Modelling the Transference of Trace Elements between Environmental Compartments in Abandoned Mining Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. Modelling of Trace Element Mobility Between Environmental Compartments
3. Results and Discussion
3.1. Geochemical Characterization
3.2. Model Results and Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bini, C.; Maleci, L.; Wahsha, M. Mine Waste: Assessment of Environmental Contamination and Restoration. In Assessment, Restoration and Reclamation of Mining Influenced Soils; Elsevier Inc.: Philadelphia, PA, USA, 2017; pp. 89–134. ISBN 9780128095881. [Google Scholar]
- Lottermoser, B. Mine Wastes Characterization, Treatment and Environmental Impacts; Springer: Berlin, Germany, 2014; ISBN 9783642446092. [Google Scholar]
- Kim, S.; Kwon, H.J.; Cheong, H.K.; Choi, K.; Jang, J.Y.; Jeong, W.C.; Kim, D.S.; Yu, S.; Kim, Y.W.; Lee, K.Y.; et al. Investigation on health effects of an abandoned metal mine. J. Korean Med. Sci. 2008, 23, 452–458. [Google Scholar] [CrossRef]
- Leita, L.; Enne, G.; De Nobili, M.; Baldini, M.; Sequi, P. Heavy metal bioaccumulation in lamb and sheep bred in smelting and mining areas of S.W. sardinia (Italy). Bull. Environ. Contam. Toxicol. 1991, 46, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Ding, Z. Lead/cadmium contamination and lead isotopic ratios in vegetables grown in peri-urban and mining/smelting contaminated sites in Nanjing, China. Bull. Environ. Contam. Toxicol. 2009, 82, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Chiaradia, M.; Gulson, B.L.; MacDonald, K. Contamination of houses by workers occupationally exposed in a lead-zinc-copper mine and impact on blood lead concentrations in the families. Occup. Environ. Med. 1997, 54, 117–124. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, L.; Li, Y.; Li, H.; Wang, W.; Ye, B. Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ. Monit. Assess. 2012, 184, 2261–2273. [Google Scholar] [CrossRef] [PubMed]
- Nickson, R.T.; McArthur, J.M.; Shrestha, B.; Kyaw-Myint, T.O.; Lowry, D. Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Appl. Geochem. 2005, 20, 55–68. [Google Scholar] [CrossRef]
- Camizuli, E.; Scheifler, R.; Garnier, S.; Monna, F.; Losno, R.; Gourault, C.; Hamm, G.; Lachiche, C.; Delivet, G.; Chateau, C.; et al. Trace metals from historical mining sites and past metallurgical activity remain bioavailable to wildlife today. Sci. Rep. 2018, 8, 3436. [Google Scholar] [CrossRef]
- Alagić, S.; Tošić, S.B.; Dimitrijević, M.D.; Nujkić, M.M.; Papludis, A.D.; Fogl, V.Z. The content of the potentially toxic elements, iron and manganese, in the grapevine cv Tamjanika growing near the biggest copper mining/metallurgical complex on the Balkan peninsula: Phytoremediation, biomonitoring, and some toxicological aspects. Environ. Sci. Pollut. Res. 2018, 25, 34139–34154. [Google Scholar] [CrossRef]
- Li, J.; Wei, Y.; Zhao, L.; Zhang, J.; Shangguan, Y.; Li, F.; Hou, H. Bioaccessibility of antimony and arsenic in highly polluted soils of the mine area and health risk assessment associated with oral ingestion exposure. Ecotoxicol. Environ. Saf. 2014, 110, 308–315. [Google Scholar] [CrossRef]
- Gallego, J.L.R.; Ordóñez, A.; Loredo, J. Investigation of trace element sources from an industrialized area (Avilés, northern Spain) using multivariate statistical methods. Environ. Int. 2002, 27, 589–596. [Google Scholar] [CrossRef]
- Chopin, E.I.B.; Alloway, B.J. Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Ríotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water. Air. Soil Pollut. 2007, 182, 245–261. [Google Scholar] [CrossRef]
- Wahsha, M.; Al-Rshaidat, M.M.D. Potentially harmful elements in abandoned mine waste. In PHEs, Environment and Human Health: Potentially Harmful Elements in the Environment and the Impact on Human Health; Springer: Dordrecht, The Netherlands, 2014; pp. 199–220. ISBN 9789401789653. [Google Scholar]
