A Scoping Review of Technological Approaches to Environmental Monitoring
Abstract
:1. Background
1.1. IEQ, Health and Wellbeing
1.2. Residential vs. Commercial
1.3. Rationale
1.4. Objectives
- Understand IEQ and how it is currently measured;
- Examine sensor technologies used to capture IEQ;
- Explore approaches to measure IEQ, identifying trends for monitoring occupant health and wellbeing.
2. Methods
2.1. Searching and Selection Strategy
2.2. Eligibility Criteria and Information Sources
2.3. Charting Screening and Synthesising Data
3. Understanding IEQ and How It Is Measured
3.1. Indoor Air Quality
3.1.1. Carbon Dioxide (CO2)
3.1.2. Airborne Contaminants
3.2. Thermal Comfort
3.2.1. Predictive Mean Vote (PMV)
3.2.2. Adaptive Comfort Model
3.2.3. Occupant Control
3.3. Visual Comfort
3.4. Acoustic Comfort
4. Understanding State-of-the-Art Environmental Monitoring
4.1. Data Loggers
4.2. Scalability Limits around State-of-the-Art Solutions
5. Low-Cost Alternative Technologies
5.1. Limitations of Low-Cost Sensors
Accuracy vs. Precision
5.2. Scalability
5.3. Holistic Cloud-Based Systems
6. Individualised IEQ Approaches for Health and Wellbeing
6.1. Holistic IEQ Approaches
6.2. Linking Health to Wellbeing: Augmenting IEQ Approaches
7. Discussions
7.1. Understanding IEQ
7.2. Understanding IEQ Measurement Technology
7.3. Augmenting Current IEQ Approaches
7.4. Limitations
7.5. Future Research
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kumar, P.; Skouloudis, A.N.; Bell, M.; Viana, M.; Carotta, M.C.; Biskos, G.; Morawska, L. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings. Sci. Total Environ. 2016, 560–561, 150–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Al horr, Y.; Arif, M.; Katafygiotou, M.; Mazroei, A.; Kaushik, A.; Elsarrag, E. Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. Int. J. Sustain. Built Environ. 2016, 5, 1–11. [Google Scholar] [CrossRef]
- De Giuli, V.; Da Pos, O.; De Carli, M. Indoor environmental quality and pupil perception in Italian primary schools. Build. Environ. 2012, 56, 335–345. [Google Scholar] [CrossRef]
- Andargie, M.S.; Touchie, M.; O’Brien, A. A review of factors affecting occupant comfort in multi-unit residential buildings. Build. Environ. 2019, 160, 106182. [Google Scholar] [CrossRef]
- Marques, G.; Pitarma, R. An indoor monitoring system for ambient assisted living based on internet of things architecture. Int. J. Environ. Res. Public Health 2016, 13, 1152. [Google Scholar] [CrossRef] [Green Version]
- Mui, K.W.; Wong, L.T.; Yu, H.C.; Tsang, T.W. Development of a user-friendly indoor environmental quality (IEQ) calculator in air-conditioned offices. In Proceedings of the IAQVEC 2016, 9th international Conference on Indoor Air Quality Ventilation & Energy Conservation In Buildings, Songdo, Incheon, Korea, 23–26 Ocotber 2016. [Google Scholar]
- Pitarma, R.; Marques, G.; Ferreira, B.R. Monitoring Indoor Air Quality for Enhanced Occupational Health. J. Med. Syst. 2017, 41, 23. [Google Scholar] [CrossRef]
- Shan, X.; Melina, A.N.; Yang, E.H. Impact of indoor environmental quality on students’ wellbeing and performance in educational building through life cycle costing perspective. J. Clean. Prod. 2018, 204, 298–309. [Google Scholar] [CrossRef]
- Tang, Y.; Shrubsole, C.; Altamirano, H. Indoor Air Quality and Thermal Comfort: Is all well with the Well Standard? In Proceedings of the Masters Conference 2017: People and Buildings, London, UK, 22 September 2017. [Google Scholar]
- Taylor, T.; Pineo, H. Health and wellbeing in BREEAM. Available online: https://tools.breeam.com/filelibrary/Briefing%20Papers/99427-BREEAM-Health---Wellbeing-Briefing.pdf (accessed on 8 March 2019).
- Well Building Institute WELL Building Standard ® v1 Copyright. Available online: https://www.wellcertified.com/en/system/files/WELL v1 with 2018 Q4 Addenda.pdf (accessed on 8 March 2019).
- U.S. Green Building Council. U.S. Green Building Council LEED v4 for Building Design and Construction; U.S. Green Building Council: Washington, DC, USA, 2019.
