Effect of Listening to Music on Wingate Anaerobic Test Performance. A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Literature Searching Strategies
2.2. Inclusion and Exclusion Criteria
2.3. Quality Assessment
2.4. Outcome Variables
2.5. Data Mining
2.6. Statistical Analysis
3. Results
3.1. Main Search
3.2. Quality Assessment of the Experiments
3.3. The Ergogenic Effect of Music on Anaerobic Performance
3.4. Effect on Peak Power Meta-Analysis
3.5. Effect on Mean Power Meta-Analysis
3.6. Effect on Fatigue Index Meta-Analysis
4. Discussion
4.1. Effect of Music on Peak Power and Mean Power Performance
4.2. Effect on Fatigue Index Performance
4.3. Strengths, Limitations and Future Lines of Research
4.4. Practical Applications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Baker, J.S.; Davies, B. High intensity exercise assessment: Relationships between laboratory and field measures of performance. J. Sci. Med. Sport 2002, 5, 341–347. [Google Scholar] [CrossRef]
- Wen, N.; Dalbo, V.J.; Burgos, B.; Pyne, D.; Scanlan, A. Power testing in basketball: Current practice and future recommendations. J. Strength Cond. Res. 2018, 32, 2677–2691. [Google Scholar] [CrossRef] [PubMed]
- Krops, L.A.; Albada, T.; Woude, L.; Hijmans, J.; Dekker, R. Anaerobic exercise testing in rehabilitation: A systematic review of available tests and protocols. J. Rehabil. Med. 2017, 49, 289–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capostagno, B.; Lambert, M.I.; Lamberts, R.P. A Systematic Review of Submaximal Cycle Tests to Predict, Monitor, and Optimize Cycling Performance. Int. J. Sports Physiol. Perform. 2016, 11, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Minahan, C.; Chia, M.; Inbar, O. Does Power Indicate Capacity? 30-s Wingate Anaerobic Test vs. Maximal Accumulated O2 Deficit. Int. J. Sports Med. 2007, 28, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Bertuzzi, R.; Kiss, M.; Damasceno, M.; Oliveira, R.; Lima-Silva, A.E. Association between anaerobic components of the maximal accumulated oxygen deficit and 30-second Wingate test. Braz. J. Med. Biol. Res. 2015, 48, 261–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrid, B.; Pardono, E.; De Farias, D.L.; Asano, R.Y.; Silva, R.J.S.; Simoes, H.G. Reprodutibilidade do teste anaeróbio de Wingate em ciclistas. Motricidade 2013, 9, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Driss, T.; Vandewalle, H. The Measurement of Maximal (Anaerobic) Power Output on a Cycle Ergometer: A Critical Review. BioMed Res. Int. 2013, 2013, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Copeland, B.L.; Franks, B.D. Effects of types and intensities of background music on treadmill endurance. J. Sports Med. Phys. Fit. 1991, 31, 100–103. [Google Scholar]
- Karageorghis, C.; Priest, D.-L. Music in the exercise domain: A review and synthesis (Part I). Int. Rev. Sport Exerc. Psychol. 2011, 5, 44–66. [Google Scholar] [CrossRef] [Green Version]
- Terry, P.; Karageorghis, C.; Saha, A.M.; D’Auria, S. Effects of synchronous music on treadmill running among elite triathletes. J. Sci. Med. Sport 2012, 15, 52–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smirmaul, B.P. Effect of pre-Task music on sports or exercise performance. J. Sports Med. Phys. Fit. 2017, 57, 976–984. [Google Scholar] [CrossRef]