- Barrio-Parra, F.; Elío, J.; De Miguel, E.; García-González, J.E.; Izquierdo-Díaz, M.; Álvarez, R. Environmental risk assessment of cobalt and manganese from industrial sources in an estuarine system. Environ. Geochem. Health 2017. [Google Scholar] [CrossRef]
- Obiadi, I.I.; Obiadi, C.M.; Akudinobi, B.E.B.; Maduewesi, U.V.; Ezim, E.O. Effects of coal mining on the water resources in the communities hosting the Iva Valley and Okpara Coal Mines in Enugu State, Southeast Nigeria. Sustain. Water Resour. Manag. 2016, 2, 207–216. [Google Scholar] [CrossRef]
- Gyamfi, E.; Appiah-Adjei, E.K.; Adjei, K.A. Potential heavy metal pollution of soil and water resources from artisanal mining in Kokoteasua, Ghana. Groundw. Sustain. Dev. 2019, 8, 450–456. [Google Scholar] [CrossRef]
- Nude, P.M.; Foli, G.; Yidana, S.M. Geochemical Assessment of Impact of Mine Spoils on the Quality of Stream Sediments within the Obuasi Mines Environment, Ghana. Int. J. Geosci. 2011, 02, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Dorleku, M.K.; Nukpezah, D.; Carboo, D. Effects of small-scale gold mining on heavy metal levels in groundwater in the Lower Pra Basin of Ghana. Appl. Water Sci. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Bi, B.; Liu, X.; Guo, X.; Lu, S. Occurrence and risk assessment of heavy metals in water, sediment, and fish from Dongting Lake, China. Environ. Sci. Pollut. Res. 2018, 25, 34076–34090. [Google Scholar] [CrossRef] [PubMed]
- Grande, J.A.; Santisteban, M.; Pérez-Ostalé, E.; Valente, T.; de la Torre, M.L.; Gomes, P.; Barrios-Parra, F. Dilution Versus Pollution in Watercourses affected by acid mine drainage: A graphic model for the Iberian Pyrite Belt (SW Spain). Mine Water Environ. 2018, 37, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ordiales, E.; Cienfuegos, P.; Roqueñí, N.; Covelli, S.; Flor-Blanco, G.; Fontolan, G.; Loredo, J. Historical accumulation of potentially toxic trace elements resulting from mining activities in estuarine salt marshes sediments of the Asturias coastline (northern Spain). Environ. Sci. Pollut. Res. 2019, 26, 3115–3128. [Google Scholar] [CrossRef]
- Garcia-Ordiales, E.; Covelli, S.; Rico, J.M.; Roqueñí, N.; Fontolan, G.; Flor-Blanco, G.; Cienfuegos, P.; Loredo, J. Occurrence and speciation of arsenic and mercury in estuarine sediments affected by mining activities (Asturias, northern Spain). Chemosphere 2018, 198, 281–289. [Google Scholar] [CrossRef] [PubMed]
- García-Ordiales, E.; Flor-Blanco, G.; Roqueñí, N.; Covelli, S.; Cienfuegos, P.; Álvarez, R.; Fontolan, G.; Loredo, J. Anthropocene footprint in the Nalón estuarine sediments (northern Spain). Mar. Geol. 2020, 424, 106167. [Google Scholar] [CrossRef]
- Pulford, I.D.; Watson, C. Phytoremediation of heavy metal-contaminated land by trees-A review. Environ. Int. 2003, 29, 529–540. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Soil-plant transfer of trace elements-An environmental issue. Geoderma 2004, 122, 143–149. [Google Scholar] [CrossRef]
- Freitas, H.; Prasad, M.N.V.; Pratas, J. Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: Environmental implications. Environ. Int. 2004, 30, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, E.; Fernández Marcos, M.L.; Vaamonde, C.; Fernández-Sanjurjo, M.J. Heavy metals in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation. Sci. Total Environ. 2003, 313, 185–197. [Google Scholar] [CrossRef]