- Hanc, M.; McAndrew, C.; Ucci, M. Conceptual approaches to wellbeing in buildings: A scoping review. Build. Res. Inf. 2019, 47, 767–783. [Google Scholar] [CrossRef]
- Wargocki, P.; Wyon, D.P.; Baik, Y.K.; Clausen, G.; Fanger, P.O.; Wargocki, P.; Wyon, D. Perceived Air Quality, Sick Building Syndrome (SBS) Symptoms and Productivity in an Office with Two Different Pollution Loads. Indoor Air 1999, 9, 165–179. [Google Scholar] [CrossRef]
- MacNaughton, P.; Satish, U.; Laurent, J.G.C.; Flanigan, S.; Vallarino, J.; Coull, B.; Spengler, J.D.; Allen, J.G. The impact of working in a green certified building on cognitive function and health. Build. Environ. 2017, 114, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Liu, W.; Wargocki, P. Changes in EEG signals during the cognitive activity at varying air temperature and relative humidity. J. Expo. Sci. Environ. Epidemiol. 2019, 1. [Google Scholar] [CrossRef] [Green Version]
- Thomson, H.; Petticrew, M.; Morrison, D. Health effects of housing improvement: Systematic review of intervention studies. BMJ 2001, 323, 187–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giddens, L.; Gonzalez, E.; Leidner, D. I Track, Therefore I Am: Exploring the Impact of Wearable Fitness Devices on Employee Identity and Well-being. In Proceedings of the Americas Conference on Information Systems, San Diego, CA, USA, 11–14 August 2016. [Google Scholar]
- Parkinson, T.; Parkinson, A.; de Dear, R. Continuous IEQ monitoring system: Performance specifications and thermal comfort classification. Build. Environ. 2019, 149, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Coombs, K.C.; Chew, G.L.; Schaffer, C.; Ryan, P.H.; Brokamp, C.; Grinshpun, S.A.; Adamkiewicz, G.; Chillrud, S.; Hedman, C.; Colton, M.; et al. Indoor air quality in green-renovated vs. non-green low-income homes of children living in a temperate region of US (Ohio). Sci. Total Environ. 2016, 554–555, 178–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGill, G.; Qin, M.; Oyedele, L. A case study investigation of indoor air quality in UK Passivhaus dwellings. Energy Procedia 2014, 62, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.; Byrne, M.; Armstrong, S.; Sheahan, J.; Coggins, A.M. A pre and post evaluation of indoor air quality, ventilation, and thermal comfort in retrofitted co-operative social housing. Build. Environ. 2017, 122, 126–133. [Google Scholar] [CrossRef]
- Painter Brown, N.; Cook, M.B. Evaluation of sensors for post-occupancy building monitoring. In Proceedings of the IEECB 2010, improving energy efficiency in commercial buildings, Frankfurt, Germany, 13–14 April 2010. [Google Scholar]
- Hoggett, R.; Ward, J.; Mitchell, C. Heat in Homes: customer choice on fuel and technologies Study for Scotia Gas Networks Energy Policy Group Heat in Homes: customer choice on fuel and technologies; University of Exeter: Cornwall, UK, 2011. [Google Scholar]
- Moreno-Rangel, A.; Sharpe, T.; Musau, F.; McGill, G. Field evaluation of a low-cost indoor air quality monitor to quantify exposure to pollutants in residential environments. J. Sensors Sens. Syst. 2018, 7, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Hua, Y.; Göçer, Ö.; Göçer, K. Spatial mapping of occupant satisfaction and indoor environment quality in a LEED platinum campus building. Build. Environ. 2014, 79, 124–137. [Google Scholar] [CrossRef]
- Földváry, V.; Bekö, G.; Langer, S.; Arrhenius, K.; Petráš, D. Effect of energy renovation on indoor air quality in multifamily residential buildings in Slovakia. Build. Environ. 2017, 122, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Frontczak, M.; Wargocki, P. Literature survey on how different factors influence human comfort in indoor environments. Build. Environ. 2011, 46, 922–937. [Google Scholar] [CrossRef]
- Shorter, C.; Crane, J.; Pierse, N.; Barnes, P.; Kang, J.; Wickens, K.; Douwes, J.; Stanley, T.; Täubel, M.; Hyvärinen, A.; et al. Indoor visible mold and mold odor are associated with new-onset childhood wheeze in a dose-dependent manner. Indoor Air 2018, 28, 6–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, H. Wearables and Wellbeing in Buildings- the Story So Far; BSRIA Limited: Berkshire, UK, 2018. [Google Scholar]
- Li, D.; Menassa, C.C.; Kamat, V.R. Personalized human comfort in indoor building environments under diverse conditioning modes. Build. Environ. 2017, 126, 304–317. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.G.; MacNaughton, P.; Satish, U.; Santanam, S.; Vallarino, J.; Spengler, J.D. Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: A controlled exposure study of green and conventional office environments. Environ. Health Perspect. 2016. [Google Scholar] [CrossRef] [Green Version]
- Rogage, K.; Clear, A.; Alwan, Z.; Lawrence, T.; Kelly, G. Assessing Building Performance in Residential Buildings using BIM and Sensor Data. Int. J. Build. Pathol. Adapt. 2019. [Google Scholar] [CrossRef]