- Centala, J.; Pogorel, C.; Pummill, S.W.; Malek, M.H. Listening to Fast-Tempo Music Delays the Onset of Neuromuscular Fatigue. J. Strength Cond. Res. 2020, 34, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Karageorghis, C.; Priest, D.-L.; Terry, P.; Chatzisarantis, N.; Lane, A.M. Redesign and initial validation of an instrument to assess the motivational qualities of music in exercise: The Brunel Music Rating Inventory-2. J. Sports Sci. 2006, 24, 899–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, W.-J.; Wong, W.-C.; Hui, A.N.-N. Emotional Reactions Mediate the Effect of Music Listening on Creative Thinking: Perspective of the Arousal-and-Mood Hypothesis. Front. Psychol. 2017, 8, 1680. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.; Karageorghis, C.; Ekkekakis, P. Can High-Intensity Exercise Be More Pleasant? Attentional Dissociation Using Music and Video. J. Sport Exerc. Psychol. 2014, 36, 528–541. [Google Scholar] [CrossRef] [Green Version]
- Hardy, C.J.; Rejeski, W.J. Not What, but How One Feels: The Measurement of Affect during Exercise. J. Sport Exerc. Psychol. 1989, 11, 304–317. [Google Scholar] [CrossRef]
- Priest, D.L.; Karageorghis, C.I.; Sharp, N.C.C. The characteristics and effects of motivational music in exercise settings: The possible influence of gender, age, frequency of attendance, and time of attendance. J. Sports Med. Phys. Fit. 2004, 44, 77–86. [Google Scholar]
- Razon, S.; Basevitch, I.; Land, W.; Thompson, B.; Tenenbaum, G. Perception of exertion and attention allocation as a function of visual and audi-Tory conditions. Psychol. Sport Exerc. 2009, 10, 636–643. [Google Scholar] [CrossRef]
- Yamashita, S.; Iwai, K.; Akimoto, T.; Sugawara, J.; Kono, I. Effects of music during exercise on RPE, heart rate and the autonomic nervous system. J. Sports Med. Phys. Fit. 2006, 46, 425–430. [Google Scholar]
- Eliakim, M.; Meckel, Y.; Nemet, D.; Eliakim, A. The Effect of Music during Warm-Up on Consecutive Anaerobic Performance in Elite Adolescent Volleyball Players. Int. J. Sports Med. 2007, 28, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Karageorghis, C.; Cheek, P.; Simpson, S.D.; Bigliassi, M. Interactive effects of music tempi and intensities on grip strength and subjective affect. Scand. J. Med. Sci. Sports 2017, 28, 1166–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rendi, M.; Szabo, A.; Szabó, T. Performance Enhancement with Music in Rowing Sprint. Sport Psychol. 2008, 22, 175–182. [Google Scholar] [CrossRef]
- Waterhouse, J.; Hudson, P.; Edwards, B. Effects of music tempo upon submaximal cycling performance. Scand. J. Med. Sci. Sports 2010, 20, 662–669. [Google Scholar] [CrossRef]
- Tenenbaum, G.; Lidor, R.; Lavyan, N.; Morrow, K.; Tonnel, S.; Gershgoren, A.; Meis, J.; Johnson, M. The effect of music type on running perseverance and coping with effort sensations. Psychol. Sport Exerc. 2004, 5, 89–109. [Google Scholar] [CrossRef]
- Ballmann, C.G.; Maynard, D.J.; Lafoon, Z.N.; Marshall, M.R.; Williams, T.D.; Rogers, R.R. Effects of Listening to Preferred versus Non-Preferred Music on Repeated Wingate Anaerobic Test Performance. Sports 2019, 7, 185. [Google Scholar] [CrossRef] [Green Version]
- Işık, Ö.; Ersoz, Y.; Pazan, M.; Ocak, Y. The effect of motivational music on wingate anaerobic test performance. J. Hum. Sci. 2015, 12, 513. [Google Scholar] [CrossRef] [Green Version]