- Moreno-Jiménez, E.; Peñalosa, J.M.; Manzano, R.; Carpena-Ruiz, R.O.; Gamarra, R.; Esteban, E. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. J. Hazard. Mater. 2009, 162, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Probst, A.; Liao, B. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci. Total Environ. 2005, 339, 153–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unterbrunner, R.; Puschenreiter, M.; Sommer, P.; Wieshammer, G.; Tlustoš, P.; Zupan, M.; Wenzel, W.W. Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ. Pollut. 2007, 148, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Jiménez, E.; Gamarra, R.; Carpena-Ruiz, R.O.; Millán, R.; Peñalosa, J.M.; Esteban, E. Mercury bioaccumulation and phytotoxicity in two wild plant species of Almadén area. Chemosphere 2006, 63, 1969–1973. [Google Scholar] [CrossRef]
- Kicińska, A.; Smreczak, B.; Jadczyszyn, J. Soil bioavailability of cadmium, lead, and zinc in the areas of Zn-Pb ore mining and processing (Bukowno, Olkusz). J. Ecol. Eng. 2019, 20, 84–92. [Google Scholar] [CrossRef]
- Sracek, O.; Choquette, M.; Gélinas, P.; Lefebvre, R.; Nicholson, R.V. Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Québec, Canada. J. Contam. Hydrol. 2004, 69, 45–71. [Google Scholar] [CrossRef]
- Tomiyama, S.; Igarashi, T.; Tabelin, C.B.; Tangviroon, P.; Ii, H. Acid mine drainage sources and hydrogeochemistry at the Yatani mine, Yamagata, Japan: A geochemical and isotopic study. J. Contam. Hydrol. 2019, 225. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, D.K.; Plummer, L.N.; Wigley, T.M.L.; Wolery, T.J.; Ball, J.W.; Jenne, E.A.; Bassett, R.L.; Crerar, D.A.; Florence, T.M.; Fritz, B.; et al. A Comparison of Computerized Chemical Models for Equilibrium Calculations in Aqueous Systems. In Chemical Modeling in Aqueous Systems; Everett, A.J., Ed.; U.S. Geological Survey: Washington, DC, USA, 1979; pp. 857–892. ISBN 9780841204799. [Google Scholar]
- Caruso, B.S.; Cox, T.J.; Runkel, R.L.; Velleux, M.L.; Bencala, K.E.; Nordstrom, D.K.; Julien, P.Y.; Butler, B.A.; Alpers, C.N.; Marion, A.; et al. Metals fate and transport modelling in streams and watersheds: State of the science and USEPA workshop review. Hydrol. Process. 2008, 22, 4011–4021. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.L.; Sloan, L.C.; Snyder, M.A. Regional Changes in Extreme Climatic Events: A Future Climate Scenario. J. Clim. 2004, 17, 81–87. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.B. Extreme climatic events and their evolution under changing climatic conditions. Glob. Planet. Chang. 2004, 44, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Atif, R.M.; Almazroui, M.; Saeed, S.; Abid, M.A.; Islam, M.N.; Ismail, M. Extreme precipitation events over Saudi Arabia during the wet season and their associated teleconnections. Atmos. Res. 2020, 231. [Google Scholar] [CrossRef]
- Mirza, M.M.Q. Climate change and extreme weather events: Can developing countries adapt? Clim. Policy 2003, 3, 233–248. [Google Scholar] [CrossRef]
- INE Instituto Nacional de Estadística. Nomenclator: Población del Padrón Continuo por Unidad Poblacional. Available online: https://www.ine.es/ (accessed on 26 November 2019).
- CNIG Centro Nacional de Información Geográfica. Centro de Descargas. Available online: http://centrodedescargas.cnig.es/ (accessed on 26 November 2019).
- Álvarez, R.; Ordóñez, A.; Pérez, A.; De Miguel, E.; Charlesworth, S. Mineralogical and environmental features of the asturian copper mining district (Spain): A review. Eng. Geol. 2018, 243, 206–217. [Google Scholar] [CrossRef]
- Gutiérrez Claverol, M.; Luque Cabal, C. La Minería en Los Picos de Europa; EDICIONES TREA: Gijón, Spain, 2000; ISBN 9788495178879. [Google Scholar]
- Martínez Morán, P. Estudio de la Afección Ambiental en Suelos Derivada de las Actividades Mineras en el Sector Norte de Carreña de Cabrales (Mina La Sierre). Master’s Thesis, Universidad de Oviedo, Oviedo, Spain, 13 June 2017. [Google Scholar]
- AEMET Meteorological Agency of the Spanish State (Agencia Estatal de Metereología). Cabrales Meteorol. Stn. (ID 1179B). Available online: http://www.aemet.es/ (accessed on 25 November 2019).