- Clements, N.; Zhang, R.; Jamrozik, A.; Campanella, C.; Bauer, B.; Clements, N.; Zhang, R.; Jamrozik, A.; Campanella, C.; Bauer, B. The Spatial and Temporal Variability of the Indoor Environmental Quality during Three Simulated Office Studies at a Living Lab. Buildings 2019, 9, 62. [Google Scholar] [CrossRef] [Green Version]
- Ghahramani, A.; Pantelic, J.; Vannucci, M.; Pistore, L.; Liu, S.; Gilligan, B.; Alyasin, S.; Arens, E.; Kampshire, K.; Sternberg, E. Personal CO 2 bubble: Context-dependent variations and wearable sensors usability. J. Build. Eng. 2019, 22, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Coleman, J.R.; Meggers, F. Sensing of Indoor Air Quality—Characterization of Spatial and Temporal Pollutant Evolution Through Distributed Sensing. Front. Built Environ. 2018, 4, 28. [Google Scholar] [CrossRef]
- Tiele, A.; Esfahani, S.; Covington, J. Design and Development of a Low-Cost, Portable Monitoring Device for Indoor Environment Quality. J. Sensors 2018, 2018, 1–14. [Google Scholar] [CrossRef]
- Tijani, I.B.; Almannaee, A.D.; Alharthi, A.A.; Alremeithi, A.M. Wireless sensor node for indoor air quality monitoring system. In Proceedings of the IEEE ASET 2018 Advances in Science and Engineering Technology International Conferences, New Orleans, LA, USA, 16–18 August 2018; pp. 1–6. [Google Scholar]
- Tanguy, P.; Lohr, C.; Kerdreux, J. A transparent home sensors/actuators layer for health and well-being services. In Proceedings of the Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Vienna, Austria, 14–15 November 2017; Volume 181, pp. 29–35. [Google Scholar]
- Tran, T.V.; Dang, N.T.; Chung, W.-Y. Battery-free smart-sensor system for real-time indoor air quality monitoring. Sensors Actuators B Chem. 2017, 248, 930–939. [Google Scholar] [CrossRef]
- Ali, A.S.; Zanzinger, Z.; Debose, D.; Stephens, B. Open Source Building Science Sensors (OSBSS): A low-cost Arduino-based platform for long-term indoor environmental data collection. Build. Environ. 2016, 100, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Mihai, T.; Iordache, V. Determining the Indoor Environment Quality for an Educational Building. Energy Procedia 2016. [Google Scholar] [CrossRef] [Green Version]
- Shan, X.; Zhou, J.; Chang, V.W.C.; Yang, E.H. Comparing mixing and displacement ventilation in tutorial rooms: Students’ thermal comfort, sick building syndromes, and short-term performance. Build. Environ. 2016, 102, 128–137. [Google Scholar] [CrossRef]
- Salamone, F.; Belussi, L.; Danza, L.; Ghellere, M.; Meroni, I.; Salamone, F.; Belussi, L.; Danza, L.; Ghellere, M.; Meroni, I. Design and Development of nEMoS, an All-in-One, Low-Cost, Web-Connected and 3D-Printed Device for Environmental Analysis. Sensors 2015, 15, 13012–13027. [Google Scholar] [CrossRef]
- Clarke, J.; Hand, J. An overview of the EnTrak/BuildAX eService delivery platform; University of Strathclyde: Glasgow, UK, 2015. [Google Scholar]
- Catalina, T.; Iordache, V. IEQ assessment on schools in the design stage. Build. Environ. 2012. [Google Scholar] [CrossRef]
- Marchetti, A.; Pilehvar, S.; ’t Hart, L.; Leyva Pernia, D.; Voet, O.; Anaf, W.; Nuyts, G.; Otten, E.; Demeyer, S.; Schalm, O.; et al. Indoor environmental quality index for conservation environments: The importance of including particulate matter. Build. Environ. 2017, 126, 132–146. [Google Scholar] [CrossRef]
- Mujan, I.; Anđelković, A.S.; Munćan, V.; Kljajić, M.; Ružić, D. Influence of indoor environmental quality on human health and productivity - A review. J. Clean. Prod. 2019, 217, 646–657. [Google Scholar] [CrossRef]
- British Standards Institution BS ISO 16814:2008 Building environment design - Indoor air quality - Methods of expressing the quality of indoor air for human occupancy; British Standards Institution: London, UK, 2008; p. 66.
- National Research Council (U.S.). Carbon Dioxide. In Emergency and Continuous Exposure Guidance Levels for Selected Submarine Contaminants; The National Academies Press: Washington, DC, USA, 2007; pp. 46–66. ISBN 9780309092258. [Google Scholar]
- Skov, P.; Valbjorn, O.; Pedersen, B.V.; Gravesen, S.; Christophersen, E.; Kristensen, J.; Nielsen, O.; Nielsen, P.A.; Olsen, E.S.; Clausen, V.; et al. Influence of personal characteristics, job-related factors and psychosocial factors on the sick building syndrome. Scand. J. Work. Environ. Heal. 1989, 15, 286–295. [Google Scholar] [CrossRef]
- Daisey, J.M.; Angell, W.J.; Apte, M.G. Indoor air quality, ventilation and health symptoms in schools: An analysis of existing information. Indoor Air 2003, 13, 53–64. [Google Scholar] [CrossRef]
- Steinemann, A.; Wargocki, P.; Rismanchi, B. Ten questions concerning green buildings and indoor air quality. Build. Environ. 2017, 112, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Wyon, D.P.; Clausen, G.; Fanger, P.O. Impact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performance. Indoor Air 2004, 14, 74–81. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization. ISO 7730:2005(E): Moderate Thermal Environments-Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort; ISO: Geneva, Switzerland, 2005. [Google Scholar]
- ASHRAE ANSI/ASHRAE Addenda o, p, and to ANSI/ASHRAE Standard 55-2010; ASHRAE: Atlanta, GA, USA, 2013; p. 7.
