Martin, S.T.; Farmer, D.K.; Artaxo, P. A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wormuth, M.; Scheringer, M.; Vollenweider, M.; Hungerbühler, K. What are the sources of exposure to eight frequently used phthalic acid esters in Europe? Risk Anal. 2006, 26, 803–824. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-N.; Cho, S.-C.; Kim, Y.; Shin, M.-S.; Yoo, H.-J.; Kim, J.-W.; Yang, Y.H.; Kim, H.W.; Bhang, S.Y.; Hong, Y.C. Phthalates exposure and attention-deficit/hyperactivity disorder in school-age children. Biol. Psychiatry 2009, 66, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Gavris, I.; Bodoki, E.; Verite, P.; Oprean, R. Assessment of perfume ingredients with aphrodisiac potential by gas chromatography-mass spectrometry. Farmacia 2015, 63, 760–764. [Google Scholar]
- Fontal, M.; van Drooge, B.L.; Grimalt, J.O. A rapid method for the analysis of methyl dihydrojasmonate and galaxolide in indoor and outdoor air particulate matter. J. Chromatogr. A 2016, 1447, 135–140. [Google Scholar] [CrossRef]
- Fromme, H.; Lahrz, T.; Piloty, M.; Gebhart, H.; Oddoy, O.; Rüden, H. Occurrence of phthalates and musk fragrances in indoor air and dust from apartments and kindergartens in Berlin (Germany). Indoor Air 2004, 14, 188–195. [Google Scholar] [CrossRef]
- Sofuoglu, A.; Kiymet, N.; Kavcar, P.; Sofuoglu, S.C. Polycyclic and nitro musks in indoor air: A primary school classroom and a women’s sport center. Indoor Air. 2010, 20, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Tauler, R. Multivariate curve resolution applied to second order data. Chemometr. Intell. Lab. 1995, 30, 133–146. [Google Scholar] [CrossRef]
- WHO. Air Quality Guidelines for Europe, European Series, No. 91; WHO Regional Publications: Copenhagen, Denmark, 2000; ISBN 9289013583. [Google Scholar]
Traffic Indoor (n = 24) | Traffic Outdoor (n = 24) | Background Indoor (n = 24) | Background Outdoor (n = 24) | ||
---|---|---|---|---|---|
µg/m3 | Elemental Carbon | 1.8 ± 0.7 | 1.5 ± 0.3 | 0.7 ± 0.3 | 0.9 ± 0.3 |
Organic Carbon | 11 ± 1.7 | 5.7 ± 0.7 | 8.7 ± 1.8 | 3.7 ± 0.2 | |
PM2.5 | 40 ± 8 | 29 ± 4.9 | 31 ± 7.8 | 16 ± 3.2 | |
pg/m3 | Benz[a]anthracene (baan) | 440 ± 140 | 190 ± 97 | 60 ± 22 | 81 ± 53 |
Chrysene + triphenylene (chrys) | 990 ± 300 | 440 ± 160 | 180 ± 61 | 260 ± 120 | |
Benzo[bjk]fluoranthenes (bbjkfl) | 540 ± 240 | 480 ± 130 | 210 ± 90 | 280 ± 170 | |
Benzo[e]pyrene (bep) | 180 ± 50 | 140 ± 47 | 63 ± 20 | 76 ± 41 | |
Benzo[a]pyrene (bap) | 110 ± 55 | 86 ± 43 | 34 ± 11 | 36 ± 21 | |
Indeno[1,2,3-cd]pyrene (ip) | 145 ± 73 | 160 ± 78 | 74 ± 24 | 100 ± 61 | |