- Barrio-Parra, F.; Rodríguez-Santalla, I. A free cellular model of dune dynamics: Application to El Fangar spit dune system (Ebro Delta, Spain). Comput. Geosci. 2014, 62, 187–197. [Google Scholar] [CrossRef]
- Barrio-Parra, F.; Rodríguez-Santalla, I. Cellular automata to understand the behaviour of beach-dune systems: Application to El Fangar Spit active dune system (Ebro delta, Spain). Comput. Geosci. 2016, 93, 55–62. [Google Scholar] [CrossRef]
- Katsuki, A.; Kikuchi, M.; Nishimori, H.; Endo, N.; Taniguchi, K. Cellular model for sand dunes with saltation, avalanche and strong erosion: Collisional simulation of barchans. Earth Surf. Process. Landforms 2011, 36, 372–382. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, L.; Zhang, P.; Xiao, Y.C.; Hou, X.S.; Shen, Z.Y. Construction of a cellular automata-based model for rainfall-runoff and NPS pollution simulation in an urban catchment. J. Hydrol. 2019, 568, 929–942. [Google Scholar] [CrossRef]
- Shao, Q.; Weatherley, D.; Huang, L.; Baumgartl, T. RunCA: A cellular automata model for simulating surface runoff at different scales. J. Hydrol. 2015, 529, 816–829. [Google Scholar] [CrossRef]
- Parsons, J.A.; Fonstad, M.A. A cellular automata model of surface water flow. Hydrol. Process. 2007, 21, 2189–2195. [Google Scholar] [CrossRef]
- PNOA Plan Nacional de Ortofotografía Aerea. Available online: http://www.idee.es/wms/PNOA/PNOA? (accessed on 7 July 2020).
- SITPA Sistema de Información Territorial del Principado de Asturias. Available online: http://sitpa.cartografia.asturias.es/ (accessed on 7 July 2020).
- Qingjie, G.; Jun, D.; Yunchuan, X.; Qingfei, W.; Liqiang, Y. Calculating Pollution Indices by Heavy Metals in Ecological Geochemistry Assessment and a Case Study in Parks of Beijing. J. China Univ. Geosci. 2008, 19, 230–241. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P.; Garrett, R.G. Statistical Data Analysis Explained; John Wiley & Sons: Chichester, UK, 2008; ISBN 9780470985816. [Google Scholar]
- BOPA. Resolución de 20 de Marzo de 2014, de la Consejería de Fomento, Ordenación del Territorio y Medio Ambiente, por La Que se Establecen los Niveles Genéricos de Referencia para Metales Pesados en Suelos del Principado de Asturias; Boletín Oficial del Principado de Asturias: Oviedo, Spain, 2014; p. 2. [Google Scholar]
- Flórez, S. Tipología de las Mineralizaciones de Cu-Co-Ni de Carrreña de Cabrales (Asturias); Universidad de Oviedo: Oviedo, Spain, 1998. [Google Scholar]
- Suter, G.W.; Tsao, C.L. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision; LOCKHEED MARTIN ENERGY SYSTEMS, INC.: Oak Ridge, TN, USA, 1996. [Google Scholar]
- USEPA. Ecological Risk Assessment Guidance for Superfund: Process. for Designing and Conducting Ecological Risk Assessments Interim Final; c: Edison, NJ, USA, 1997.
- U.S. E.P.A. Freshwater Sediment Screening Benchmarks. Available online: https://www.epa.gov/sites/production/files/2015-09/documents/r3_btag_fw_sediment_benchmarks_8-06.pdf (accessed on 7 July 2020).
- I.G.M.E. La Caracterización de las Mineralizaciones Metálicas del Paleozoico del Extremo Nororiental de la Zona Cantábrica. Zona de Cabrales-Puente Viesgo; Ministerio de Industria y Energía, Secretaría de la Energía y Recursos Minerales: Madrid, Spain, 1988; p. 138.