- Fanger, P.O. Thermal comfort: Analysis and applications in environmental engineering; Danish Technical Press: Copenhagen, Denmark, 1977. [Google Scholar]
- Rupp, R.F.; Vásquez, N.G.; Lamberts, R. A review of human thermal comfort in the built environment. Energy Build. 2015, 105, 178–205. [Google Scholar] [CrossRef]
- Jazizadeh, F.; Ghahramani, A.; Becerik-Gerber, B.; Kichkaylo, T.; Orosz, M. User-led decentralized thermal comfort driven HVAC operations for improved efficiency in office buildings. Energy Build. 2014, 70, 398–410. [Google Scholar] [CrossRef]
- Yao, R.; Li, B.; Liu, J. A theoretical adaptive model of thermal comfort - Adaptive Predicted Mean Vote (aPMV). Build. Environ. 2009, 44, 2089–2096. [Google Scholar] [CrossRef]
- De Dear, R.J.; Brager, G.; Cooper, D. Developing an Adaptive Model of Thermal Comfort and Preference -RP 884 final report. Database 1997. [Google Scholar]
- British Standards Institution BS EN 16798-1:2019 BSI—Energy performance of buildings: Presentation of measured energy use of buildings; British Standards Institution: London, UK, 2019.
- British Standards Institution BS EN 15251:2007—Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; British Standards Institution: London, UK, 2007.
- Boerstra, A.; Beuker, T.; Loomans, M.; Hensen, J. Impact of available and perceived control on comfort and health in European offices. Archit. Sci. Rev. 2013, 56, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Leaman, A.; Bordass, B. Are users more tolerant of “green” buildings? Build. Res. Inf. 2007, 35, 662–673. [Google Scholar] [CrossRef]
- British Standards Institution BS EN 12464-1:2014—Indoor work places; British Standards Institution: London, UK, 2014.
- Lai, A.C.K.; Mui, K.W.; Wong, L.T.; Law, L.Y. An evaluation model for indoor environmental quality (IEQ) acceptance in residential buildings. Energy Build. 2009, 41, 930–936. [Google Scholar] [CrossRef]
- Cohen, R. Noise and Vibration Control. J. Acoust. Soc. Am. 2005, 51, 116. [Google Scholar] [CrossRef]
- Choi, J.H.; Lee, K. Investigation of the feasibility of POE methodology for a modern commercial office building. Build. Environ. 2018, 143, 591–604. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, S.-K. Indoor Environmental Quality in LEED-Certified Buildings in the U.S. J. Asian Archit. Build. Eng. 2008, 7, 293–300. [Google Scholar] [CrossRef] [Green Version]
- NHS England and Department of Health. Action Plan on Hearing Loss; NHS England and Department of Health: London, UK, 2015. [Google Scholar]
- Lee, H.H.Y.; Scott, D. Overview of maintenance strategy, acceptable maintenance standard and resources from a building maintenance operation perspective. J. Build. Apprais. 2009, 4, 269–278. [Google Scholar] [CrossRef]
- Zimmerman, A.; Martin, M. Building Research and Information Post-occupancy evaluation: Benefits and barriers. Build. Res. Info. 2010. [Google Scholar] [CrossRef]
- Vischer, J. Post-Occupancy Evaluation: a multifaceted tool for building improvement. In Learning from out buildings: A state-of-the-pracfice summary of post-occupancy evaluation; NATIONAL ACADEMY PRESS: Washington, DC, USA, 2002; pp. 23–34. [Google Scholar]
- Davara, Y.; Meir, I.A.; Schwartz, M. Architectural design and IEQ in an office complex: On research, politics and their dynamics Architectural Design and IEQ In An Office Complex On Research, Politics and Their Dynamics. Healthy Build. 2006. [Google Scholar] [CrossRef]
- Frenkel, L.; Fundaminsky, S.; Meir, I.; Morhayim, L. Post-Occupancy Evaluation of a Scientists Village Complex in the Desert-Towards a Comprehensive Methodology. In Proceedings of the PLEA2006—The 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6–8 September 2006. [Google Scholar]
- Schiano-phan, R.; Schiano-phan, R.; Ford, B.; Gillott, M.; Rodrigues, L.T. The Passivhaus standard in the UK: Is it desirable? Is it achievable? In Proceedings of the PLEA 2008 – 25th Conference on Passive and Low Energy Architecture, Dublin, Ireland, 22–24 October 2008. [Google Scholar]