- Pujol, T.J.; Langenfeld, M.E. Influence of Music on Wingate Anaerobic. Percept. Mot. Ski. 1999, 88, 292–296. [Google Scholar] [CrossRef]
- Ericksen, B.H. The effects of preparatory arousal on sixty-meter dash performance. Appl. Res. Coach. Athl. Annu. 1995, 10, 70–79. [Google Scholar]
- Chanda, M.L.; Levitin, D.J. The neurochemistry of music. Trends Cogn. Sci. 2013, 17, 179–193. [Google Scholar] [CrossRef] [Green Version]
- Thaut, M.H. Rhythm, Music and the Brain: Scientific Foundations and Clinical Applications; Routledge: New York, NY, USA, 2008. [Google Scholar]
- Nakamura, P.M.; Pereira, G.; Papini, C.B.; Nakamura, F.Y.; Kokubun, E. Effects of Preferred and Nonpreferred Music on Continuous Cycling Exercise Performance. Percept. Mot. Ski. 2010, 110, 257–264. [Google Scholar] [CrossRef]
- Schwartz, S.E.; Fernhall, B.; Plowman, S.A. Effects of Music on Exercise Performance. J. Cardiopulm. Rehabil. 1990, 10, 312–316. [Google Scholar] [CrossRef]
- Lee, C. Carry-Over effects of music in an isometric muscular endurance task. Percept. Mot. Ski. 2004, 98, 985–991. [Google Scholar]
- Yamamoto, T.; Ohkuwa, T.; Itoh, H.; Kitoh, M.; Terasawa, J.; Tsuda, T.; Kitagawa, S.; Sato, Y. Effects of Pre-exercise Listening to Slow and Fast Rhythm Music on Supramaximal Cycle Performance and Selected Metabolic Variables. Arch. Physiol. Biochem. 2003, 111, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, J.C.; Sherman, T.; Davis, L.; Cawthon, D.; Reeder, N.B.; Gershon, T. The influence of asynchronous motivational music on a supramaximal exer-Cise bout. Int. J. Sport Psychol. 2011, 42, 135–148. [Google Scholar]
- Atan, T. Effect of music on anaerobic exercise performance. Biol. Sport 2013, 30, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Brooks, K.; Brooks, K. Difference in Wingate power output in response to music as motivation. J. Exerc. Physiol. Online 2010, 13, 14–20. [Google Scholar] [CrossRef]
- Brohmer, R.; Becker, C. Effects of music on wingate performance. J. Undergrad. Kinesiol. Res. 2006, 2, 1–7. [Google Scholar]
- Laurent, C.M.; Meyers, M.C.; Robinson, C.A.; Green, J.M. Cross-validation of the 20-versus 30-s Wingate anaerobic test. Eur. J. Appl. Physiol. 2007, 100, 645–651. [Google Scholar] [CrossRef]
- Cutrufello, P.T.; Benson, B.A.; Landram, M.J. The effect of music on anaerobic exercise performance and muscular endurance. J. Sports Med. Phys. Fit. 2020, 60. [Google Scholar] [CrossRef]
- Stork, M.J.; Kwan, M.; Gibala, M.J.; Ginis, K.A.M. Music Enhances Performance and Perceived Enjoyment of Sprint Interval Exercise. Med. Sci. Sports Exerc. 2015, 47, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Koç, H.; Curtseit, T.; Curtseit, A. Influence of musıc on Wingate aerobic test performance. Ovidius Univ. Ann. Ser. Phys. Educ. Sport Mov. Health 2009, 9, 43–47. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, L.A.; Clarke, M.; Rovers, M.M.; Riley, R.D.; Simmonds, M.; Stewart, G.; Tierney, J.F. Preferred Reporting Items for a Systematic Review and Meta-analysis of Individual Participant Data. JAMA J. Am. Med. Assoc. 2015, 313, 1657. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series; Defining the Review Question and Developing Criteria for Including Studies; Cochrane: London, UK, 2008.