Element | Min | Q1 | Median | Mean | Q3 | Max | Reference Concentration [58] | % of Samples above Reference Concentration |
---|---|---|---|---|---|---|---|---|
As | 7.23 | 24.7 | 107 | 418 | 339 | 3190 * | 100 | 53 |
Cd | 0.01 | 0.43 | 1.24 | 20.9 | 1.8 | 188 | 10 | 18 |
Co | 2.54 | 46.2 | 239 | 1520 | 783 | 10,700 * | 35 | 76 |
Cr (total) | 1.02 | 7.32 | 13.7 | 226 | 24.3 | 4160 | 2 1–10,000 2 | 95 1–0 2 |
Cu | 23.3 | 96.3 | 352 | 1690 | 1130 | 14,200 * | 55 | 84 |
Fe | 3000 | 12,300 | 15,800 | 19,400 | 25,900 | 41,100 * | NA ** | NA ** |
Mn | 15.6 | 353 | 1040 | 1550 | 2440 | 5160 | 6435 | 0 |
Ni | 3.3 | 32.5 | 90 | 842 | 480 | 6270 | 65 | 63 |
Pb | 8.92 | 30.4 | 50.7 | 53.7 | 72.3 | 122 | 70 | 26 |
Sb | 1.25 | 5.22 | 9.43 | 16 | 18.6 | 73.7 * | 5 | 74 |
V | 7.33 | 13.7 | 20.8 | 28.9 | 44 | 59.2 | 100 | 0 |
Zn | 10.8 | 59.6 | 87.2 | 113 | 143 | 294 | 455 | 0 |
Element | Min | Q1 | Median | Mean | Q3 | Max | Reference Concentration 1 | % of Samples above Reference Concentration |
---|---|---|---|---|---|---|---|---|
As | 0.7 | 0.7 | 0.7 | 6.69 | 0.93 | 48.1 * | 48 2 | 12.5 |
Cd | <LD ** | 0.07 | 0.1 | 0.38 | 0.1 | 2.50 * | 1.1 | 12.5 |
Co | 0.1 | 0.1 | 0.25 | 46.2 | 0.48 | 368 * | 5.1 | 12.5 |
Cr (total) | 0.2 | 0.3 | 0.5 | 0.71 | 0.75 | 2.3 | 2 3 | 12.5 |
Cu | 1.8 | 3.5 | 10.7 | 23 | 32.8 | 68.3 * | 0.23 | 100 |
Fe | 48.8 | 64.2 | 94.6 | 114 | 138 | 269 | 158 | 12.5 |
Mn | 1.4 | 2 | 2.3 | 2.7 | 3.33 | 4.7 | 1100 | 0 |
Ni | 0.7 | 0.8 | 2.05 | 21.8 | 5.35 | 152 * | 5 | 25 |
Pb | 1 | 1.48 | 1.7 | 2.4 | 2.43 | 5.80 * | 12.26 | 0 |
Sb | 0.1 | 0.2 | 0.25 | 0.6 | 0.65 | 2.30 * | 610 | 0 |
V | 0.2 | 0.3 | 0.35 | 0.38 | 0.42 | 0.6 | 80 | 0 |
Zn | 10.4 | 15.3 | 18.8 | 39.1 | 52.2 | 114 * | 30 | 37.5 |
Element | Min | Q1 | Median | Mean | Q3 | Max | Reference Concentration | % of Samples above Reference Concentration |
---|---|---|---|---|---|---|---|---|
As | 4.7 | 5.1 | 12.4 | 205 | 26.6 | 1170 * | 9.8 | 37.5 |
Cd | 0.4 | 0.41 | 0.49 | 0.61 | 0.7 | 1.16 | 0.99 | 12.5 |
Co | 12 | 12.2 | 13.4 | 578 | 40.9 | 4430 * | 50 | 25 |
Cr (total) | 6.66 | 7.83 | 11.8 | 988 | 15.9 | 7820 * | 43.4 | 12.5 |
Cu | 14.3 | 25 | 67.1 | 3030 | 134 | 23,800 * | 31.6 | 62,5 |
Fe | 1220 | 10,600 | 14,000 | 12,800 | 16,400 | 19,100 | 20,000 | 0 |
Mn | 343 | 395 | 655 | 917 | 1100 | 2620 * | 460 | 50 |
Ni | 12 | 14.2 | 20 | 426 | 35.5 | 2430 * | 22.7 | 25 |
Pb | 19.3 | 22.2 | 30.6 | 46.6 | 46.6 | 79.7 | 35.8 | 50 |
Sb | 0.54 | 1.06 | 2.31 | 6.7 | 3.4 | 30.7 * | 2 | 50 |
V | 8.99 | 10.7 | 14 | 14 | 17.6 | 18.6 | NA ** | NA ** |
Zn | 70.3 | 79.5 | 87.2 | 121 | 167 | 216 | 121 | 37.5 |
Element | As | Cd | Co | Cr | Cu | Fe | Mn | Ni | Pb | Sb | V | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
As | 1 | *** | *** | * | *** | * | *** | |||||
Cd | 0.2280 | 1 | * | *** | *** | * | *** | . | ||||
Co | 0.9982 | 0.2315 | 1 | *** | * | *** | * | *** | ||||