- Moritz, M.; Redlich, T.; Grames, P.P.; Wulfsberg, J.P. Value creation in open-source hardware communities: Case study of Open Source Ecology. In Proceedings of the PICMET’16 Conference Technology Management for Social Innovation, Honolulu, HI, USA, 4–8 September 2017; pp. 2368–2375. [Google Scholar] [CrossRef]
- D’Ausilio, A. Arduino: A low-cost multipurpose lab equipment. Behav. Res. Methods 2012, 44, 305–313. [Google Scholar] [CrossRef]
- Kubínová, Š.; Šlégr, J. ChemDuino: Adapting Arduino for Low-Cost Chemical Measurements in Lecture and Laboratory. J. Chem. Educ. 2015, 92, 1751–1753. [Google Scholar] [CrossRef]
- Barsan, N.; Koziej, D.; Weimar, U. Metal oxide-based gas sensor research: How to? Sensors Actuators, B Chem. 2007, 121, 18–35. [Google Scholar] [CrossRef]
- Molhave, L.; Clausen, G.; Berglund, B.; Ceaurriz, J.; Kettrup, A.; Lindvall, T.; Maroni, M.; Pickering, A.C.; Risse, U.; Rothweiler, H.; et al. Total Volatile Organic Compounds (TVOC) in Indoor Air Quality Investigations. Indoor Air 1997, 7, 225–240. [Google Scholar] [CrossRef]
- AMS CCS811 Datasheet. Available online: http://ams.com/eng/Products/Environmental-Sensors/Air-Quality-Sensors/CCS811 (accessed on 28 August 2019).
- AMS iAQ-Core Datasheet. Available online: https://www.mouser.co.uk/datasheet/2/588/iAQ-core_DS000334_1-00-1512544.pdf (accessed on 28 August 2019).
- Sensortech MiCS-VZ-89TE Data sheet. Available online: https://sgx.cdistore.com/datasheets/e2v/MiCS-VZ-89TE_V1.0.pdf (accessed on 28 August 2019).
- Lozano, J. Towards the Miniaturization of Electronic Nose as Personal Measurement Systems. Proceedings 2019, 14, 30. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Chen, Q. Self-Regulation and Parameters Monitoring System for Culturing Chamber. 2018 4th Int. Conf. Comput. Commun. Autom. 2019, 1–6. [Google Scholar] [CrossRef]
- Chiang, S.S.; Huang, C.H.; Chang, K.C. A minimum hop routing protocol for home security systems using wireless sensor networks. IEEE Trans. Consum. Electron. 2007, 53, 1483–1489. [Google Scholar] [CrossRef]
- De Paolis, L.T.; De Luca, V.; Paiano, R. Sensor data collection and analytics with thingsboard and spark streaming. In Proceedings of the EESMS 2018 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems, Salerno, Italy, 21–22 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Mukuria, C.; Rowen, D.; Peasgood, T.; Brazier, J. An empirical comparison of well-being measures used in UK; Policy Research Unit in Economic Evaluation of Health and Care Interventions; EEPRU Research Report 048, November 2016; Universities of Sheffield: York, UK; Universities York: York, UK, November 2016. [Google Scholar]
- Al Horr, Y.; Arif, M.; Kaushik, A.; Mazroei, A.; Elsarrag, E.; Mishra, S. Occupant productivity and indoor environment quality: A case of GSAS. Int. J. Sustain. Built Environ. 2017, 6, 476–490. [Google Scholar] [CrossRef]
- Lee, J.; Je, H.; Byun, J. Well-Being index of super tall residential buildings in Korea. Build. Environ. 2011, 46, 1184–1194. [Google Scholar] [CrossRef]
- Haller, M.; Hadler, M. How Social Relations and Structures can Produce Happiness and Unhappiness: An International Comparative Analysis. Soc. Indic. Res. 2006, 75, 169–216. [Google Scholar] [CrossRef] [Green Version]
- Topol, E.J. Transforming medicine via digital innovation. Sci. Transl. Med. 2010, 2, 16cm4. [Google Scholar] [CrossRef] [Green Version]
- Elenko, E.; Underwood, L.; Zohar, D. Defining digital medicine. Nat. Biotechnol. 2015, 33, 456–461. [Google Scholar] [CrossRef]
- Henriksen, A.; Mikalsen, M.H.; Woldaregay, A.Z.; Muzny, M.; Hartvigsen, G.; Hopstock, L.A.; Grimsgaard, S. Using fitness trackers and smartwatches to measure physical activity in research: Analysis of consumer wrist-worn wearables. J. Med. Internet Res. 2018, 20, e110. [Google Scholar] [CrossRef]