- Methley, A.M.; Campbell, S.; Chew-Graham, C.; McNally, R.; Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. 2014, 14, 579. [Google Scholar] [CrossRef] [Green Version]
- Baker, C.U.; Edward, M.H.; Smith, D.R.; Gary, L.O. Development of Wingate Anaerobic Test Norms for Highly-Trained Women. Exerc. Physiol. 2011, 2, 68–79. [Google Scholar]
- Jaafar, H.; Rouis, M.; Attiogbé, E.; Vandewalle, H.; Driss, T. A Comparative Study between the Wingate and Force–Velocity Anaerobic Cycling Tests: Effect of Physical Fitness. Int. J. Sports Physiol. Perform. 2016, 11, 48–54. [Google Scholar] [CrossRef]
- Patton, J.; Murphy, M.; Frederick, F. Maximal Power Outputs During the Wingate Anaerobic Test. Int. J. Sports Med. 1985, 6, 82–85. [Google Scholar] [CrossRef]
- Dotan, R.; Bar-Or, O. Load optimization for the wingate anaerobic test. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 51, 409–417. [Google Scholar] [CrossRef]
- Üçok, K.; Gokbel, H.; Okudan, N. The Load of the Wingate Test: According to the Body Weight or Lean Body Mass? Electron. J. Gen. Med. 2005, 2, 10–13. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M.R. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedges, L.V. Distribution Theory for Glass’s Estimator of Effect size and Related Estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-Analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Nikolaidis, P. Gender differences in anaerobic power in physical education and sport science students. J. Phys. Educ. Sport 2009, 24, 140–145. [Google Scholar]
- Goran, R.; Dragan, R.B.R. Comparison of anaerobic mean and peak power outputs in preadolescent boys and adult males facta universitatis. Ser. Med. Biol. 2007, 14, 38–42. [Google Scholar]
- Lee, H.-P.; Liu, Y.-C.; Lin, M.-F. Effects of Different Genres of Music on the Psycho-Physiological Responses of Undergraduates. Hu Li Za Zhi 2016, 63, 77–88. [Google Scholar]
- Jamshidzad, M.; Maghsoudipour, M.; Zakerian, S.A.; Bakhshi, E.; Coh, P. Impact of music type on motor coordination task performance among introverted and extroverted students. Int. J. Occup. Saf. Ergon. 2018, 1–6. [Google Scholar] [CrossRef]
- Biagini, M.S.; Brown, L.E.; Coburn, J.W.; Judelson, D.A.; Statler, T.A.; Bottaro, M.; Tran, T.T.; Longo, N.A. Effects of Self-Selected Music on Strength, Explosiveness, and Mood. J. Strength Cond. Res. 2012, 26, 1934–1938. [Google Scholar] [CrossRef] [Green Version]
- Ades, A.E.; Lu, G.; Higgins, J.P.T. The Interpretation of Random-Effects Meta-Analysis in Decision Models. Med. Decis. Mak. 2005, 25, 646–654. [Google Scholar] [CrossRef]
- Scherer, K.R.; Zentner, M.R. Emotional effects of music: Production rules. In Music and Emotion: Theory and Research; Juslin, P., Sloboda, J.A.E., Eds.; Oxford Univ. Press: Oxford, UK, 2001; pp. 361–392. [Google Scholar]
- Eliakim, M.; Meckel, Y.; Gotlieb, R.; Nemet, D.; Eliakim, A. Motivational music and repeated sprint ability in junior basketball players. Acta Kinesiol. Univ. Tartu. 2012, 18, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Karageorghis, C.; Priest, D.-L. Music in the exercise domain: A review and synthesis (Part II). Int. Rev. Sport Exerc. Psychol. 2011, 5, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Priest, D.-L.; Karageorghis, C. A qualitative investigation into the characteristics and effects of music accompanying exercise. Eur. Phys. Educ. Rev. 2008, 14, 347–366. [Google Scholar] [CrossRef]