Cr | −0.1794 | 0.4851 | −0.1943 | 1 | . | * | ** | |||||
Cu | 0.9931 | 0.2218 | 0.9964 | −0.1770 | 1 | * | *** | * | *** | |||
Fe | 0.4609 | 0.8166 | 0.4678 | 0.3954 | 0.4823 | 1 | *** | * | * | *** | ||
Mn | 0.0081 | 0.8683 | 0.0082 | 0.5066 | 0.0044 | 0.7877 | 1 | *** | ||||
Ni | 0.9934 | 0.2066 | 0.9954 | −0.1730 | 0.9986 | 0.4723 | −0.0107 | 1 | * | *** | ||
Pb | 0.5192 | 0.4962 | 0.5229 | 0.3678 | 0.5249 | 0.3253 | 0.2015 | 0.5122 | 1 | ** | *** | |
Sb | 0.9584 | 0.3650 | 0.9553 | −0.1512 | 0.9458 | 0.5151 | 0.1174 | 0.9351 | 0.6028 | 1 | ||
V | −0.0808 | 0.7098 | −0.0911 | 0.6350 | −0.0779 | 0.7813 | 0.8399 | −0.0829 | 0.0038 | 0.0063 | 1 | |
Zn | 0.2177 | 0.4404 | 0.2281 | 0.3228 | 0.2348 | 0.1448 | 0.1905 | 0.2257 | 0.8082 | 0.2710 | −0.1122 | 1 |
Statistical Parameter | Cd | Co | Cr | Cu | Fe | Mn | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|
Mean | 0.44 | 24.2 | 14.0 | 92.5 | 1700 | 26.8 | 53.4 | 174 | |
SD | 0.66 | 12.9 | 4.07 | 52.7 | 2100 | 715 | 12.8 | 16.6 | 44.2 |
Variable | PC1 | PC2 | PC3 |
---|---|---|---|
As | 0.36 | −0.17 | 0.08 |
Cd | 0.21 | 0.38 | −0.14 |
Co | 0.36 | −0.17 | 0.08 |
Cr | 0.02 | 0.36 | −0.29 |
Cu | 0.36 | −0.17 | 0.07 |
Fe | 0.28 | 0.33 | 0.12 |
Mn | 0.13 | 0.45 | −0.02 |
Ni | 0.36 | −0.17 | 0.08 |
Pb | 0.25 | 0.00 | −0.48 |
Sb | 0.37 | −0.12 | 0.04 |
V | 0.08 | 0.47 | 0.14 |
Zn | 0.14 | 0.02 | −0.59 |
CMTA | 0.33 | 0.02 | 0.19 |
Slope | 0.02 | 0.26 | 0.48 |
% Cumulative Explained Variability | 47% | 74% | 90% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrio-Parra, F.; Izquierdo-Díaz, M.; Fernández-Gutiérrez del Álamo, L.J.; Biosca, B.; De Miguel, E. Modelling the Transference of Trace Elements between Environmental Compartments in Abandoned Mining Areas. Int. J. Environ. Res. Public Health 2020, 17, 5117. https://doi.org/10.3390/ijerph17145117
Barrio-Parra F, Izquierdo-Díaz M, Fernández-Gutiérrez del Álamo LJ, Biosca B, De Miguel E. Modelling the Transference of Trace Elements between Environmental Compartments in Abandoned Mining Areas. International Journal of Environmental Research and Public Health. 2020; 17(14):5117. https://doi.org/10.3390/ijerph17145117
Chicago/Turabian StyleBarrio-Parra, Fernando, Miguel Izquierdo-Díaz, Luis Jesús Fernández-Gutiérrez del Álamo, Bárbara Biosca, and Eduardo De Miguel. 2020. "Modelling the Transference of Trace Elements between Environmental Compartments in Abandoned Mining Areas" International Journal of Environmental Research and Public Health 17, no. 14: 5117. https://doi.org/10.3390/ijerph17145117
APA StyleBarrio-Parra, F., Izquierdo-Díaz, M., Fernández-Gutiérrez del Álamo, L. J., Biosca, B., & De Miguel, E. (2020). Modelling the Transference of Trace Elements between Environmental Compartments in Abandoned Mining Areas. International Journal of Environmental Research and Public Health, 17(14), 5117. https://doi.org/10.3390/ijerph17145117