- Giddens, L.; Leidner, D.; Gonzalez, E. The Role of Fitbits in Corporate Wellness Programs: Does Step Count. In Proceedings of the Hawaii International Conference on System Sciences, Puako, HI, USA, 4–7 January 2017; pp. 3627–3635. [Google Scholar]
- Warraich, H.J.; Califf, R.M.; Krumholz, H.M. The digital transformation of medicine can revitalize the patient-clinician relationship. NPJ Digit. Med. 2018, 1, 49. [Google Scholar] [CrossRef] [Green Version]
- Rabbi, M.; Ali, S.; Choudhury, T.; Berke, E. Passive and In-Situ assessment of mental and physical well-being using mobile sensors. In Proceedings of the 13th international conference on Ubiquitous computing - UbiComp ’11, Beijing, China, 17–21 September 2011; ACM Press: New York, NY, USA, 2011; p. 385. [Google Scholar]
- O’Brien, K.K.; Colquhoun, H.; Levac, D.; Baxter, L.; Tricco, A.C.; Straus, S.; Wickerson, L.; Nayar, A.; Moher, D.; O’Malley, L. Advancing scoping study methodology: A web-based survey and consultation of perceptions on terminology, definition and methodological steps. BMC Health Serv. Res. 2016, 16, 305. [Google Scholar] [CrossRef] [Green Version]
1 | (Well?Being OR Wellbeing) ‡ |
2 | (IEQ OR “Indoor (Environment OR Environmental) Quality”) |
3 | (IAQ OR “Indoor Air Quality”) |
4 | (“Sick Building Syndrome” OR SBS) |
5 | “(Thermal OR Visual OR Acoustic) Comfort” |
6 | Indoor Pollution |
7 | (Arduino OR “Raspberry Pi” OR “rPi”) |
8 | Sensors |
9 | (“State?of?the?art” OR Industrial OR “Scientifically Valid*”) ‡ |
10 | (“Low Cost” OR DIY OR Cheap) |
11 | (Heating Ventilation Air Conditioning OR HVAC) |
12 | Wearable |
13 | (POE OR “Post?Occupancy Evaluation”) ‡ |
14 | Building |
15 | “Building Design” |
16 | “Green Building” |
17 | “Built Environment” |
18 | Office |
19 | Workplace |
20 | “Commercial Building” |
21 | Housing |
22 | Residential |
Ref | Year | Building Type | Duration | Sample Size † | Demographics | Research Focus | IAQ ‡ | VC § | AC ¶ | TC †† | SotA ‡‡ | LCS §§ | DIY ¶¶ | WS ††† | BMS ‡‡‡ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Rogage et al. [35] | 2019 | Residential (Multi-unit) | 6 months | - | Residents from 7 flats, multi-unit social home building | IEQ/OC/STP | - | - | - | √ | √ | - | √ | - | - |
2 | Clements et al. [36] | 2019 | Commercial (Office) | 18 weeks | 8 | Office workers | OC | √ | √ | √ | √ | √ | - | √ | √ | √ |
3 | Ghahramani et al. [37] | 2019 | Education (University) | 1 day | 41 | 18–24-Year-old students uniformly random mix gender | OP | √ | - | - | - | √ | - | - | √ | - |
4 | Parkinson et al. [20] | 2019 | Commercial (Office) | 3 months | - | - | IEQ | √ | √ | √ | √ | √ | - | √ | - | √ |
5 | Coleman and Meggars [38] | 2018 | Education (University) | 8 days | - | - | STP | √ | - | - | √ | - | - | √ | - | - |
6 | Moreno-Rangel et al. [26] | 2018 | Residential (Flat) | 4 days | - | - | STP | √ | - | - | - | √ | √ | - | - | - |
7 | Tiele et al. [39] | 2018 | Laboratory | 3 days | - | - | STP | √ | √ | √ | √ | - | - | √ | - | - |
8 | Tijani et al. [40] | 2018 | Laboratory | 1 day | - | - | STP | √ | - | - | √ | - | - | √ | - | - |
9 | Broderick et al. [23] | 2017 | Residential (Single-Family) | 1 day | 55 | Non-smoking family with one or two adults and children. The average occupancy of 3.7 per household | IEQ | √ | - | - | √ | √ | - | √ | - | - |
10 | Földváry et al. [28] | 2017 | Residential (Multi-Unit) | 1 week, x2 | 94 | One participant from each household | IEQ | √ | - | - | √ | √ | - | - | - | - |
11 | Li et al. [32] | 2017 | Residential Commercial | 6 weeks 3 weeks | 37 | -- | OC | √ | √ | √ | √ | - | √ | - | √ | √ |
12 | MacNaughton et al. [16] | 2017 | Commercial (Office) | 5 days | 109 | Office workers aged 20-70 near equal male:female ratio | IEQ/OP | √ | √ | - | - | √ | √ | - | √ | - |