- Van Dyck, E. Musical Intensity Applied in the Sports and Exercise Domain: An Effective Strategy to Boost Performance? Front. Psychol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Bar-Or, O. The Wingate Anaerobic Test. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Calbet, J.A.L.; Chavarren, J.; Dorado, C. Fractional use of anaerobic capacity during a 30- and a 45-s Wingate test. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 76, 308–313. [Google Scholar] [CrossRef]
- Janot, J.M.; Beltz, N.M.; Dalleck, L.D. Multiple Off-Ice Performance Variables Predict On-Ice Skating Performance in Male and Female Division III Ice Hockey Players. J. Sports Sci. Med. 2015, 14, 522–529. [Google Scholar]
- Fletcher, J. What is heterogeneity and is it important? Br. Med. J. 2007, 334, 94–96. [Google Scholar] [CrossRef]
- von Hippel, P.T. The heterogeneity statistic I(2) can be biased in small meta-analyses. BMC Med. Res. Methodol. 2015, 15. [Google Scholar] [CrossRef] [Green Version]
- Burnley, M.; Doust, J.H.; Jones, A.M. Effects of Prior Warm-up Regime on Severe-Intensity Cycling Performance. Med. Sci. Sports Exerc. 2005, 37, 838–845. [Google Scholar] [CrossRef]
- Souissi, N.; Driss, T.; Chamari, K.; Vandewalle, H.; Davenne, D.; Gam, A.; Fillard, J.-R.; Jousselin, E. Diurnal variation in wingate test performances: Influence of active warm-up. Chronobiol. Int. 2010, 27, 640–652. [Google Scholar] [CrossRef]
- Ramierz, E.B.; Williford, H.N.; Olson, M.S. Effects of a Static Stretching Versus Conventional Warm-Up on Power Output During Wingate Cycle Performance. Med. Sci. Sports Exerc. 2007, 39, S353. [Google Scholar] [CrossRef]
- Vargas, N.; Robergs, R.A.; Klopp, D.M. Optimal loads for a 30-s maximal power cycle ergometer test using a stationary start. Eur. J. Appl. Physiol. 2014, 115, 1087–1094. [Google Scholar] [CrossRef]
- Wilson, R., II; Snyder, A.; Dorman, J. Analysis of seated and standing triple Wingate tests. J. Strength Cond. Res. 2009, 25, 868–873. [Google Scholar] [CrossRef] [PubMed]
- Ricard, M.D.; Hills-Meyer, P.; Miller, M.G.; Michael, T.J. The Effects of Bicycle Frame Geometry on Muscle Activation and Power During a Wingate Anaerobic Test. J. Sports Sci. Med. 2006, 5, 25–32. [Google Scholar]
- Terrados, N.; Calleja-González, J. Physiological common bases for team sports. Rev. Andaluza Med. Deporte 2011, 4, 84–88. [Google Scholar]
Authors | Random Sequence Generation (Selection Bias) | Allocation Concealment (Selection Bias) | Blinding of Participants and Personnel (Performance Bias) | Blinding of Outcome Assessment (Detection Bias) | Incomplete Outcome Data (Attrition Bias) | Selective Reporting (Reporting Bias) | Other Bias |
---|---|---|---|---|---|---|---|
Atan., 2013 [37] | |||||||
Brohmer et al., 2006 [39] | |||||||
Cutrufello et al., 2019 [41] | |||||||
Hutchinson et al., 2011 [36] | |||||||
Isik et al., 2019 [27] | |||||||
Koc et al., 2010 [43] | |||||||
Pujol et al., 2006 [28] | |||||||
Stork et al., 2014 [42] | |||||||
Brooks et al., 2010 [38] |
Article | Items by Number on the PEDro Scale | Total Score | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
Atan., 2013 [37] | Y | Y | N | Y | N | N | N | Y | Y | Y | Y | 6 |
Brohmer et al., 2006 [39] | Y | Y | N | Y | N | N | N | Y | Y | Y | Y | 6 |
Cutrufello et al., 2019 [41] | Y | Y | N | Y | N | N | N | Y | Y | Y | Y | 6 |
Hutchinson et al., 2011 [36] | Y | N | N | Y | N | N | N | Y | Y | Y | Y | 6 |
Isik et al., 2019 [27] | Y | N | N | Y | N | N | N | Y | Y | Y | Y | 5 |
Koc et al., 2010 [43] | Y | Y | N | Y | N | N | N | Y | Y | Y | Y | 6 |
Pujol et al., 2006 [28] | Y | Y | N | Y | N | N | N | Y | Y | Y | Y | 6 |
Stork et al., 2014 [42] | Y | Y | N | Y | N | N | N | Y | Y | Y | Y | 6 |