Benzo[ghi]perylene (bgp) | 330 ± 150 | 330 ± 120 | 140 ± 54 | 180 ± 110 | |
17α(H),21β(H)-29-nor-Hopane (nor hopane | 960 ± 340 | 820 ± 83 | 390 ± 160 | 380 ± 220 | |
17α(H),21β(H)-Hopane (hopane) | 630 ± 260 | 545 ± 37 | 230 ± 91 | 250 ± 160 | |
ng/m3 | Levoglucosan | 8 ± 5 | 15 ± 5 | 10 ± 3 | 18 ± 13 |
Nicotine | 5 ± 2 | 2 ± 2 | 2 ± 1 | 1 ± 1 | |
Sucrose | 66 ± 51 | 39 ± 57 | 34 ± 14 | 7 ± 5 | |
Mycose | 3 ± 1 | 4 ± 3 | 2 ± 1 | 1 ± 0 | |
Mannitol | 12 ± 2 | 6 ± 1 | 6 ± 3 | 4 ± 2 | |
α-Glucose | 29 ± 11 | 10 ± 6 | 29 ± 21 | 6 ± 4 | |
β-Glucose | 32 ± 12 | 11 ± 7 | 32 ± 22 | 8 ± 5 | |
Hexadecanoic acid (C16:0) | 66 ± 10 | 15 ± 6 | 41 ± 18 | 10 ± 3 | |
Octadecenoic acid (C18:1) | 8 ± 2 | 2 ± 0 | 5 ± 2 | 1 ± 0 | |
Octadecanoic acid (C18:0) | 27 ± 9 | 7 ± 3 | 16 ± 7 | 5 ± 1 | |
Succinic acid | 7 ± 2 | 5 ± 2 | 6 ± 2 | 4 ± 1 | |
Glutaric acid | 2 ± 0 | 1 ± 1 | 2 ± 1 | 1 ± 0 | |
Adipic acid | 6 ± 1 | 2 ± 1 | 10 ± 11 | 1 ± 0 | |
Azealic acid | 26 ± 4 | 9 ± 1 | 22 ± 6 | 6 ± 2 | |
Malic acid | 25 ± 2 | 7 ± 2 | 38 ± 43 | 6 ± 1 | |
Phthalic acid | 51 ± 33 | 3 ± 1 | 42 ± 42 | 3 ± 1 | |
Diisobutyl Phthalate | 410 ± 51 | 38 ± 20 | 390 ± 110 | 28 ± 18 | |
Dibutyl Phthalate | 270 ± 120 | 12 ± 8 | 92 ± 29 | 9 ± 7 | |
Dicyclohexyl Phthalate (DCHP) | 95 ± 13 | 12 ± 3 | 110 ± 93 | 9 ± 3 | |
Methyl Dihydrojasmonate | 10 ± 4 | 1 ± 1 | 15 ± 6 | 1 ± 1 | |
Galaxolide | 6 ± 2 | 1 ± 1 | 5 ± 2 | 1 ± 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Drooge, B.L.; Rivas, I.; Querol, X.; Sunyer, J.; Grimalt, J.O. Organic Air Quality Markers of Indoor and Outdoor PM2.5 Aerosols in Primary Schools from Barcelona. Int. J. Environ. Res. Public Health 2020, 17, 3685. https://doi.org/10.3390/ijerph17103685
van Drooge BL, Rivas I, Querol X, Sunyer J, Grimalt JO. Organic Air Quality Markers of Indoor and Outdoor PM2.5 Aerosols in Primary Schools from Barcelona. International Journal of Environmental Research and Public Health. 2020; 17(10):3685. https://doi.org/10.3390/ijerph17103685
Chicago/Turabian Stylevan Drooge, Barend L., Ioar Rivas, Xavier Querol, Jordi Sunyer, and Joan O. Grimalt. 2020. "Organic Air Quality Markers of Indoor and Outdoor PM2.5 Aerosols in Primary Schools from Barcelona" International Journal of Environmental Research and Public Health 17, no. 10: 3685. https://doi.org/10.3390/ijerph17103685
APA Stylevan Drooge, B. L., Rivas, I., Querol, X., Sunyer, J., & Grimalt, J. O. (2020). Organic Air Quality Markers of Indoor and Outdoor PM2.5 Aerosols in Primary Schools from Barcelona. International Journal of Environmental Research and Public Health, 17(10), 3685. https://doi.org/10.3390/ijerph17103685