13 | Tang et al. [10] | 2017 | Commercial (Office) | 3 weeks | - | - | IEQ | √ | - | - | √ | - | - | √ | - | - |
14 | Tanguy et al. [41] | 2017 | Residential (Single-Family) | - | 8 | - | STP | √ | - | - | √ | - | - | √ | - | - |
15 | Tran et al. [42] | 2017 | Laboratory | - | - | - | STP | √ | - | - | √ | - | - | √ | - | - |
16 | Ali et al. [43] | 2016 | Lab, Office, Outdoor | 7 days | - | - | STP | √ | - | - | √ | √ | - | √ | - | √ |
17 | Coombs et al. [21] | 2016 | Residential (Multi-Unit) | 1 year | 64 | Predominantly African American 7–12-year-old asthmatic children from low-income families | IEQ | √ | - | - | √ | √ | - | - | - | - |
18 | Allen et al. [34] | 2016 | Commercial (Office) | 2 weeks/6 Days | 30/24 | Knowledge workers (professional grade employees) | IEQ/OP | √ | √ | - | - | √ | √ | - | - | - |
19 | Marques and Pitarma [6] | 2016 | Laboratory | - | - | - | STP | √ | √ | - | - | - | - | √ | - | - |
20 | MiHai and Iordache [44] | 2016 | Education (University) | 5 hours | 115 | Students and teachers | IEQ | √ | √ | √ | √ | √ | - | - | - | - |
21 | Mui et al. [7] | 2016 | Commercial (Office) | - | - | - | IEQ | √ | √ | √ | √ | √ | - | √ | - | √ |
22 | Shan et al. [45] | 2016 | Education (University) | 2 days | 39 | University Students with 6:7 male-female ratio | IEQ/OP | √ | - | - | √ | √ | - | - | - | - |
23 | Salamone et al. [46] | 2015 | Laboratory | 3 days | - | - | STP | √ | √ | √ | √ | - | - | √ | - | - |
24 | Hua et al. [27] | 2014 | Education (University) | 4 weeks | 46 | 20 - 50-year-old students and staff members, with the majority being between 20–29 years old | IEQ/OC | √ | √ | √ | √ | √ | - | - | - | - |
25 | McGill et al. [22] | 2014 | Residential (Multi-Unit) | 1 day, x2 | 13 | 3 properties with an average of four people per house and at least one smoker in the family - non-smoking | IEQ/OC | √ | - | - | - | √ | - | - | - | - |
26 | De Giuli et al. [4] | 2012 | Education (School) | 1 day | - | Primary school children from seven Italian schools | IEQ/OC | √ | √ | √ | √ | √ | - | - | - | - |
27 | Painter Brown et al. [24] | 2010 | Commercial (Office) | 1 month | - | - | STP | √ | - | - | √ | √ | - | - | - | - |
IAQ † | TC ‡ | VC § | AC ¶ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Manufacturer | Model | CO2 †† | CO ‡‡ | H2CO §§ | PM ¶¶ | VOC ††† | Temp | Air Velocity | RH ‡‡‡ | Lux | Light Colour | Sound |
SKC | AirChek 2000 [21] | - | - | - | - | - | - | √ | - | - | - | - |
Bruel and Kjaer | 1213 [4] | - | - | - | - | - | √ | √ | √ | - | - | - |
2250 [44] | - | - | - | - | - | - | - | - | - | - | √ | |
CO2Meters | CM-0018AA [45] | √ | - | - | - | - | √ | - | √ | - | - | - |
Extech | SD800 data logger [27] | √ | - | - | - | - | √ | - | √ | - | - | - |
EA80 data logger [22] | √ | - | - | - | - | √ | - | √ | - | - | - | |
Fieldpiece | SCM4 [20] | √ | - | - | - | - | - | - | - | - | - | - |
GrayWolf | FM-108 [23] | - | - | √ | - | - | √ | - | - | - | - | - |
IQ-410 [26] | √ | √ | - | - | √ | √ | - | √ | - | - | - | |
IQ-610 [23] | √ | √ | - | - | √ | √ | - | √ | - | - | - | |
PC-3016A [26] | - | - | - | √ | - | √ | - | √ | - | - | - | |
TG-502 [23,26] | - | - | - | - | √ | √ | - | √ | - | - | - | |
HalTech | HFX205 [20] | - | - | √ | - | - | √ | - | √ | - | - | - |
HOBO | U12-012 [43] | - | - | - | - | - | √ | - | √ | √ | - | - |
Konica Minolta | CL-500A [36] | - | - | - | - | - | - | - | - | √ | √ | - |
Lascar | EL-USB-CO [23] | √ | - | - | - | - | - | - | - | - | - | - |
Monnit Corp | Wireless Humidity Sensor [36] | - | - | - | - | - | - | - | √ | - | - | - |
Wireless Temp Sensor [36] | - | - | - | - | - | - | - | - | - | - | - | |
NTi Audio | XL2 Analyzer [36] | - | - | - | - | - | - | - | - | - | - | √ |
Rion | NL-52 [20] | - | - | - | - | - | - | - | - | - | - | √ |
Telaire | 7000 [43] | √ | - | - | - | - | - | - | - | - | - | - |
7001 [7,23] | √ | - | - | - | - | - | - | - | - | - | - | |