Brooks et al., 2010 [38] | Y | Y | N | Y | N | N | N | Y | Y | Y | Y | 6 |
Level of participants | Physical education students | 3 studies [27,37,41] |
Physically active | 2 studies [36,42] | |
Moderate to high fitness | 3 studies [28,39,43] | |
Low risk volunteers | 1 study [38] | |
Kind of music | 120 beats/min o more (fast rhythm) | 3 studies [30,31,37] |
80 beats/min approx. (slow music) | 1 study [39] | |
Motivational music | 3 studies [36,38,41] | |
2 types of music on two different days (1 day 120 beats/min or more and another day 80 beats/min approx. | 2 studies [35,40] | |
Resistance applied during the WAnT | 7.5% of body mass in kg | 6 studies [27,28,36,37,42,43] |
Undisclosed | 2 studies [38,39] | |
0.090kp/ kg of body mass | 1 study [41] | |
Use of cleats | Undisclosed | 8 studies [27,36,38,39,41,42,43] |
Using cleats | 1 study [37] | |
Experience or previous practice during the test | Undisclosed | 5 studies [28,36,38,39,43] |
They tried the test days before | 4 studies [27,37,41,42] | |
Biomechanical aspects during the test | Undisclosed | 8 studies [27,28,36,38,39,41,42,43] |
Bicycle dimensions adjusted to the participants and the whole test sitting on the bike | 1 study [37] | |
Warm Up | Undisclosed | 3 studies [28,38,42] |
5–10 min without sprints | 2 studies [39,43] | |
5–10 min with sprints | 3 studies [27,36,37] | |
3 min warm up | 1 study [41] |
Author/s-Year | Population | Intervention | Outcomes Analyzed | Main Conclusions |
---|---|---|---|---|
Atan, 2013 [37] | 28 males 21.26 ± 1.86 years Physical Education students |
| APP AMP FI | ↔ ↔ ↔ |
Brohmer et al., 2006 [39] | 17 (8 males, 9 females) 21.2 ± 0.7 years College students—physically fit |
| APP RPP FI | ↑ ↑ ↔ |
Brooks et al., 2010 [38] | 63 (24 males, 39 females) 23.5 years males, 21.5 years females Low-risk volunteers |
| APP RPP AMP RMP FI | ↑ ↑ ↑ ↑ ↑ |
Cutrufello et al., 2019 [41] | 15 (8 males, 7 females) (20.1 ± 1.79 years) Healthy, college-aged students |
| RPP FI | ↑ ↔ |
Hutchinson et al., 2011 [36] | 25 (13 males and 12 females) 20.8 ± 5.4 years Physically active |
| APP AMP FI | ↑ ↑ ↔ |
Isik et al., 2015 [27] | 16 males 23.19 ± 3.02 years Physical Education students |
| APP RPP AMP RMP FI | ↑ ↑ ↑ ↑ ↑ |
Koc et al., 2009 [43] | 20 (14 males, 6 females) 19.97 ± 11.34 years College students—physically fit |
| RPP RMP FI | ↑ ↑ ↑ |
Pujol et al., 1999 [28] | 15 (12 males, 3 females) 24.0 ± 3.4 years College students—moderate to high fitness |
| APP AMP FI | ↔ ↔ ↔ |
Stork et al., 2014 [42] | 20 healthy and moderately active, 10 males and 10 females (22.5 ± 4.3 years) |
| APP AMP FI | ↑ ↑ - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castañeda-Babarro, A.; Marqués-Jiménez, D.; Calleja-González, J.; Viribay, A.; León-Guereño, P.; Mielgo-Ayuso, J. Effect of Listening to Music on Wingate Anaerobic Test Performance. A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 4564. https://doi.org/10.3390/ijerph17124564
Castañeda-Babarro A, Marqués-Jiménez D, Calleja-González J, Viribay A, León-Guereño P, Mielgo-Ayuso J. Effect of Listening to Music on Wingate Anaerobic Test Performance. A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2020; 17(12):4564. https://doi.org/10.3390/ijerph17124564
Chicago/Turabian StyleCastañeda-Babarro, Arkaitz, Diego Marqués-Jiménez, Julio Calleja-González, Aitor Viribay, Patxi León-Guereño, and Juan Mielgo-Ayuso. 2020. "Effect of Listening to Music on Wingate Anaerobic Test Performance. A Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 17, no. 12: 4564. https://doi.org/10.3390/ijerph17124564