TSI | DustTrak II 8532 [20] | - | - | - | √ | - | - | - | - | - | - | - |
Q-Trak 7575 [20,34] | √ | √ | - | - | √ | √ | - | √ | - | - | - | |
Q-Trak 964 [36] | - | - | - | - | - | √ | √ | √ | - | - | - | |
SidePak AM510 [23] | - | - | - | - | √ | - | - | - | - | - | - | |
Velocicalc 9545 [45] | - | - | - | - | - | √ | √ | √ | - | - | - | |
Watson | N-8681 SOLAR [22] | - | - | - | - | - | √ | √ | √ | √ | - | - |
Wilks | InfraRan Specific Vapor Analyzer [45] | √ | √ | √ | - | - | - | - | - | - | - | - |
Wholër | CO2 datalogger [22] | √ | - | - | - | - | - | - | - | - | - | - |
Wovyn | Lux1000 | - | - | - | - | - | - | - | - | √ | - | - |
Wovyn | Color Lux1000 | - | - | - | - | - | - | - | - | √ | √ | - |
IAQ † | TC ‡ | VC § | AC ¶ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Manufacturer | Sensor | Cost †† | CO2 ‡‡ | eCO2 §§ | CO ¶¶ | PM ††† | VOC ‡‡‡ | Temp | RH §§§ | Lux | Sound | |
Adafruit | DHT22 [38,46] | £2–£5 | - | - | - | - | - | √ | √ | - | - | |
MAX 4466 [39] | £1–£7 | - | - | - | - | - | - | - | - | √ | ||
Amphenol | T6615 [6] | £80 | √ | - | - | - | - | - | - | - | - | |
T6713 [38,39] | £70–£75 | √ | - | - | - | √ | - | - | - | - | ||
AMS | CCS811 [39] | £6-£30 | - | √ | - | - | √ | - | - | - | - | |
iAQ-Core C [39] | £15–£30 | - | √ | - | - | √ | - | - | - | - | ||
TSL2561 [39,43] | £4–£7 | - | - | - | - | - | - | - | √ | - | ||
BuildAX | Wireless Building Monitoring System [47] | £90 | - | - | - | - | - | √ | √ | √ | - | |
CO2 Meters.com | K-30 [7,43,46] | Price by quotation | √ | - | - | - | - | - | - | - | - | |
GSS | COZIR [32] | £155 | √ | - | - | - | - | - | - | - | - | |
Hanwei | MQ7 [6,40] | £2–£7 | - | - | √ | - | - | - | - | - | - | |
Honeywell | HIH-4030 [40] | £10–£40 | - | - | - | - | - | √ | √ | - | - | |
HPMA115S0 [39] | £35–£45 | - | - | - | √ | - | - | - | - | - | ||
Netatmo | Weather Station [16,34] | £130 | √ | - | - | - | - | √ | √ | - | √ | |
Seeed Technology | MH-Z16 [36] | £65–£100 | √ | - | - | - | - | - | - | - | - | |
MH-Z19 [36] | £15 | √ | - | - | - | - | - | - | - | - | ||
AM2302 [7] | £3–£15 | - | - | - | - | - | √ | √ | - | - | ||
101020030 [7] | £3–£10 | - | - | - | - | - | - | - | √ | - | ||
101020023 [7] | £4–£6 | - | - | - | - | - | - | - | - | √ | ||
Sensirion | SHT10 [6] | £2–£7 | - | - | - | - | - | √ | √ | - | - | |
SHT15 [43] | £4–£25 | - | - | - | - | - | √ | √ | - | - | ||
SHT31 [39] | £3–£15 | - | - | - | - | - | √ | √ | - | - | ||
Sensorist | Wireless Pro T/RH [32] | £140 | - | - | - | - | - | √ | √ | - | - | |
SGX SensorTech | MiCS-VZ-89TE [39] | £20–£25 | - | √ | - | - | √ | - | - | - | - | |
Sharp | GP2Y1010AU0F [40] | £10–£15 | - | - | - | √ | - | - | - | - | - | |
Telaire | T6615 [6] | £80 | √ | - | - | - | - | - | - | - | - | |
T6713 [38] | £75 | √ | - | - | - | - | - | - | - | - | ||
Texas Instruments | LM35 [40] | £1 | - | - | - | - | - | √ | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coulby, G.; Clear, A.; Jones, O.; Godfrey, A. A Scoping Review of Technological Approaches to Environmental Monitoring. Int. J. Environ. Res. Public Health 2020, 17, 3995. https://doi.org/10.3390/ijerph17113995
Coulby G, Clear A, Jones O, Godfrey A. A Scoping Review of Technological Approaches to Environmental Monitoring. International Journal of Environmental Research and Public Health. 2020; 17(11):3995. https://doi.org/10.3390/ijerph17113995
Chicago/Turabian StyleCoulby, Graham, Adrian Clear, Oliver Jones, and Alan Godfrey. 2020. "A Scoping Review of Technological Approaches to Environmental Monitoring" International Journal of Environmental Research and Public Health 17, no. 11: 3995. https://doi.org/10.3390/ijerph17113995
APA StyleCoulby, G., Clear, A., Jones, O., & Godfrey, A. (2020). A Scoping Review of Technological Approaches to Environmental Monitoring. International Journal of Environmental Research and Public Health, 17(11), 3995. https://doi.org/10.3390/ijerph17113995